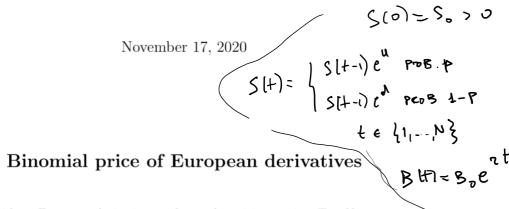
Lecture_9

den 17 november 2020 14:13

Options and Mathematics: Lecture 9



S(5) = (5-k)+

0 PT 1 0 N

FOR CALL

Consider a European derivative on the stock expiring at time $\underbrace{T=N}$.

Recall that European derivatives can be exercised only at maturity.

The derivative will be called **standard** if its pay-off depends only on the price of the stock at maturity, i.e., Y = g(S(N)), for some function $g:(0,\infty) \to \mathbb{R}$, which is called the **pay-off function** of the derivative.

The derivative will be called **non-standard** if the pay-off is a (deterministic) function of the stock price at time t = N and at times earlier than maturity, i.e., $Y = g(S(0), \ldots, S(N))$, where now $g: (0, \infty)^{N+1} \to \mathbb{R}$.

In both cases the pay-off depends on the path $x = (x_1, \dots, x_N) \in \{u, d\}^N$ followed by the stock price

STANDARD, DERIVATIVES:
$$Y(x) = g(S(N,x))$$

NON-STANDARD DERIVATIVES: $Y(x) = g(S(0),S(1,x),S(2,x_1,x_2),...$

t=01--- N

Assume that a European derivative is sold at time t < T for the price $\Pi_Y(t)$.

The first concern of the seller is to **hedge** the derivative, i.e., to invest the premium $\Pi_Y(t)$ in such a way that the seller portfolio value at the expiration date is enough to pay-off the buyer of the derivative.

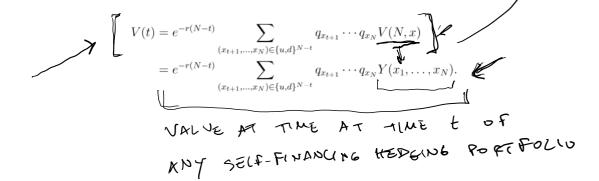
We assume that the seller invests the premium in the binomial market consisting of the underlying stock and the risk-free asset (**delta-hedging**).

Definition 3.2

An **hedging** portfolio process for the European derivative with pay-off Y and maturity T=N is a predictable portfolio process $\{(h_S(t),h_B(t))\}_{t\in\mathcal{I}}$ invested in the underlying stock and the risk-free asset such that its value V(t) satisfies V(N)=Y. \supset TI \searrow (N)

If $V(t) = \Pi_Y(t)$ holds for all t = 0, ..., N, and not only at maturity, we say that $\{h_S(t), h_B(t)\}_{t \in \mathcal{I}}$ is a **replicating** portfolio process for the given derivative.

The value V(t) of any self-financing hedging portfolio at time t is given by



x e {u,2}2

Definition 3.3

The **binomial** (fair) price at time $t=0,\ldots,N-1$ of the European derivative with pay-off Y and maturity T=N is given by

$$\Pi_{Y}(t) := e^{-r(N-t)} \sum_{(x_{t+1}, \dots, x_N) \in \{u, d\}^{N-t}} q_{x_{t+1}} \cdots q_{x_N} Y(x_1, \dots, x_N) \qquad t = \emptyset, \quad Y = \emptyset, \quad$$

where $N_u(x)$ in the number of u's in x and $N_d(x) = N - N_u(x)$ the number of d's

Remarks:

- 1. The binomial price at time t of the European derivative equals the value required to open at time t a self-financing hedging portfolio process for the derivative. In particular, self-financing hedging portfolios of European derivatives in a binomial market are also replicating portfolios.
- 2. Note carefully that we have *not* proved yet that hedging self-financing portfolios exist. The existence of self-financing hedging portfolios is proved in later.

Note that

$$\Pi_Y(t) = e^{-r(N-t)} \sum_{(x_{t+1}, \dots, x_N) \in \{u, d\}^{N-t}} q_{x_{t+1}} \cdots q_{x_N} Y(x_1, \dots, x_N) = \Pi_Y(t, x_1, \dots, x_t)$$

hence the binomial price of the derivative at time t depends only on the information available at time t and not on the uncertain future.

Example

Recall that

hence $S(N,x) = S_0 \exp(x_1 + \dots + x_N), \quad S(t,x_1,\dots,x_t) = S_0 \exp(x_1 + \dots + x_t)$ $S(N,x) = S(t,x_1,\dots,x_t) \exp(x_{t+1} + \dots + x_N)$

and therefore the binomial fair price for the standard European derivative with pay-off Y = g(S(N)) can be written as Y(x) = S(S(N))

 $\Pi_Y(t, x_1, \dots, x_t) = e^{-r(N-t)} \sum_{(x_{t+1}, \dots, x_N) \in \{u, d\}^{N-t}} q_{x_{t+1}} \cdots q_{x_N} \underbrace{g(S(t, x_1, \dots, x_t) e^{x_{t+1} + \dots + x_N})}_{\qquad \qquad \checkmark}.$

This shows that the binomial price at time t of standard European derivatives is a deterministic function of S(t), namely

 $\underbrace{\Pi_Y(t) = v_t(S(t))}_{\text{T}}$

where

$$v_t(z) = e^{-r(N-t)} \sum_{(x_{t+1},\dots,x_N)\in\{u,d\}^{N-t}} q_{x_{t+1}} \cdots q_{x_N} g(z \exp(x_{t+1} + \dots + x_N))$$
called the **pricing function** of the derivative (at time t).

is called the **pricing function** of the derivative (at time t).

In the particular case of the European call, respectively put, with strike Kand maturity T = N, the binomial price at time t = 0, ..., N - 1 can be written in the form C(t, S(t), K, N), respectively P(t, S(t), K, N), where

 $C(t,S(t),K,T) = e^{-r(T-t)} \sum_{\substack{(x_{t+1},\dots,x_T) \in \{u,d\}^{T-t} \\ (x_{t+1},\dots,x_T) \in \{u,d\}^{T-t}}} q_{x_{t+1}} \cdots q_{x_T} (\underbrace{S(t)}_{e^{x_{t+1}}+\dots+x_T} - K)_+,$ $P(t,S(t),K,T) = e^{-r(T-t)} \sum_{\substack{(x_{t+1},\dots,x_T) \in \{u,d\}^{T-t} \\ (x_{t+1},\dots,x_T) \in \{u,d\}^{T-t}}} q_{x_{t+1}} \cdots q_{x_T} (K-S(t)e^{x_{t+1}+\dots+x_T})_+.$

Remark:

These explicit formulas can be used to give an alternative proof of the properties on European call/put options derived in the first week, see Theorem 3.1 in the lecture notes.

Recurrence formula for the binomial price

Let $\Pi_Y^u(t)$ denote the binomial fair price of the European derivative at time t assuming that the stock price goes up at time t (i.e., $S(t) = S(t-1)e^u$, or equivalently, $x_t = u$)

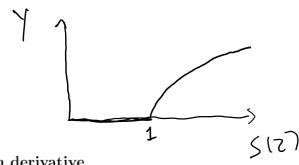
Note that

$$\Pi_{Y}^{u}(t) = \Pi_{Y}^{u}(t, x_{1}, \dots, x_{t-1}) = \Pi_{Y}(t, x_{1}, \dots, x_{t-1}, u).$$

Similarly define $\Pi_Y^d(t)$, with "up" replaced by "down".

By the proven recurrence formula for the value of self-financing portfolios we have the following important result.

The binomial price of European derivatives satisfies the recurrence formula

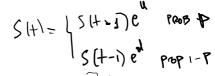


Example: A standard European derivative

Consider the standard European derivative with pay-off $Y = (\sqrt{S(2)} - 1)_+$ at maturity time T=2.

Assume that the market parameters are given by

the market parameters are given by
$$u = \log 2$$
, $d = 0$, $r = \log(4/3)$, $p = 1/4$.



Assume also $S_0 = 1$.

In this example we compute the possible paths for the binomial price $\Pi_Y(t)$ of the derivative and the probability that the derivative expires in the money.

The stock price and the risk-free asset satisfy

$$S(t) = \begin{cases} S(t-1)e^{u} \\ S(t-1)e^{d} \end{cases}, \quad B(t) = B_{0}e^{rt} \qquad t \in \{1, 2\},$$

where

Hence

$$e^{u} = 2, \quad e^{d} = 1, \quad e^{r} = 4/3.$$

$$q_u = \frac{e^r - e^d}{e^u - e^d} = \frac{1}{3}, \quad q_d = 1 - q_u = \frac{2}{3}.$$
 $q_u = \frac{e^r - e^d}{e^u - e^d} = \frac{1}{3}, \quad q_d = 1 - q_u = \frac{2}{3}.$

THIS MARKET IS
ARBITRAGÉ-FREE

Now, let us write the binomial tree of the stock price, including the possible values of the derivative at the expiration time T=2 (where we use that $\Pi_Y(2)=Y$):

$$S(2) = 4 \Rightarrow \Pi_{Y}(2) = (\sqrt{4} - 1)_{+} = 1$$

$$S(1) = 2$$

$$S(1) = 2$$

$$S(2) = 4 \Rightarrow \Pi_{Y}(2) = (\sqrt{4} - 1)_{+} = 1$$

$$S(1) = 2$$

$$S(1) = 2$$

$$S(2) = 4 \Rightarrow \Pi_{Y}(2) = (\sqrt{2} - 1)_{+} = 1$$

$$S(1) = 2$$

$$S(1) = 1$$

$$S(2) = 1 \Rightarrow \Pi_{Y}(2) = (\sqrt{2} - 1)_{+} = 1$$

$$S(1) = 1$$

$$S(1) = 1$$

$$S(2) = 1 \Rightarrow \Pi_{Y}(2) = (\sqrt{1} - 1)_{+} = 0$$

$$T_{Y}(2) = (\sqrt{1} - 1)_{+} = 0$$

$$T_{Y}(2) = (\sqrt{1} - 1)_{+} = 0$$

$$T_{Y}(2) = (\sqrt{1} - 1)_{+} = 0$$
Using the recurrence formula

$$\Pi_{Y}(t) = e^{-r} (q_u \Pi_{Y}^{u}(\underline{t+1}) + q_d \Pi_{Y}^{d}(\underline{t+1}))$$

we have, at time t = 1,

$$S(1) = S(1, u) = 2 \Rightarrow \Pi_Y(1) = \Pi_Y(1, u) = e^{-r} (q_u \Pi_Y^u(2, u) + q_d \Pi_Y^d(2, u))$$

$$= e^{-r} (q_u \Pi_Y(2, u, u) + q_d \Pi_Y(2, u, d))$$

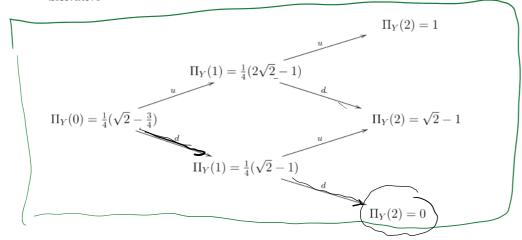
$$= \frac{3}{4} (\frac{1}{3} \cdot 1 + \frac{2}{3} (\sqrt{2} - 1)) = \frac{1}{4} (2\sqrt{2} - 1)$$

$$\begin{split} S(1) &= S(1,d) = 1 \Rightarrow \Pi_Y(1) = \Pi_Y(1,d) = e^{-r} (q_u \Pi_Y^u(2,d) + q_d \Pi_Y^d(2,d)) \\ &= e^{-r} (q_u \Pi_Y(2,d,u) + q_d \Pi_Y(2,d,d)) \\ &= \frac{3}{4} (\frac{1}{3} (\sqrt{2} - 1) + \frac{2}{3} \cdot 0) = \frac{1}{4} (\sqrt{2} - 1) \end{split}$$

while at time t = 0 we have

$$\begin{split} \Pi_Y(0) &= e^{-r} (q_u \Pi_Y^u(1) + q_d \Pi_Y^d(1)) \\ &= e^{-r} (q_u \Pi_Y(1, u) + q_d \Pi_Y(1, d)) \\ &= \frac{3}{4} (\frac{1}{3} \cdot \frac{1}{4} (2\sqrt{2} - 1) + \frac{2}{3} \cdot \frac{1}{4} (\sqrt{2} - 1)) = \frac{1}{4} (\sqrt{2} - \frac{3}{4}). \end{split}$$

Hence we have found the following diagram for the binomial price of the derivative



As to the probability that the derivative expires in the money, i.e., $\mathbb{P}(Y > 0)$, we see from the above diagram that this happens along the paths (u, u), (u, d), (d, u), hence

$$\mathbb{P}(Y>0) = \mathbb{P}(S^{(u,u)}) + \mathbb{P}(S^{(u,d)}) + \mathbb{P}(S^{(d,u)}) = \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \frac{3}{4} + \frac{3}{4} \cdot \frac{1}{4} = \frac{7}{16}, \qquad \qquad \mathbb{P} = \frac{1}{4}$$

which corresponds to 43,75%.

Example: A non-standard European derivative

Consider a 3-period binomial market with the parameters $e^u = \frac{4}{3}$, $e^d = \frac{2}{3}$, $e^d = \frac{2}{3}$, $e^d = \frac{2}{3}$,

In this example we shall compute the binomial price at time t=0 of the European derivative with pay-off

$$Y = \left(\frac{11}{9} - \min(S_0, S(1), S(2), S(3))\right)_+, \quad (z)_+ = \max(0, z),$$

and time of maturity T=3.

This is an example of **lookback option**. We will also compute the probability that the derivative expires in the money and the probability that the return of a constant portfolio with a long position on this derivative be positive.

To compute the initial binomial price we use the formula

$$\Pi_{Y}(0) = \underbrace{e^{-rN}}_{1} \sum_{x \in \{u,d\}^{N}} (q_{u})^{N_{u}(x)} (q_{d})^{N_{d}(x)} Y(x), \quad = \quad \underbrace{\sum_{x \in \{u,d\}^{N}} (1)^{N_{u}(x)} (1)^{N_{u}(x)} (1)^{N_{u}(x)} Y(x)}_{x \in \{u,d\}^{N}} = \underbrace{\sum_{x \in \{u,d\}^{N}} (1)^{N_{u}(x)} (1)^{N_{u}(x)} (1)^{N_{u}(x)} Y(x)}_{x \in \{u,d\}^{N}} = \underbrace{\sum_{x \in \{u,d\}^{N}} (1)^{N_{u}(x)} (1)^{N_{u}(x)} (1)^{N_{u}(x)} Y(x)}_{x \in \{u,d\}^{N}} = \underbrace{\sum_{x \in \{u,d\}^{N}} (1)^{N_{u}(x)} (1)^{N_{u}(x)} (1)^{N_{u}(x)} Y(x)}_{x \in \{u,d\}^{N}} = \underbrace{\sum_{x \in \{u,d\}^{N}} (1)^{N_{u}(x)} (1)^{N_{u}(x)} Y(x)}_{x \in \{u,d\}^{N}} = \underbrace{\sum_{x \in \{u,d\}^{N}} (1)^{N_{u}(x)} Y(x)}_{x \in \{u,d\}^{N}} = \underbrace{\underbrace{\sum_{x \in \{u,d\}^{N}} (1)}_{x \in \{u,d\}^{N}} =$$

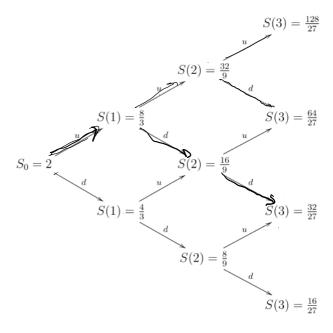
Here Y(x) denotes the pay-off as a function of the path of the stock price, $N_u(x)$ is the number of times that the stock price goes up in the path x and $N_d(x) = N - N_u(x)$ is the number of times that it goes down. In this example we have N=3, r=0 and

$$q_u = q_d = \frac{1}{2}$$
. $q_u = \frac{e^2 - e^d}{e^u - e^d} = \frac{1 - \frac{2}{3}}{4 - \frac{2}{3}} = \frac{1}{2}$

So, it remains to compute the pay-off for all possible paths of the binomial stock price, where

$$Y = \left(\frac{11}{9} - \min(S_0, S(1), S(2), S(3))\right)_+, \quad (z)_+ = \max(0, z).$$

The binomial tree of the stock price is



From this we compute

$$Y(u, u, u) = \left(\frac{11}{9} - \min(2, 8/3, 32/9, 128/27)\right)_{+} = \left(\frac{11}{9} - 2\right)_{+} = \max(0, -\frac{7}{9}) = 0$$

$$Y(u, u, d) = \left(\frac{11}{9} - \min(2, 8/3, 32/9, 64/27)\right)_{+} = 0 = \left(\frac{11}{9} - 2\right)_{+}$$

$$Y(u, d, u) = \left(\frac{11}{9} - \min(2, 8/3, 16/9, 64/27)\right)_{+} = 0$$

$$Y(u, d, d) = \left(\frac{11}{9} - \min(2, 8/3, 16/9, 32/27)\right)_{+} = \frac{1}{27}$$

$$Y(d, u, u) = \left(\frac{11}{9} - \min(2, 4/3, 16/9, 64/27)\right)_{+} = 0$$

$$Y(d, u, d) = \left(\frac{11}{9} - \min(2, 4/3, 16/9, 32/27)\right)_{+} = \frac{1}{27}$$

$$Y(d, d, u) = \left(\frac{11}{9} - \min(2, 4/3, 8/9, 32/27)\right)_{+} = \frac{1}{27}$$

$$Y(d, d, d) = \left(\frac{11}{9} - \min(2, 4/3, 8/9, 32/27)\right)_{+} = \frac{1}{27}$$

$$Y(d, d, d) = \left(\frac{11}{9} - \min(2, 4/3, 8/9, 16/27)\right)_{+} = \frac{1}{27}$$

$$T_{-1}(0) = \frac{1}{8} \sum_{x \in \{u, i\}_{3}^{2}} -1(x) = \frac{1}{8} \left(\frac{1}{27} + \frac{1}{27} + \frac{1}{3} + \frac{17}{27} \right) = \frac{1}{54}$$

$$= \frac{1}{8} \left(\frac{1}{27} + \frac{1}{27} + \frac{1}{3} + \frac{17}{27} \right) = \frac{1}{54}$$

Replacing in the formula for $\Pi_Y(0)$ we obtain

$$\Pi_Y(0) = q_u(q_d)^2 Y(u, d, d) + (q_d)^2 q_u Y(d, u, d) + (q_d)^2 q_u Y(d, d, u) + (q_d)^3 Y(d, d, d),$$

the other terms being zero. Hence

$$\Pi_Y(0) = \frac{1}{8} \left(\frac{1}{27} + \frac{1}{27} + \frac{1}{3} + \frac{17}{27} \right) = \frac{7}{54}.$$

The probability that the derivative expires in the money is the probability that Y > 0. Hence we just sum the probabilities of the paths which lead to a positive pay-off:

$$\begin{split} \mathbb{P}(Y>0) &= \mathbb{P}(S^{(u,d,d)}) + \mathbb{P}(S^{(d,u,d)}) + \mathbb{P}(S^{(d,d,u)}) + \mathbb{P}(S^{(d,d,d)}) \\ &= p(1-p)^2 + (1-p)^2 p + (1-p)^2 p + (1-p)^3 \\ &= 3(1-p)^2 p + (1-p)^3 = 3\left(\frac{1}{4}\right)^2 \frac{3}{4} + \left(\frac{1}{4}\right)^3 = \frac{5}{32} \approx 15,6\% \end{split}$$

Next consider a constant portfolio with a long position on the derivative. This means that the investor buys the derivative at time t=0 and waits (without changing the portfolio) until the expiration time t=3. The return will be positive (i.e., the buyer makes a profit) if and only if $\Pi_Y(3) > \Pi_Y(0)$. But $\Pi_Y(3) = Y$, which, according to the computations above, is greater than $\Pi_Y(0) = 7/54$ only when the binomial stock price follows one of the paths (d,d,u) or (d,d,d). Hence

$$\mathbb{P}(R > 0) = \mathbb{P}(S^{(d,d,\underline{u})}) + \mathbb{P}(S^{(d,d,d)}) = (1-p)^2 p + (1-p)^3 = (1-p)^2 = \frac{1}{16} \approx 6,2\%$$

$$= \mathbb{P}(Y > \mathbb{T}_{Y}(0))$$