Lecture_15

den 26 november 2020

14:01

Lecture_15

Options and Mathematics: Lecture 15

November 26, 2020

Review of finite probability theory

Let Ω be a set containing a finite number of elements $\omega_1, \omega_2, \dots, \omega_M$.

We denote Ω as

$$\Omega = \{\omega_1, \dots, \omega_M\}, \quad \text{or} \quad \Omega = \{\omega_i\}_{i=1,\dots,M}$$

and call it a sample space.

The elements $\omega_i \in \Omega$, i = 1, ..., M, are called **sample points**. The sample points identify the possible outcomes of an experiment.

Examples

For the experiment "rolling a die" we have

$$\Omega = \{1, 2, 3, 4, 5, 6\} \quad (M = 6),$$

For the experiment "tossing a coin once", we have

$$\Omega = \Omega_1 := \{H, T\} \quad (M = 2),$$

where H stands for "Head" and T for "Tail".

In the experiment "tossing a coin twice" we have

$$\Omega = \Omega_2 := \{(H, H), (H, T), (T, H), (T, T)\} \quad (M = 2^2 = 4)$$

and in the experiment "tossing a coin N times" we have

$$\Omega = \Omega_N := \{ \omega = (\gamma_1, \gamma_2, \dots, \gamma_N); \ \gamma_j = H \text{ or } T, \ j = 1, \dots, N \} = \{ H, T \}^N \quad (M = 2^N).$$

We denote by 2^{Ω} the **power set** of Ω , i.e., the set of all subsets of Ω .

 2^{Ω} consists of the empty set \emptyset , the subsets containing one element, i.e., $\{\omega_1\}, \{\omega_2\}, \ldots, \{\omega_M\},$ which are called **atomic sets**, the subsets containing two elements, i.e.,

$$\{\omega_1, \omega_2\}, \ldots, \{\omega_1, \omega_M\}, \{\omega_2, \omega_3\}, \ldots, \{\omega_2, \omega_M\}, \ldots, \{\omega_{M-1}, \omega_M\},$$

the subsets containing 3 elements and so on, and the set $\Omega = \{\omega_1, \dots, \omega_M\}$ itself. Thus 2^{Ω} contains 2^{M} elements.

For instance

$$2^{\Omega_1} = \{\emptyset, \{H\}, \{T\}, \{H, T\} = \Omega_1\}.$$
 $\mathcal{I}_{\downarrow} = \{\mathcal{H}, \mathcal{T}\}$

The elements of 2^{Ω} (i.e., the subsets of Ω) are called **events**. They identify possible events that occur in the experiment.

2

For example

$$\{1,7,3,4,5,6\} \equiv [\text{the result of throwing a die is an even number}],$$

{(H,H),(T,H)(T,T)}

(H,H),(T,T) = [tossing a coin twice gives the same outcome in both tosses].

Let $A, B \in 2^{\Omega}$ are events. $\left(\hat{\mathbf{x}}, \hat{\mathbf{y}}, A, B \in \mathcal{S}^{\Omega} \right)$

 $A \cup B$ is the event that A or B happens

 $A \cap B$ is the event that both A and B happen.

If the sets $A, B \subset \Omega$ are **disjoint**, i.e., $A \cap B = \emptyset$, the events A and B cannot occur simultaneously. 413,53,042,4,63 = \$

Probability of events

The atomic set $\{\omega_i\}$ identifies the event that the outcome of the experiment is exactly ω_i .

We want to assign a probability \mathbb{P} to such special events. To this purpose we introduce M real numbers p_1, p_2, \ldots, p_M such that

> $0 < p_i < 1$, for all $i = 1, \dots, M$, and $\sum_{i=1}^{M} p_i = 1$. P11+P2=1

The M-dimensional vector (p_1, p_2, \dots, p_M) is called a **probability vector**.

We define p_i to be the probability of the event $\{\omega_i\}$, that is

$$\mathbb{P}(\{\omega_i\}) = p_i, \quad i = 1, \dots, M.$$

Any event $A \in 2^{\Omega}$ can be written as the disjoint union of atomic events, e.g.,

 $= \{\omega_1, \omega_3, \omega_6\} = \{\omega_1\} \cup \{\omega_3\} \cup \{\omega_6\}. \qquad \text{if } \left(\{\omega_1, \omega_3, \omega_6\} \} \right)$ EYEM THAT THE EUTCONF 15 US,

This leads to define the probability of the event $A \in 2^{\Omega}$ as $= \mathbb{P}(\{\omega_{1}\}) + \mathbb{P}(\{\omega_{5}\})$ $+ \mathbb{P}(\{\omega_{5}\}) = \mathbb{P}_{1} + \mathbb{P}_{3} + \mathbb{P}_{5}$

$$\mathbb{P}(A) = \sum_{i:\omega_i \in A} \mathbb{P}(\{\omega_i\}) = \sum_{i:\omega_i \in A} p_i.$$
 the definition of $\mathbb{P}(A)$ as
$$\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\{\omega\})$$

We shall also write the definition of $\mathbb{P}(A)$ as

$$\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\{\omega\})$$

In particular

 $\mathbb{P}(\Omega) = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = \sum_{i=1}^M p_i = 1.$ Something happens. A with press. A with press. A property is impossible that the expense.

We also set

$$\mathbb{P}(\emptyset) = 0,$$
 ZERO EKOBABIL (†)

which means that it is impossible that the experiment gives no outcome.

The empty set \emptyset is the only event with zero probability: any other such event is excluded a priori by the sample space.

At this point every event has been assigned a probability.

Definition 5.1

Given a probability vector (p_1, \ldots, p_M) and a set $\Omega = \{\omega_1, \ldots, \omega_M\}$, the function $\mathbb{P}: 2^{\Omega} \to [0,1]$ defined by $\mathbb{P}(\emptyset) = 0$ and $\mathbb{P}(A) = \sum_{i:\omega_i \in A} p_i.$

$$\mathbb{P}(A) = \sum_{i:\omega_i \in A} p_i$$

is called a **probability measure**. The pair (Ω, \mathbb{P}) , is called a **finite prob**ability space.

Example

Definition 5.2

N- GIN TOSS
PROB. SPACE

Given $0 , the pair <math>(\Omega_N, \mathbb{P}_p)$ given by $\Omega_N = \{H, T\}^N$ and

$$\boxed{\mathbb{P}_p(A) = \sum_{\omega \in A} p^{N_H(\omega)} (1-p)^{N_T(\omega)}, \text{ for all } A \in 2^{\Omega_N}},$$

is called the N-coin toss probability space. Here $N_H(\omega)$ is the number of H in the sample ω and $N_T(\omega) = N - N_H(\omega)$ is the number of \underline{T} .

Conditional probability

It is possible that the occurrence of an event A affects the probability that a second event B occurred. For instance, for a fair coin we have $\mathbb{P}_p(\{H,H\}) = 1/4$, but if we know that the first toss is a tail, then $\mathbb{P}_p(\{H,H\}) = 0$. This simple remark leads to the definition of conditional probability.

Definition 5.3

Given two events A, B such that $\mathbb{P}(B) > 0$, the **conditional probability** of A given B is defined as

$$\boxed{\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}}$$

Similarly, if B_1, B_2, \ldots, B_n are events such that $\mathbb{P}(B_1 \cap \cdots \cap B_n) > 0$, the conditional probability of A given B_1, \ldots, B_n is

$$\mathbb{P}(A|B_1,\ldots,B_n) = \frac{\mathbb{P}(A\cap B_1\cap\cdots\cap B_n)}{\mathbb{P}(B_1\cap\cdots\cap B_n)}. \quad \mathcal{B} = \mathcal{B}_1 \cap \mathcal{B}_2 \cap \mathcal{B}_{M}$$

If the occurrence of B does not affect the probability of occurrence of A, i.e., if $\mathbb{P}(A|B) = \mathbb{P}(A)$, we say that the two events are independent. By the previous definition, the independence property is equivalent to the following.

Definition 5.4

Two events A, B are said to be **independent** if

$$\boxed{\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)}$$

Similarly, n events A_1, \ldots, A_n are said to be independent if

$$\mathbb{P}(A_{k_1}\cap\cdots\cap A_{k_m})=\mathbb{P}(A_{k_1})\cdot\ldots\cdot\mathbb{P}(A_{k_m}),$$

for all $1 \le k_1 < k_2 < \dots < k_m \le n$.

Random Variables

In general the purpose of an experiment is to determine the value of quantities which depend on the outcome of the experiment (e.g., the velocity of a particle, which is determined by successive measurements of its position). We call such quantities random variables.

Definition 5.5

Let (Ω, \mathbb{P}) be a finite probability space. A **random variable** is a function $X : \Omega \to \mathbb{R}$.

If $g: \mathbb{R}^n \to \mathbb{R}$, then the random variable $Y = g(X_1, X_2, \dots, X_n)$ is said to be measurable with respect to the random variables X_1, \dots, X_n .

Y=8(x)

1.E., Ylw) = g(x(w))

Example

Given $A \subset \Omega$, the random variable $\mathbb{I}_A : \Omega \to \{0,1\}$ given by

$$\mathbb{I}_{A}(\omega) = \left\{ \begin{array}{ll} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A \end{array} \right.$$

is called the **indicator function** of the event A.

FOR ALL WE ST WHICH NEADS THAT IF I KNOW X (W) THEN I ALSO KNOW Y (W)

EXMAPCE:
$$X: SZ_N \to \mathbb{R}$$

$$(\omega) = V_{+}(\omega) \qquad (= V_{-}(\omega)$$

$$V_{+}(\omega) = N - V_{+}(\omega), \text{ where } g(z) = V - z$$

Since $\Omega = \{\omega_1, \dots, \omega_M\}$, then a random variable X on a finite probability space is necessarily a finite random variable, i.e., it can attain only a finite number of values x_1, \ldots, x_M , namely

$$X(\omega_i) = x_i, \quad i = \underbrace{1, \dots, M}.$$

If $X(\omega_i) = c$, for all i = 1, ..., M, we say that X is a **deterministic con-** \mathbf{stant} (the value of X is independent of the outcome of the experiment).

The **image** of X is the finite set defined as

$$\operatorname{Im}(X) = \{x \in \mathbb{R} \text{ such that } X(\omega) = x, \text{ for some } \omega \in \Omega\},$$

i.e., Im(X) is the set of possible values attainable by X.

Notation

Given $a \in \mathbb{R}$, we denote

$$(X = a) = \{ \omega \in \Omega : X(\omega) = a \},$$

which is the event that X attains the value a. Of course, $\{X = a\} = \emptyset$ if $a \notin \operatorname{Im}(X)$. In general, given $I \subseteq \mathbb{R}$, we denote

$$\{X \in I\} = \{\omega \in \Omega : X(\omega) \in I\}, \qquad \left(\quad \text{ } \begin{array}{c} \\ \\ \end{array} \right) \quad \left(\quad \text{ } \begin{array}{c} \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\ \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\ \\ \\ \end{array} \right) \quad \left(\quad \begin{array}{c} \\ \\$$

which is the event that the value attained by X lies in the set I.

Moreover we denote

$$\underbrace{\{X=a,Y=b\}} = \underbrace{\{X=a\}} \cap \underbrace{\{Y=b\}}, \quad \underbrace{\{X\in I_1,Y\in I_2\}} = \underbrace{\{X\in I_1\}} \cap \underbrace{\{Y\in I_2\}}.$$

The probability that X takes value a is given by

$$X(\omega) = N_{H}(\omega) : SC_{3} \longrightarrow \mathbb{R}$$

$$Im(X) = \{0, 1, 2, 3\}$$

$$\mathbb{P}(X = z) = \mathbb{P}(\{H, H, H, A\}) + \mathbb{P}(\{H, H, H\}) + \mathbb{P}(\{H, H, H\})$$

$$\mathbb{P}(X = a) = \mathbb{P}(\{X = a\}) = \sum_{i:X(\omega_{i}) = a} (p_{i})$$

$$X = 2 \quad IFF \quad \omega \quad iS$$

$$X = 2 \quad IFF \quad \omega \quad iS$$

$$X = 2 \quad IFF \quad \omega \quad iS$$

$$X = 2 \quad IFF \quad \omega \quad iS$$

$$X = 2 \quad IFF \quad \omega \quad iS$$

If $a \notin \text{Im}(X)$, then $\mathbb{P}(X = a) = \mathbb{P}(\emptyset) = 0$.

More generally, given any open subset I of \mathbb{R} , we write

which is the probability that the value of X belongs to I.

wen any open subset I of \mathbb{R} , we write $\mathbb{P}(X \in I) = \mathbb{P}(\{X \in I\}) = \sum_{i: Y \in \mathcal{Y}_i} p_i,$

 $i:X(\omega_i)\in I$

Example

In the probability space of a fair die consider the random variable

 $\underline{X(\omega) = (-1)^\omega}, \quad \omega \in \{1,2,3,4,5,6\}.$ SAMPLE SPACE FOR THE DIE BOLL

Then $X(\omega) = 1$ if ω is even and $X(\omega) = -1$ is ω is odd. Moreover

Im (4) = {-4,1}

$$\mathbb{P}(X=1) = \mathbb{P}(\{2,4,6\}) = 1/2, \quad \mathbb{P}(X=-1) = \mathbb{P}(\{1,3,5\}) = 1/2,$$

whereas

 $\mathbb{P}(X \neq \pm 1) = \mathbb{P}(\emptyset) = 0.$

The events $A \neq \{2,4,6\}$ is said to be **resolved** by X, because the occurrence of the event A (i.e., the fact that the outcome of the throw is an even number) is equivalent to X taking value 1. or A or A

In general, given a random variable $X : \Omega \to \mathbb{R}$, the events resolved by X are the sets of the form $(X \in I)$ for some $I \subseteq \mathbb{R}$. These events comprise the so called **information carried by** X.

{XETZCSZ

TER

O-ALGEBRA OF X

(OR INFORMATION CARRIED

Definition 5.6

Let (Ω, \mathbb{P}) be a finite probability space and $X : \Omega \to \mathbb{R}$ a random variable. The function $f_X : \mathbb{R} \to [0,1]$ defined by

$$\boxed{f_X(x) = \mathbb{P}(X = x)} \qquad \textbf{x} \quad \textbf{6} \quad \boxed{\textbf{1}}$$

is called the **probability distribution** of X (or **probability mass func**tion), while $F_X : \mathbb{R} \to [0,1]$ given by

$$F_X(x) = \mathbb{P}(X \le x), \quad x \in \mathbb{R} = \sum_{\substack{Y \le X \\ Y \le X}} \mathbb{P}\left(X = Y\right)$$
 is called the **cumulative distribution** of X .

Note that $f_X(x)$ is non-zero if only if $x \in \text{Im}(X)$, and that F_X is a non-decreasing function satisfying

decreasing function satisfying

$$0 \le F_X(x) \le 1, \quad \lim_{x \to -\infty} F_X(x) = 0, \quad \lim_{x \to \infty} F_X(x) = 1.$$

For example, for the random variable $X(\omega)=(-1)^{\omega}$ defined on the probability space of a fair die we have

For the applications to the binomial options pricing model, the following probability distribution plays a fundamental role.

Definition 5.6

J

Given $N \in \mathbb{N}$, $N \ge 1$, and $p \in (0,1)$, a finite random variable X is said to be **binomially distributed** if $\mathrm{Im}(X) = \{0,1,\ldots,N\}$ and if the probability distribution of X is given by the **binomial distribution**

$$f_X(k) = \phi_{N,p}(k) := \binom{N}{k} p^k (1-p)^{N-k}, \quad k = 0, \dots, N.$$

$$THE STOCK$$

$$PRICE (N) THE STOCK$$

$$PRICE (N) THE STOCK$$

For instance, the random variable $X(\omega) = N_H(\omega)$ in the N-coin toss probability space is binomially distributed.

The probability that a random variable X takes value in the interval [a,b] can be written in terms of the distribution of X as

$$\mathbb{P}(a \leq X \leq b) = \sum_{i: X(\omega_i) = x_i \in [a,b]} \mathbb{P}(X = x_i) = \sum_{i: a \leq x_i \leq b} f_X(x_i) \qquad \qquad \underbrace{\qquad \qquad }_{\text{\tiny Λ}} \quad \text{$\ensuremath{\bullet}$} \quad \text{$\ensuremath{\bullet}$} \quad \underbrace{\qquad \qquad }_{\text{\tiny λ}} \quad \text{$\ensuremath{\bullet}$} \quad \text{$\ensuremath{\bullet}$} \quad \underbrace{\qquad \qquad }_{\text{\tiny λ}} \quad \underbrace{\qquad \qquad \quad }_{\text{\tiny λ}} \quad \underbrace{\qquad \qquad \quad }$$

In a similar fashion, if $g: \mathbb{R} \to \mathbb{R}$ then

$$\mathbb{P}(a \leq g(X) \leq b) = \sum_{i:g(X(\omega_i))=g(x_i) \in [a,b]} \mathbb{P}(X = x_i) = \sum_{i:a \leq g(x_i) \leq b} f_X(x_i).$$

$$\mathbb{P}(a \leq g(X) \leq b) = \sum_{i:g(X(\omega_i))=g(x_i) \in [a,b]} \mathbb{P}(X = x_i) = \sum_{i:a \leq g(x_i) \leq b} f_X(x_i).$$

$$\mathbb{P}(a \leq g(X) \leq b) = \sum_{i:g(X(\omega_i))=g(x_i) \in [a,b]} \mathbb{P}(X = x_i) = \sum_{i:a \leq g(x_i) \leq b} f_X(x_i).$$

$$\mathbb{P}(a \leq g(X) \leq b) = \sum_{i:g(X(\omega_i))=g(x_i) \in [a,b]} \mathbb{P}(X = x_i) = \sum_{i:a \leq g(x_i) \leq b} f_X(x_i).$$

$$\mathbb{P}(a \leq g(X) \leq b) = \sum_{i:g(X(\omega_i))=g(x_i) \in [a,b]} \mathbb{P}(X = x_i) = \sum_{i:a \leq g(x_i) \leq b} f_X(x_i).$$

$$\mathbb{P}(a \leq g(X) \leq b) = \sum_{i:g(X(\omega_i))=g(x_i) \in [a,b]} \mathbb{P}(X = x_i) = \sum_{i:a \leq g(x_i) \leq b} f_X(x_i).$$

$$\mathbb{P}(a \leq g(X) \leq b) = \sum_{i:g(X(\omega_i))=g(x_i) \in [a,b]} \mathbb{P}(x = x_i) = \sum_{i:g(X(\omega_i))=g(x_i)=g(x_i) \in [a,b]} \mathbb{P}(x = x_i) = \sum_{i:g(X(\omega_i))=g(x_i)=g(x_i)=g(x_i)} \mathbb{P}(x = x_i) = \sum_{i:g(X(\omega_i))=g(x_i$$

Independent random variables

We have seen before that a random variable X carries information.

If Y = g(X) for some (non-constant) function $g : \mathbb{R} \to \mathbb{R}$, then Y carries no more information than X: any event resolved by knowing the value of Y is also resolved by knowing the value of X.

The other extreme case is when two random variables carry independent information.

Definition 5.8

TO X

Let (Ω, \mathbb{P}) be a finite probability space. Two random variables $X_1, X_2 : \Omega \to \mathbb{R}$ are said to be **independent** if

the events $\{X_1 \in I_1\}, \{X_2 \in I_2\}$ are independent events, for all sets $I_1 \subseteq \text{Im}(X_1), I_2 \subseteq \text{Im}(X_2)$. This means that

 $\mathbb{P}(X_1 \in I_1, X_2 \in I_2) = \mathbb{P}(X_1 \in I_1)\mathbb{P}(X_2 \in I_2).$

More generally, n random variables $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ are independent if the events $\{X_1 \in I_1\}, \{X_2 \in I_2\}, \ldots, \{X_n \in I_n\}$ are independent for all sets I_1, I_2, \ldots, I_n such that $I_j \subseteq \operatorname{Im}(X_j)$.

The independence property is linked to the probability defined on the sample space: two random variables may be independent with respect to some probability and not-independent with respect to another. We shall use later the following important result:

Theorem 5.1

Let X_1, X_2, \ldots, X_n be independent random variables, $k \in \{1, \ldots, n-1\}$ and $g : \mathbb{R}^k \to \mathbb{R}, f : \mathbb{R}^{n-k} \to \mathbb{R}$. Then the random variables

 $Y = g(X_1, X_2, \dots, X_k), \quad Z = f(X_{k+1}, \dots, X_n)$

are independent.

EXAMPLE IF N=Z

R.V., THEN g(X), \$(12) ARE

ALSO INTEPENDENT P.V.