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Options and Mathematics: Lecture 16

November 27, 2020

Review of finite probability theory

Expectation and Variance

We may think of the expectation of X as an estimate on the average value
of X and the variance of X as a measure of how far is this estimate from to
the precise value of X.

Definition 5.9

Let (£2,P) be a finite probability space and X : Q@ — R a random variable.
The expectation (or expected value) of X is defined by

M
7 E[X] = ;’E{;’_‘Jr)ﬂm[“}a)

vot poN A L]

e Y ad

EX] =Y. X(@P({w})] = > ¥ R(X :")
EX -5 )= 2 oA

1
we SL =9 x() & e KX)

x € Tw(’(v

We shall write the definition of E[X] also as
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Example In the N-coin toss probability space ($2y,[P,) we have € ACH T.:SS

e

E[X]= D X(@p™@ (1 —ph,

weldy

where Ny (w) is the number of heads and Np(w) = N — Ny (w) is the number
of tails in the N-toss w € Qp.

We can rewrite the definition of expectation as

EX]= Y oP(X=uz),

wclm(X)

or equivalently

Ve

[E[X] = Z.‘::EIIH(X) zfx (T)J

The importance of the previous formula is that it allows to compute the
expectation of X from its distribution, without any reference to the original
probability space.

Example

RN
% (w)

—_—

REPLVZATION
of Twe &N,

If we are told that a random variable X takes the following values:

Tl

1 with probability in
2 with probability 1/4<)
—17 with probability \l /2

then we can compute E[X] as

1 1 1 1

L 2 < ¢
Naepxys 2 X %K(ﬂ oAXD - &-3[} Hc%tu-nzlz-
! [
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Some simple properties of the expectation are collected in the following the-
orem,

Theorem 5.2

Let X, Y be random variables on a finite probability space (€2, ]P’).,((! :@

a,b € R. The following holds:

1. ElaX +bY| = aE[X] + bE[Y] (linearity).
> 2 IfX >0 andELX] = (), then X = (.

3. If X, Y are independent, then E[XY]| = E[X]E[Y].
g oot

A U 7
= ﬂ%[xﬂ s EY)= Y g@ix@). € M
xelm(X) S
JE1=2

4. 1Y =g(X), ie, if Y is X-measurable, then

Definition 5.10

Let (£2,P) be a finite probability space. The variance of a random variable

X : Q= R is defined by &Y 2 oFTHTD@eEM

Var[X] = E[(E[X] - X)?]. §.2, Nae 1Y) =0
7o e =ETx)
Using the linearity of the expectation, we obtain easily the formula ! /
&% K
A PSTEEM\NCST ¢
(Var[X] = E[X?] - E[X]?) om e N

/‘7

Lecture 16 Page 4



Remarks

e The variance of a random variable is always non-negative and it is zero
if and only if the random variable is a deterministic constant. Hence
we may also interpret the variance as a measure of the “randomness”
of a random variable.

e Var[aX] = a*Var[X] holds for all constants a € R, and

Var{X+¥] = E[(X+Y )| E[X+Y]* = Var[X]+Var[Y |+ 2(E[X Y] -ELX[E]Y]).

L2
It follows by Theorem $(3) that the variance of the sum of two inde- = N
I e . TS 14
pendent random variables is the sum of their variance _
2c o\ &
(4) KN ATE
Using £3) in Theorem 5.2 with g(x) = 2?, we can rewrite the definition of "'Df?cc
variance in terms of distribution function of X as SENT
2 !
XNz €LY BRI 2

Var[X] = Z w2 fx(x) — Z zfx(z) |

welm{X) welm(X)

T Y4
T30\, p@=2
which allows to compute Var[X] without any reference to the original prob-
ability space.

Tor instance for the random variable on page 2 we find

1 1 1 1\* 27
X]=1-=44-~41.-— (=) ==L
VarlX]=1-7+4- 7413 (4) 16
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Example: mean of log return and volatility of the binomial stock
price

Let 0 =ty <t < -+ <ty = T be a partition of the interval [0, 7] with

ti—tig=h,foralli=1,...,N.
_a Given u > d and p € (0,1), consider a random variable X such that X = u
with probability p and X = d with probability 1 — p.
(S(E
p woziol We may think of X as being defined on €, = {H, T}, with X(H) = « and

@_éﬂvu\?‘h’r\op A X(T) = d. 0, Wy a,

Q? ?( \o?

The binomial stock price at time #; can be written as S(t;) = S(t; 1) exp(X).

Hence the log-return R of the stock in the interval [t; 1,#;] is
~

S(ti)
S(ti1) X

R =1logS(t;) —log S(t;_1) = log

It follows that the expectation and the variance of the log-return of the stock

in the interval [t;_;,t;] are )
= ) x} (x)
J xezw) K
Bl = E(X| = (pu + (1l

ELX) - ExY
I _
Var[R] = Var[X] = [pu® + (1 = p)d® — (pu+ (1 = p)d)*)] = p(1 — p)(u — d)”.

Thus the parameters o, 0 in the binomial model can be rewritten as

twr(-0d
wri-o)d

-~

“Tem, o vuln) "
[a—,h]E[R]i 0" = 5 VarlH] o tlen A

W
It is part of our assumptions on the binomial model that the parameters o
and o are the same for every interval [t; 1,t;] of the partition.

5
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Conditional expectation

If X,Y are independent random variables, knowing the value of ¥ does not
help to estimate the random variable X,

However if X, Y are not independent, then we can use the information carried
by Y to find an estimate of/ X which is better than E[X]. This leads to the
important concept of conditional expectation.

Definition 5.14

o Let (£2,P) be a finite probability space, X,Y : 2 — R random variables and
y € Im(Y). The expectation of X conditional to Y = y (or given the event

/ {Y = y}) is defined as &ix} - LW(X:Y’) x
T Xe L L)(j

et [EIX]Y = 4] = ¥ PX =2l =) 7]

where P(X = x|Y = y) is the conditional probability of the event {X = a},

given the event {Y = y}. W(K . \,\} "D W(X . \{ =
- = - \ =
The random variable

— Ty =)
—e(EX] 9+ R BV =EXY =Y w e ST

is called the expectation of X conditional to Y.

In a similar fashion one defines the conditional expectation with respect
to several random variables, i.e., E[X|Y] = 4,Y2 = ¥o,...,Yn = yn| and

E[X[Yi,.... Y]
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Example
In the probability space of a fair die, consider
T (e [-3.48

X(w)=(-1)¥ Y(w) :ituil)(w—2)(w—3), wE{\il_ 3,4,5,6}.

/ﬂ a
Note that Im(Y) = {0,6,24,60}. Then we compute & D‘ \ -\} = % 'X
C TRy =) Ve Goh24 608
NeT () « EBIX[Y =0]=P(X =1]Y =0)=P(X = —1]Y =0)
_PE=1Y=0) PX=-1Y=0)
PY =0) P(Y =0)
_ P2} 13({1 3D _ o
T P({1,2.3}) P({1.2.3}) \%?D " .
Similarly we find 1< } Xi
—o EX|Y =6]=1D) E[X|Y =2]=-1, E[X]Y =60 =1
— - J

hence E[X|Y] is the random variable
NP

—1/3 if_t.u'=1,201‘3 \/(‘Oﬁ: o
SRANEVES R UER BAR I O DEISTONE
Y14) = 2¢
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The following theorem collects a few important properties of the conditional
expectation that will be used later on.

Theorem 5.3

Let X.Y,Z : 2 — R be random variables on the finite probability space
(£2,P). Then

oBVY0Y5 (0) The random variable E[X|Y] is Y-measurable; & %\ \I—S = % (\[7
&vwv$ (1) The conditional expectation is a linear operator, i.e.,
EloX + 8Y|Z] = aE[X|Z] + BE[Y|Z],
for all o, 3 € R;

= > NeEW
__+, (2) If X is independent of Y, then [EB(JY] :LE,[E]; Y CWES \1450‘:‘*—\-\ on

7 (3 X is measurable with respect ta'V), i.e., X = g(Y) for some function
\' — N
g, then EX|Y] =X, 1® T weasw Y| ' THEN T enow '>(

o @) EEXY]] =EX}; TUE \nSopyamon on > uAS BEEN LoST

= (5) If X is measurable with respect to Z, then%[\XﬂZ] = XE[Y|Z]; TaeT o W
- T W WAT 45 eNo WA
(6) If Z is measurable with respect to Y then E[E[X
—a

@]Ié’] = E[X]|Z].
2 orhine LTSS (RFoewaton T

7 Towck

TuAR N TRoveRT
These properties remain true if the conditional expectation is\taken with
respect to several random variables.

T loss t He
LaRetsT UMY
Remarks

e The interpretation of (2) is the following: If X is independent of Y, then
the information carried by Y does not help to improve our estimate on
X and thus our best estimate for X remains E[X].

e The interpretation of (3) is the following: if X is measurable with
respect of Y, then by knowing Y we also know X and thus our best
estimate on X is X itself.
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Stochastic processes X (‘ﬂ w3 ’bﬂc
VS A~ ‘)( [‘\’j [,b’w E’K

Let (£2,IP) be a finite probability space and T > 0.

A one parameter family of random variables, X(f) : @ — R, t € (0,77, is
called a stochastic process.

P
We denote the stochastic process byl { X (t)}icjopy and by X (f,w) the value
_*#  of the random variable X (t) on the san . X () () = X (v, \'D‘)
AT o)
For each fixed w € €1, the curve t — X (f,w), is called a path of the stochastic (et
process.
—_————
We shall refer to the parameter t as the time variable, as this is what it
\l represents in most applications.

If X(t,w) = C(t), for all w € Q, i.e., if the paths are the same for all sample
points, we say that the stochastic process is a deterministic function of
time.

o
\

If t runs over a (possibly finite) discrete set {tg,t1,...} C [0, 7], then we say

ﬂ‘—l'\\—‘\‘\ that the stochastic process is discrete.
— LX) X&) X&) . ?%

p—

1;.:'3 ! "'1 4”!‘—/{ . . . .
3 N Note that a discrete stochastic process is equivalent to a sequence of random
variables:

= {X[),Xl,..,}._. whcrcXi:X(t,-),i=U,1,..,.
D e ~— -_—
If the discrete stochastic process is finite, i.e., if it runs only for a finite number
N of time steps, we shall denote it by {X, },—, . n and call it a N-period (sTacups< lC\)
process. If it runs for infinitely many steps we denote it by {X,, },.en.

—————

9
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Definition 5.15

Let { X, }uen and {Y, },en be two discrete stochastic processes on a finite
7 probability space.

The process (Y, },en is said to be measurable with respect to {X, }en
if for all n € 1N there exists a function g, : R"*! — R such t-hat-]}:,:b =
gu(XU| Xl! ey X‘R)'

———  —a

N
IfL}f& = ho(Xo..... 6(\"_]) for some function h, : R" — R, then {,}jl}/”f/ﬁ is

said to be predictable from the process { X, },en.
/\_/_\—/‘-'\’H/

[ Example: The random walk. /Q
M
Consider the following (discrete and finite) stochastic process { X, }n=1...n \(
defined on the N-coin toss probability space (2y.F,):
= p y space (Q2n,Fp) we Sy, w—;(‘ﬁurr"q,\ﬁ

o N X - ~
1 ify, =H AV
m=to-o N = () e, @:{ -1 if: e '

R L 03
Clearly, the random variables X,,..., X are independent and identically \
distributed (i.i.d), namely N“[(p\ \‘*(m\

Tew B> ) 3 Felol= ¢ ¥ (e

P’X”=]_= . ]P 5§ﬂ=_]_ =1_._. f ll=]_"\.'r
%Lﬂ: HY '€ x s #l =P Bl \j)( p, foralln ,
= . - \—- — —
> {\—? 1F%x =—|\ Hence E—’LXM S i v + [_ A ?_) = 2V \

Q (¥ x #4&

E[X,] =2p—1,\Var[X,| =4p(1 — p), ) forall n=1,... N.

/_’\"v
Now, forn=1,..., N, let < }{ \g

N m
My=0, M,=3 X2
i=1
The stochastic process { M, },—o..._v is called the (N-period) random walk.
v p {My}oo...n (N-p )

MO\’O \ M&>’XA_‘ \)\7-{1_0 ?<5’4 KZ \\"77: ?Tlf)(z_\_)()? C-—~
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It satisfies = M/K kx y.. 4% E& MVS

E[M,]=n(2p—1), foralln=0,...,N. = om QL? _A’w

NS —

Moreover, being the sum of independent random variables, the random walk

has variance given by _ c
Bechuse Ny e M

\NDEYESENT

n
Var[Mo] =0, Var[M,] = Var(X;+Xo+ - +X,) = Y_ Var[X;] = 4np(1-p).
Ne———

i=1

ric. In this case
Jar[M,] = n. When
andom walk

_r~ When p =1 /2, the random walk is said to be sym
{M,}n=o.. n satisfies E[M,] = 0, n = 0,...,N and

p# 1/2, {M,} 0. is called asymmetric random walk,
with drift.

If M,, = k then M, is either k + 1 (with probability p), or £ — 1 (with
probability 1 — p). Hence we can represent the paths of the random walk by
using a binomial tree, as in the following example for N = 3:

My =3

M:L/
ﬂh:g\

S otk S\NIN b
B> v AT

AW E E

11

Lecture 16 Page 12



Martingales

A martingale is a stochastic process which has no tendency to rise or fall.
The precise definition is the following.

Definition 5.16

A discrete stochastic process {Xn}v,cm on the finite probability space (Q,[P)
is called a martingale if

_o» ELu+1|X0 Xy, .. Q{u for all n € N.

Interpretation: The variables X, X1,..., X, contains the information ob-
tained by “looking™ at the stochastic process up to the step n. For a mar-
_x tingale process, this information is not enough to estimate whether, in the

next step, the process will raise or fall. - as

Remarks .2 N’Q) (" cl}

1. The martingale property depends on the probability being used: if ﬁ)L . Ly Lo
{X, }nen is a martingale in the probability P and P is another prob- v 2 L% ¥ 1

-~ ability measure on the sample space Q, then {X, },en need not be a

martingale with respect to P.

2. Using property 4 in Theorem 5.3 we obtain

E[X,1] = E[X,],] forallneN.

Thus, iterating, [EL_,]__—\]HU for all n € N, i.e., martingales have \ \

constant expectation.

H':U;[x lﬂg = Ex)
ELED %o, - ¥YN = ET)

TN——

12

B BLEL: D) = BIK,
= - z &Y)(Drx
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Example = M N
Next we show that the symmetric random walk is a martingale.

Using the linearity of the conditional expectation we have, for all n =

0,....N -1,
V‘)L—i—& = “M’\' KAM—\
E[M, 1| My, ..., M,| = E[M, + X,,.1| My, ..., M,]
.
= ]E[ﬂ-jf" |ﬂ-jru, vy .n-ir-”,] + [E[X,l+1|ﬂ-jru, ey ﬂ-ir-uL
~ = L~
W U
AH@ is measurable with respect to My,. .. @ then o N‘ N
_~ N

E[M,|My, ..., M, = M,
MolMoy - M) = My P

see Theorem 5.3(3).
-

Moreover, as X, is independent of M,, ..., M,, Theorem 5.3(2) gives
g S

<=\
[E'[Xn+l |"m"fﬂ: R -'F'Jﬂ-] = ]E[X""H] =0
L ee—J
It follows that E[M,.1| My, ...

is a martingale.

M, = M,, i.e., the symmetric random walk

However the asymmetric random walk{(p # 1/2)4s not a martingale, as it

follows by the fact that its expectation E[M,| =@§2p — 1) is not constant (it
AN

depends on n € N).

13
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