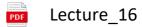
Lecture_16

den 27 november 2020



10:02

Options and Mathematics: Lecture 16

November 27, 2020

Review of finite probability theory

Expectation and Variance

We may think of the expectation of X as an estimate on the average value of X and the variance of X as a measure of how far is this estimate from to the precise value of X.

Definition 5.9

Let (Ω, \mathbb{P}) be a finite probability space and $X : \Omega \to \mathbb{R}$ a random variable. The **expectation** (or **expected value**) of X is defined by

$$\mathbb{E}[X] = \sum_{i=1}^{M} X(\omega_i) \mathbb{P}(\omega_i).$$

$$\mathbb{E}[X] = \sum_{i=1}^{X} X(\omega_{i}) \mathbb{P}(\omega_{i}).$$
We shall write the definition of $\mathbb{E}[X]$ also as
$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\}) = \sum_{x \in \mathcal{T} \mathbf{m}(X)} \mathbf{x} \quad \mathbb{P}(X = x)$$

$$1$$

$$\omega \in \mathcal{S} = \mathcal{D} \times (\omega) \in \mathcal{T} \mathbf{m}(X)$$

$$\times \in \mathcal{T} \mathbf{m}(X)$$

$$\mathcal{T}_{N} = \{ H, T \}^{N} = \{ \omega = (\mathcal{S}_{4}, T_{2}, -\mathcal{S}_{N}) \text{ where } Y_{i} = H \text{ or } T \}$$

$$\mathsf{Pe}(0, 1) \quad \mathbb{P}_{p}(\{\omega^{2}\}) = \mathcal{P}_{N_{H}}(\omega) \quad (1-p)^{N_{T}}(\omega) \quad N_{T}(\omega) = N - N_{H}(\omega)$$

$$\mathsf{Pe}(0, 1) \quad \mathbb{P}_{p}(\{\omega^{2}\}) = \mathcal{P}_{N_{H}}(\omega) \quad (1-p)^{N_{T}}(\omega) \quad N_{T}(\omega) = N - N_{H}(\omega)$$

$$\mathsf{Pe}(0, 1) \quad \mathbb{P}_{p}(\{\omega^{2}\}) = \mathcal{P}_{N_{H}}(\omega) \quad (1-p)^{N_{T}}(\omega) \quad N_{T}(\omega) = N - N_{H}(\omega)$$

$$\mathsf{Example In the } N\text{-coin toss probability space } (\Omega_{N}, \mathbb{P}_{p}) \text{ we have } \mathsf{EACH} \quad \mathsf{Toss}$$

$$\mathbb{E}_p[X] = \sum_{\omega \in \Omega_N} X(\omega) p^{N_H(\omega)} (1-p)^{N_T(\omega)},$$

where $N_H(\omega)$ is the number of heads and $N_T(\omega) = N - N_H(\omega)$ is the number of tails in the N-toss $\omega \in \Omega_N$.

We can rewrite the definition of expectation as

$$\mathbb{E}[X] = \sum_{x \in \mathrm{Im}(X)} x \, \mathbb{P}(X = x),$$

or equivalently

$$\mathbb{E}[X] = \sum_{x \in \operatorname{Im}(X)} x f_X(x)$$

The importance of the previous formula is that it allows to compute the expectation of X from its distribution, without any reference to the original probability space.

Example

If we are told that a random variable X takes the following values:

$$T_{\text{UM}}(X) = \begin{cases} 1 & \text{with probability } 1/4 \\ 2 & \text{with probability } 1/4 \\ -1 & \text{with probability } 1/2 \end{cases}$$

$$X = \begin{cases} 1 & \text{with probability } 1/4 \\ 2 & \text{with probability } 1/4 \\ \end{pmatrix}$$

$$Z \in A \cup Z \land X \setminus X$$

then we can compute $\mathbb{E}[X]$ as

$$\mathbb{E}[X] = 1 \cdot \frac{1}{4} + 2 \cdot \frac{1}{4} - 1 \cdot \frac{1}{2} = \frac{1}{4}.$$

Some simple properties of the expectation are collected in the following theorem.

Theorem 5.2

Let X, Y be random variables on a finite probability space $(\Omega, \mathbb{P}), g : \mathbb{R} \to \mathbb{R}$, $a, b \in \mathbb{R}$. The following holds:

1.
$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$
 (linearity).

2. If $X \ge 0$ and $\mathbb{E}[X] = 0$, then X = 0.

3. If X,Y are independent, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.

4. If Y = g(X), i.e., if Y is X-measurable, then

$$\mathbb{E}[\mathcal{F}(X)] = \mathbb{E}[Y] = \sum_{x \in \text{Im}(X)} g(x) f_X(x). \qquad (1)$$

$$\mathcal{F}(\mathcal{F}(X)) = \mathcal{F}^{\mathbf{Z}}$$

Definition 5.10

Let (Ω, \mathbb{P}) be a finite probability space. The **variance** of a random variable $X:\Omega\to\mathbb{R}$ is defined by

$$Var[X] = \mathbb{E}[(\mathbb{E}[X] - X)^2].$$
 Var $[X] = \mathbb{E}[X] - X$ Using the linearity of the expectation, we obtain easily the formula

$$\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

A PETERMINISTIC

CONSTANT

Remarks

- The variance of a random variable is always non-negative and it is zero if and only if the random variable is a deterministic constant. Hence we may also interpret the variance as a measure of the "randomness" of a random variable.
- $Var[aX] = a^2 Var[X]$ holds for all constants $a \in \mathbb{R}$, and

$$\mathrm{Var}[X+Y] = \mathbb{E}[\underbrace{(X+Y)^2}] - \mathbb{E}[X+Y]^2 = \underbrace{\mathrm{Var}[X]} + \underbrace{\mathrm{Var}[Y]} + 2\underbrace{(\mathbb{E}[XY]} - \mathbb{E}[X]\mathbb{E}[Y]).$$

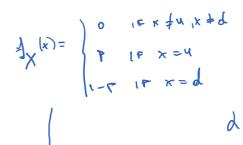
It follows by Theorem 3(3) that the variance of the sum of two independent random variables is the sum of their variance (4) Using (3) in Theorem 5.2 with $g(x) = x^2$, we can rewrite the definition of $(x) \in \mathbb{R}^{N}$

variance in terms of the distribution function of X as

which allows to compute Var[X] without any reference to the original probability space.

For instance for the random variable on page 2 we find

$$Var[X] = 1 \cdot \frac{1}{4} + 4 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2} - \left(\frac{1}{4}\right)^2 = \frac{27}{16}.$$



 $A_{X}^{(x)} = \begin{cases} 0 & i \in x \neq u, x \neq d \\ P & i \neq x = u \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ P & i \neq x = d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x \neq d \\ c & c \neq u, x \neq d \end{cases}$ $\begin{cases} c & c \neq u, x$

Example: mean of log return and volatility of the binomial stock

Let $0 = t_0 < t_1 < \dots < t_N = T$ be a partition of the interval [0,T] with $t_i - t_{i-1} = h$, for all $i = 1,\dots,N$.

Given u > d and $p \in (0,1)$, consider a random variable X such that X = uwith probability p and X = d with probability 1 - p.

We may think of X as being defined on $\Omega_1 = \{H, T\}$, with X(H) = u and X(T) = d.

The binomial stock price at time t_i can be written as $S(t_i) = S(t_{i-1}) \exp(X)$.

Hence the log-return R of the stock in the interval $[t_{i-1}, t_i]$ is

$$R = \log S(t_i) - \log S(t_{i-1}) = \log \frac{S(t_i)}{S(t_{i-1})} = X.$$

It follows that the expectation and the variance of the log-return of the stock in the interval $[t_{i-1}, t_i]$ are

In the interval
$$[t_{i-1}, t_i]$$
 are
$$\mathbb{E}[R] = \mathbb{E}[X] = \underbrace{(pu + (1-p)d)},$$

$$\mathbb{E}[R] = \operatorname{Var}[X] = \underbrace{[pu^2 + (1-p)d^2 - (pu + (1-p)d)^2)}] = p(1-p)(u-d)^2.$$

Thus the parameters α, σ^2 in the binomial model can be rewritten as

$$\alpha = \frac{1}{h} \mathbb{E}[R], \quad \sigma^2 = \frac{1}{h} \operatorname{Var}[R]$$

$$\alpha = \frac{1}{h} \mathbb{E}[R], \quad \sigma^2 = \frac{1}{h} \operatorname{Var}[R]$$

It is part of our assumptions on the binomial model that the parameters of and σ are the same for every interval $[t_{i-1}, t_i]$ of the partition.

IF Y= g(Y), Y CARRIES THE SAME INFORMATION

AS X

THEN THEY CARRY INDEPENDENT INFORMAT

TON

Conditional expectation

If X, Y are independent random variables, knowing the value of Y does not help to estimate the random variable X.

However if X, Y are not independent, then we can use the information carried by Y to find an estimate of X which is better than $\mathbb{E}[X]$. This leads to the important concept of **conditional expectation**.

Definition 5.14

Let (Ω, \mathbb{P}) be a finite probability space, $X, Y : \Omega \to \mathbb{R}$ random variables and $y \in \operatorname{Im}(Y)$. The expectation of X conditional to Y = y (or given the event $\{Y = y\}$) is defined as

$$\mathbb{E}[X|Y=y] = \sum_{x \in \mathrm{Im}(\mathbf{X})} \mathbb{P}(X=x|Y=y) \, x$$

where $\mathbb{P}(X=x|Y=y)$ is the conditional probability of the event $\{X=x\}$, given the event $\{Y=y\}$. $\mathbb{P}(X=x|Y=y)$ = $\mathbb{P}(X=x|Y=y)$

The random variable

and om variable
$$\mathbb{P}\left[X|Y\right]:\Omega\to\mathbb{R},\quad \mathbb{E}[X|Y](\omega)=\mathbb{E}[X|Y=Y(\omega)]\quad \omega\in\mathcal{S}$$

is called the expectation of X conditional to Y.

In a similar fashion one defines the conditional expectation with respect to several random variables, i.e., $\mathbb{E}[X|Y_1=y_1,Y_2=y_2,\ldots,Y_N=y_N]$ and $\mathbb{E}[X|Y_1,\ldots,Y_N]$.

Example

In the probability space of a fair die, consider

$$X(\omega) = (-1)^{\omega}, \quad Y(\omega) = (\omega - 1)(\omega - 2)(\omega - 3), \quad \omega \in \{1, 2, 3, 4, 5, 6\}.$$

76 40,6,24,60}

Note that
$$\operatorname{Im}(Y) = \{0, 6, 24, 60\}$$
. Then we compute
$$\mathbb{E}[X \mid Y = \emptyset] = \mathbb{E}[X \mid$$

$$\qquad \qquad \mathbb{E}[X|Y=6] = 1, \quad \mathbb{E}[X|Y=24] = -1, \quad \mathbb{E}[X|Y=60] = 1, \quad$$

hence $\mathbb{E}[X|Y]$ is the random variable

$$\mathbb{E}[X|Y](\omega) = \begin{cases} -1/3 & \text{if } \omega = 1,2 \text{ or } 3 & \text{if } \omega = 2,2 \text{ or }$$

The following theorem collects a few important properties of the conditional expectation that will be used later on.

Theorem 5.3

Let $X,Y,Z:\Omega\to\mathbb{R}$ be random variables on the finite probability space $(\Omega,\mathbb{P}).$ Then

- obvious (0) The random variable $\mathbb{E}[X|Y]$ is Y-measurable; $\mathbb{E}[X|Y] = \mathbb{E}[X|Y]$
- 1) The conditional expectation is a linear operator, i.e.,

$$\mathbb{E}[\alpha X + \beta Y | Z] = \alpha \mathbb{E}[X | Z] + \beta \mathbb{E}[Y | Z],$$

for all $\alpha, \beta \in \mathbb{R}$;

- (3) If \widehat{X} is measurable with respect to \widehat{Y} , i.e., X = g(Y) for some function g, then $\mathbb{E}[X|Y] = (X; \text{ IF I KNOW } Y \text{ THEN I KNOW } X$
- (4) $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$; THE INFORMATION ON I HAS BEEN LOST
- $(5) \text{ If } X \text{ is measurable with respect to } Z, \text{ then } \mathbb{E}[XY|Z] = X\mathbb{E}[Y|Z]; \text{ Take } 00000$
 - (6) If Z is measurable with respect to Z, then $\mathbb{E}[X|Y]|Z] = \mathbb{E}[X|Z]$.

 WHAT IS ENOUGH.

 (6) If Z is measurable with respect to Y then $\mathbb{E}[\mathbb{E}[X|Y]|Z] = \mathbb{E}[X|Z]$.

 TOWER

 THAN Y

LARGEST INFORMATION

These properties remain true if the conditional expectation is taken with respect to several random variables.

Remarks

- The interpretation of (2) is the following: If X is independent of Y, then the information carried by Y does not help to improve our estimate on X and thus our best estimate for X remains $\mathbb{E}[X]$.
- The interpretation of (3) is the following: if X is measurable with respect of Y, then by knowing Y we also know X and thus our best estimate on X is X itself.

Stochastic processes

Let (Ω, \mathbb{P}) be a finite probability space and T > 0.

A one parameter family of random variables, $X(t): \Omega \to \mathbb{R}, \ t \in [0,T]$, is called a **stochastic process**.

We denote the stochastic process by $\{X(t)\}_{t\in[0,T]}$ and by $X(t,\omega)$ the value of the random variable X(t) on the sample $\omega\in\Omega$. $\chi(t)(\omega)=\chi(t)$

For each fixed $\omega \in \Omega$, the curve $t \to X(t, \omega)$, is called a **path** of the stochastic process.

We shall refer to the parameter t as the time variable, as this is what it represents in most applications.

If $X(t,\omega)=C(t)$, for all $\omega\in\Omega$, i.e., if the paths are the same for all sample points, we say that the stochastic process is a **deterministic function** of time.

If t runs over a (possibly finite) discrete set $\{t_0, t_1, \dots\} \subset [0, T]$, then we say that the stochastic process is **discrete**.

Note that a discrete stochastic process is equivalent to a sequence of random variables:

$$\{X_0, X_1, \dots\}, \text{ where } X_i = X(t_i), i = 0, 1, \dots$$

If the discrete stochastic process is finite, i.e., if it runs only for a finite number N of time steps, we shall denote it by $\{X_n\}_{n=0,\dots,N}$ and call it a N-period (stack) process. If it runs for infinitely many steps we denote it by $\{X_n\}_{n\in\mathbb{N}}$.

RECALL THAT A RANDOM VACIABLE Y IS SAID to BE WEASORASIE W.R.T. A SECOND R.V. X IF Y= Q(X) FOR SOME FUNCTION & R.J.R. Definition 5.15 Let $\{X_n\}_{n\in\mathbb{N}}$ and $\{Y_n\}_{n\in\mathbb{N}}$ be two discrete stochastic processes on a finite probability space. The process $\{Y_n\}_{n\in\mathbb{N}}$ is said to be **measurable** with respect to $\{X_n\}_{n\in\mathbb{N}}$ if for all $n \in \mathbb{N}$ there exists a function $g_n : \mathbb{R}^{n+1} \to \mathbb{R}$ such that $Y_n =$ $g_n(X_0,X_1,\ldots,X_n).$ If $Y_n = h_n(X_0, \dots, X_{n-1})$ for some function $h_n : \mathbb{R}^n \to \mathbb{R}$, then $\{Y_n\}_{n \in \mathbb{N}}$ is said to be **predictable** from the process $\{X_n\}_{n\in\mathbb{N}}$. Example: The random walk. Consider the following (discrete and finite) stochastic process $\{X_n\}_{n=1,\dots,N}$ defined on the N-coin toss probability space (Ω_N, \mathbb{P}_p) : w & 52 n, w = (7,,-- $\omega = (\gamma_1, \dots, \gamma_N) \in \Omega_N, \quad \widehat{X_n(\omega)} = \left\{ \begin{array}{ccc} 1 & \text{if } \gamma_n = H \\ -1 & \text{if } \gamma_n = T \end{array} \right. \quad \text{where} \quad \mathcal{T}_{\mathbf{A}} = \left\{ \begin{array}{ccc} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{array} \right.$ Clearly, the random variables X_1, \ldots, X_N are independent and identically distributed (i.i.d), namely (1-p) = P(w) = b+(w) $\mathbb{P}_p(X_n = 1) = p, \quad \mathbb{P}_p(X_n = -1) = 1 - p, \quad \text{for all } n = 1, \dots, N.$ $\mathbb{P}_p(X_n = 1) = p, \quad \mathbb{P}_p(X_n = -1) = 1 - p, \quad \text{for all } n = 1, \dots, N.$ $\mathbb{E}[X_n] = 2p - 1, \text{ Var}[X_n] = 4p(1-p), \text{ for all } n = 1, \dots, N.$ $M_0 = 0, \quad M_n = \sum_{i=1}^{n} \widehat{X_i}.$ The stochastic process $\{M_n\}_{n=0,\dots,N}$ is called the (N-period) random walk. Mo=0, 41 > X1, M2 = X1+ X2, H3= X1+ X2+X3, ---

It satisfies

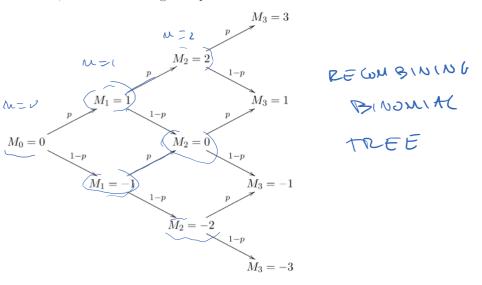
$$\mathbb{E}[M_n] = n(2p-1), \quad \text{for all } n = 0, \dots, N. \qquad \stackrel{\simeq}{=} \qquad \mathbb{M}\left(2 \ \mathsf{P} - \mathsf{L}\right)$$

Moreover, being the sum of independent random variables, the random walk

has variance given by
$$\operatorname{Var}[M_0] = 0, \quad \operatorname{Var}[M_n] = \operatorname{Var}(X_1 + X_2 + \dots + X_n) = \sum_{i=1}^n \operatorname{Var}[X_i] = \underbrace{4np(1-p)}_{i=1}.$$
When $n = 1/2$, the renders well is said to be supported. In this case

When p = 1/2, the random walk is said to be **symmetric**. In this case $\{M_n\}_{n=0,\ldots,N}$ satisfies $\mathbb{E}[M_n]=0, n=0,\ldots,N$ and $\text{Var}[M_n]=n$. When $p \neq 1/2$, $\{M_n\}_{n=0,\dots,N}$ is called **asymmetric** random walk, or random walk with drift.

If $M_n = k$ then M_{n+1} is either k+1 (with probability p), or k-1 (with probability 1-p). Hence we can represent the paths of the random walk by using a binomial tree, as in the following example for N=3:



Martingales

A martingale is a stochastic process which has no tendency to rise or fall. The precise definition is the following.

Definition 5.16

A discrete stochastic process $\{X_n\}_{n\in\mathbb{N}}$ on the finite probability space (Ω, \mathbb{P}) is called a **martingale** if

$$\mathbb{E}[X_{n+1}|X_0,X_1,\ldots,X_n] = X_n, \quad \text{for all } n \in \mathbb{N}.$$

Interpretation: The variables X_0, X_1, \ldots, X_n contains the information obtained by "looking" at the stochastic process up to the step n. For a martingale process, this information is not enough to estimate whether, in the next step, the process will raise or fall.

Remarks

- 1. The martingale property depends on the probability being used: if $\{X_n\}_{n\in\mathbb{N}}$ is a martingale in the probability \mathbb{P} and $\widetilde{\mathbb{P}}$ is another probability measure on the sample space Ω , then $\{X_n\}_{n\in\mathbb{N}}$ need not be a martingale with respect to $\widetilde{\mathbb{P}}$.
- 2. Using property 4 in Theorem 5.3 we obtain

$$\mathbb{E}[X_{n+1}] = \mathbb{E}[X_n], \text{ for all } n \in \mathbb{N}.$$

Thus, iterating, $\mathbb{E}[X_n] = \mathbb{E}[X_0]$, for all $n \in \mathbb{N}$, i.e., martingales have constant expectation.

#[E[X|Y]] = #[X] #[#[Xmn|Xo, xm]] = E[Xm]

#[Xmx,]

#[Xn+1] = #[Xn] = #[Xn-1]

P: 2">(0,1)

EMM+1 MO, NJ ... Mm]

Example

Next we show that the *symmetric* random walk is a martingale.

Using the linearity of the conditional expectation we have, for all n = $0, \ldots, N-1,$

$$\mathbb{E}[M_{n+1}|M_0,\dots,M_n] = \mathbb{E}[M_n + X_{n+1}|M_0,\dots,M_n]$$

$$= \mathbb{E}[M_n|M_0,\dots,M_n] + \mathbb{E}[X_{n+1}|M_0,\dots,M_n].$$
As M_n is measurable with respect to M_0,\dots,M_n , then

 $\mathbb{E}[\underline{M_n}|\underline{M_0,\ldots,M_n}] = \underline{M_n}$

see Theorem 5.3(3).

Moreover, as X_{n+1} is independent of M_0, \ldots, M_n , Theorem 5.3(2) gives

$$\mathbb{E}[X_{n+1}|M_0,\ldots,M_n] = \mathbb{E}[X_{n+1}] = 0$$

It follows that $\mathbb{E}[M_{n+1}|M_0,\ldots,M_n]=M_n$, i.e., the symmetric random walk is a martingale.

However the asymmetric random walk $(p \neq 1/2)$ is not a martingale, as it follows by the fact that its expectation $\mathbb{E}[M_n] = \widehat{n}(2p-1)$ is not constant (it depends on $n \in \mathbb{N}$).