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Options and Mathematics: Lecture 17

December 1, 2020

Probabilistic formulation
of the binomial model

We want to reformulate the binomial options pricing model using the lan-
guage of probability theory.

The binomial stock price can be interpreted as a stochastic process delined
on the N-coin toss probability space (Qy,P,).
——————

Recall that, for a given 0 < p < 1, the binomial stock price at time £ = 0 is

given by the deterministic constant S(0) = Sy > 0, while at future times we
have

[ S(t—=1)e" with probability p s AT
([//W 5@) = { S(t —1)e?  with probability 1 — p, teT={L....N},
where u > d.
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Now, for t € Z, consider the random variable \& \' = W =~e -~

{ L, if the " toss in w is H TN (an\/ll_iﬁz

Xe: Oy — R Xi(w) = —1, if the #" toss in@is T

A~  ~—

We can write S(t) as

/ stmor 2 2
ex —é{i)—S'(t—Q)exp 9 @Xt"l'Xt 1)

5 +T;‘vf¢) Oy = R, $[_‘\’j g 6(” »2;* ‘/“—;;\“Q

where My = X1+ -+ + Xi. 2 Rpwbow gra0w
L—\,w

thLhd,btl( process on the N-coin toss pwbdblht}, bpdu:‘

[For each w € Qu, the vector (5(0,w),..., S(N,w)) is a path for the stock
price. M

S LIREN
Letting My = 0 we obtain that { M, },—o__x is a random walk and {S(¢) }1—o.__n
is measurable, but not predictable, with respect to {M; b=~ YEXSVRARLE

. . . L . At u esvezt
16 The value at time ¢ of the risk-free asset is the deterministic function of s i
( H _% e time B(t) = Byexp(rt), where r is the (constant) risk-free rate of the money 4o Ll WV 25
N———— —
) market and By = B(0) > 0 is the initial value of the risk-free asset. v

Recall that S*(t) =Q’_”S (#) is called the discounted price of the stock.
=0 CeeESENL YW E

W ST Theorem 5.4
\M@2 R To0T
THEBLEY oF If ¢ (d,u), there is no probability IIlE‘&‘:UIE‘@ on the sample space Qy }
. such that the discounted stock price process {S™(#) }i—q,. n is a martingale.
The ONGSE For r € (d,u), {S*(t) }i=0....v i a martingale with respect to the probability
mcasulc_]i'i if and only 1fp ¢, where Cor & (i\\».\
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E = ExTECTATION

At 1
At lwlse, s e >0 P vk s T

W CAD REMIVC

e & g({r\ bn{r&(f‘/’)

Proof. By definition, {S*(t)}:—o

v 1s a martingale if and only if

------

(\(ﬁsu 18°(0), ... 8*(t=1)] = e DS —1), forallted.
W
ST
As r is constant, taking the expectation conditional to S*(0),...,S*(f—1) is
the same as taking the expectation conditional to S(0),..., S(t —1)); hence

the above equation is equivalent to

E,[S(1)S(0),....5(t—1)] =LS_@ for all ¢ € T,

-
where we canceled out a factor e in both sides of the equation. Moreover
\E ?K S %‘MEB\)W‘-é , THRE ooT Wwpl g, eNe N
T S(t //_\
ver ]EP[S\‘{E)|S(0),“,,S(t—1)]:]Ep[S(t()l) (t— 1)[S(0).....S(t —1)]
:EU /\2) :Xﬂ:\l\%& S S(f) S g
where we used that S(f — 1) is measurable with respect to the conditioning
variables and thus it can be taken out from the conditional expectation (see
property 5 in Theorem 5.3). As .
w X 'S
z? G(’ (NG EPEIS PENT
(o) . 1 /S S it . L & N =N
e P 1 TN s
| » &Tx\Y)= 1]
/\l’\ is independent of S(0),..., S(t — 1), then by Theorem 5.3(2) we have”
*"W
W 4 l
ee—\-e[l’?-):c R 9() S0 St—l —F S(f) _ dl__
ﬁ p[S{t )| () ( )] P[S(E—l)] tp—i—r:‘( P
a Hence S*(t) is a martingale if and only if €"p + e?(1 — p) = €. Solving in p
= €-e _ we find p = ¢g. Moreover g € (0,1) holds if and only if » € (d, u). O
= =1 o
ch-ed
—
3 TCMEMBLR RLlSo TYAR
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UQ\YD: (R, W)
W= 14 AV

Remarks

e Due to the previous theorem, I, is called martingale probability
measure. Moreover we can reformulate Theorem 2.4 as follows:
F DN anLy \F

£
A binomial market is free of self-financing arb;itmges\zf and only if el ‘0
there exists a martingale probability measure.
This result holds not only for the binomial model discussed in this
T EXPCCARTQR text, but also for any discrete (or even continuum) market model and
d:“’( = is named first fundamental theorem of asset pricing.
Ny Awe R UBADL < ‘ . ‘ ‘ .
e Since martingales have constant expectation, we obtain the important
CeT result B, [S*(t)] = ]E[S (0)]. or equivalently —~
( ? T . t.’:\[,g‘(oTB:go
1 r
(5\ = € "GJ E’( ES@«\/B E,[S(®) = Soc” uplog MU TME t oF
- el V sus RSe-FREE ASSE T
e“. 6& Thus in the martingale probability measure one expects the same return 2T &
L/__J on the stock as on the risk-free asset. For this reason, P, is also called B ,§
risk-neutral probability. WowlVER | - o
N AL — ?:F‘\ N THE \?f “(3[(,“
Repl WORLY Ok =€kL -
Risk-neutral price of European derivatives Vor v
Ctop a2 |11

The value of a portfolio position (hg, hp) invested on hg shares of the stock
and hp shares of the risk-free asset is the stochastic process {V(#)}i—o. _» on

Qn,P,) given by A—
\~—~( v Fy) 8 panvoM NASABLE ons LS(N. '\PfJ
=N S
V(t) = hpB(t) + hsS(t) : Oy - R, t=0,...,N.
L,—/—an

Note that V(0) = hsSy + hp By is a deterministic constant.,

el

If we change the portfolio position depending on the price of the stock
i.e., depending on w € y), then we get a portfolio (stochastic) process
( pending V) get a portfolio (stochastic) process

{(hs(t), hp(t))}i=o..
W ‘Mﬂl\e(ﬂ

e\
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l\\xs(g\\\v;&\\ Recall that (hg(t), hp(t)) corresponds to the portfoho poqltmn held in the
‘e RRESTABLE interval (t — 1,¢] and, by convention, (hs(0), hg(0)) = (hs(1), hg(1)).
W
" llS@ﬂ% The portfolio process is predictable if hs(t), hg(t) is a deterministic function
€¢o of S(0),...,S(t—1), which means that the stochastic process {hg(t), hg(t) h=o. .~

is predictable from the stochastic process {S(t)}=o
nition 5.15

......

The value {V(t)}i=q..n of the portfolio process is the stochastic process
given by — -

> V(1) =hp(t)B() + hs(t)S(t) - Oy >R, t=0,....N.

A portfolio process {(hg(t), hp(t)) o,

o V(t—1)=ha(t)B(t - 1) + hs(t)S(t = 1), teL.

| In Theorem 2.2 we have shown that the value at time t = 0 of self-financing
‘processes 15 determined by the value at time N through the formula
3 ‘\\(“D N,‘,(m
(= :

L_‘i_(EJ—E‘ N Z ((} :'\ (J.) f\-d..)v - L‘\ (m}'\‘l»@

w,dd
V:E{ " U“\j \6

—

This result can be written in terms of the expectation in the martingale

probability measure as

STAWY, W we ~A
k” - N .

7’ %(S(nﬂ eotRE V(0) = e "VE,[V(N))].

- >\l -
Y‘ gb(g(a ltxj Now, let ? : 2y — R be a random variable and consider the European
PIw — SKAPALD derivative with pay-off ¥ at time of maturity 7' = N.
’t\)%?f,,?sp\ Ve The binomial price of this derivative at time ¢ = 0 equals the value at time
SENAT t = 0 of any self-financing hedging portfolio. -

J\«\\/\/ ) [n\’_‘.\j
(o= ’\_\7(9—)
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Hence replacing V(N) = Y in the formula above we obtain the following
fundamental result.

Theorem 5.5

The binomial price at time t = 0 of the European derivative with pay-off Y
at maturity 7'= N can be rewritten as

RSK -NEVIRAL

&
[Ty (0) = c—fNIEq[Y]]/ TRACWG  FobyolA
([} TwmE ”\':‘o)

or equivalently D)
T\‘(‘“E 2 \Mw st RN \/* s ke_‘,—gi‘
oA N = [y (0) = E,[Y" (PSwantED T ’ﬂ)

CAN MO \DITHQIRES
where Y* is the discounted value of the pay-off.
Remark

As proved in Theorem 3.3, any European derivative in the binomial mar-
ket can be hedged by a sell-financing portfolio invested in the underlying
stock and the risk-free asset. For this reason the binomial market is called
a complete market. In fact, the second fundamental theorem of as-
set pricing states that market completeness is equivalent to the uniqueness
of the risk-neutral probability measure. An arbitrage free market is said to
be incomplete if the risk-neutral measure is not unique. When the mar-
ket is incomplete the price of European derivatives is not uniquely defined
and moreover there exist European derivatives which cannot be hedged by
self-financing portfolios.

REMATL & THE SUvoWAL CRLCE 1\\[L‘c\ A~
e Fe N of ke EOReTEAD ST 3 ATING

WM C ’t .
LUTISRES ~NE  R\SE-PEXRAC FRLLpPE FopMocd AT

SCTERMAPIST L C G R IVANT

— e (N-t) / (Tuc~neM
Iy t= e &l [Yls) . S&Y) 5.4
<N
& wé 2T 4 = JUE TRo¥R W Xeciew, ToOaulA "[T\/Lo'\:e ef,\ ['T/S

—0 J
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Risk-neutral price of American derivatives Ro vyTlo D &

Consider now a standard American derivative with intrinsic value Y'(¢), 1 € 7,
and maturity 7= N.

We have defined the binomial fair price IIy(£) of this derivative using the
recurrence formula

[y (N) = Y(N), max[Y(t),e " (qu I (t+1)+qull (t+1))]. t=0,...,N—L.

Our next purpose is to write the definition of binomial price of American
derivative in the form of a risk-neutral pricing formula.

Suppose first that the seller knows at time ¢ = 0 that the buyer of the
American derivative will exercise at time 7 € Z.

In this case the discounted (at time ¢ = 0) value of the pay-off is e7"7Y'(7) and
it is therefore reasonable to define the fair price of the American derivative
at time t = 0 as [Ty (0) = E [e "7V ()]

Considering that in the real world the seller does not know at which time the
American derivative will be exercised, and being the exercise time any pos-
sible 7 € Z, one may (erroneously) think that the fair value of the derivative
at time ¢ = 0 should be Iy (0) = max,cz Eqle Y (7)].

However this definition is unfair for two reasons:
(1) it does not take into account that the exercise time is a random variable
and

(2) the decision to exercise at time 7 = k € T is taken only using the
information available at time & (and not on the uncertain future), which
is contained in the stock prices S(1),....5(k).
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Thus the exercise time is a random variable in the space () defined as follows:

random variables X such that: (i) Im(X) = {1,...,N}

Q= (ii) the event X = k is resolved
by the random variables S(1),...,S(k)
forall k=1.....N.

The discussion above leads to the following definition.

Definition 5.17

The (binomial) risk-neutral price at time ¢t = 0 of the American derivative
with intrinsic value {Y'(¢)}iez and maturity 7' = N is defined as

Iy (0) = max E,le”"Y(7)],

where () is the set of random variables defined above.
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