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General probability spaces

We consider briefly probability spaces consisting of an infinite number of
sample points.

Assume first that Q is a countable set. This means that

Wy W L=
Q= {wn}nEN- ll LL L %

For countable sample spaces the definitions given for finite sets extend straight-
forwardly. Precisely, given a sequence -

P = (pn)nen such that 0<p, <1, /Z;: 1, R gV

- neM

we define the probability of the atomic events as

]P({wn}) = Pn-

/ 1
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If X : 0 — R is a random variable, then

EX] =) X(wa)pn = Y X(w)P({w}).

7 neM

weA

wEeR

(gH=o

ﬂfb > pi=)_P{w}). ? S Tz DBy

Bent Wl Zeeo
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The remaining definitions introduced in the finite case (variance, covariance,

independent random variables, etc.) continue to be valid for countable prob-
—_— —

ability spaces.

In the rest of the lecture we assume that € is uncountable (e.g., 2 = R).

—_—

In this case there is no general procedure to construct a probability space,
but only an abstract definition. In particular a probability measure P on
events A C ) is defined only axiomatically by requiring that

. 0SPA)<L, @ A

and that, for any sequence of disjoint events Ay, As, ..., it should hold

—_—

P(A, U A U...) =P(A) + P(A) +. ..

P is defined for all events A C ().

AJQ O)“l

Moreover it is not necessary—and almost never convenient—to assume that

A;O

\b We denote b@ the set of events (i.e., subsets of Q) which have a well defined

probability satisfying the properties above.

L

Z =

{3\535@:—73 °f SZ\%

s =0
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Example. 5, ¢ b't
Let @ = R. We say that A C R is a_Borel set if it can be written as the
P . T— .
union (or intersection) of countably many open (or closed) intervals,
X v

Let F be the collection of all Borel sets. Given a continuous, non-negative

function p: R — [0, 00) such that
ExXARG  oF

Now - Bozgl SEL >
v

> LOSIP SET
( (rDOraCé x

we define P: F — [0, 1] as

P(A) = Lp(@) dw. 4 ?
S5

If X : R — R is a random variable, the expectation of X in this probability
measure is given by

E[X] :/RX(w)p(w) dw,

ﬁi Rorcl

provided the integral is finite.

For most applications the knowledge of the full probability space is not nec- FETS
essary.

We are only interested in assigning a probability to events of the form

[ (xen WL?( € :\:7

where X is a random variable on the sample space € and I € R is a Borel

set (e.g., an interval), that is to say, events which can be resolved by one (or

more) random variables.

The probability P(X € I) can be computed explicitly when X has a density.
AL~—
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Definition 6.1 TS T ToF kL x ~ \h - ‘E

e N AN\ S
A random variable X : Q — R is said to have probability density [y if —
fx R —=[0,00) s continuous and — oV &S C

PXEA) = [ fe(@dn,

for all Borel sets A C R. ( 1T S ENOvEY TOAT 94 'S Ve

—

Note that the density fy satisfies o AL \NAERVALS \

MW ’/}R fx(z)de =1

and the cumulative distribution Fy(z) = P(X < ) satisfies

* dF
Fy(x) :/ fx(y)dy, forall z € R, hence fy = d—X
e x

Example:

A random variable X : 2 — IR is said to be a normal random wvariable
with mean m € R and variance 2 > 0 if it admits the density

nel 7 X enln 1)

L1 _|:r:—'m|2
— fX(lL)_\/Z?mzexp( 207 ) =P X HUrs \S

Ve pory

We denote by N (m, %) the set of all such random variables. A variable X €
N(0,1) is called a standard normal random variable. The cumulative
distribution of standard normal random variables is denoted by ®(x) and is
called the standard normal distribution, i.e.,

(cumpkrusﬁ
om.x, 1 KEeN(oL)
RRECTE Y

STHOPALY vo@wl &Y.

\, 2

~ z e d 5
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Moreover we denote by ¢(xz) the standard normal (probability) density,
that is

Theorem 6.1

The following holds for all sufficiently regular functions g : R — R:
= s

(i) Let X : Q — R be a random variable with density fy. Then for all (\pTERY A LS)

Borel sets A C R,
N < OO L k) |

> P ed)= [ (felahin
—_J rig(x)EA S o \/ {S

(ii) Let X : @ — R be a random variable with density fy. Then WVEAS VEARC c
ST WE VAW g

T %)] = Rﬂ(if)ffjjj) dy. W =T X
DS fﬁm .&Vﬂ L

Moreover the properties 1,2,3 in Theorem 5.2 still hold for continum random
x LT )

Loy ariabis

W THT B\wee

o
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As an example of application of (i), suppose X € A(0,1). Then 2
% Lx\ =X
1 l o2 A= t‘Ol 4,1
PX*<1) = —] e 7 dr ~ 0.683,
(s V21 SO >

Ko <4
that is to say, a standard normal random variable has about 68,3% probability
to take value on the interval (—1,1). <P x& Y—A ' i/x

By (ii) in Theorem 6.1, the expectation and the variance of a continuum
o arial . lensityv re eiv b p _ z -
random variable X with density fx are given by TEPLacE sb L) = xC W

e \PENTETY \“—l’\ (o)

™ 2
(X] = [ afx(z)dr. VarlX] =E[X?*|-E[X]* = [ 2*fx(z)de—( [ ofx(z)dr) .
w Var[X] = E[X?|—E[X /R () d (/R fx l)

In particular, for normal variables we obtain —
ENERUSC

X € N(m,0?) = E[X]=m, Var[X]=o
- N N

\b ‘%x ("j - — C zas >

20 6° )

ST S Rl S
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Stochastic processes. Martingales

Let@l}fz be a stochastic process, i.e., a one parameter family of (contin-
uum) random variables and denote by Fx (¢) the information accumulated by
“looking”™ at the stochastic process up to time ¢, i.e., the collection of events \?( (j\— UD)
resolved by X(s) for 0 <s < ¢. [

For fusY
Intuitively, the stochastic process {X(t)};>¢ is a martingale if, based on the ) »
information contained in Fy(s), our “best estimate” on X(t) for t > s is L=
X(s), i.e., we are not able to estimate whether the process will raise or fall ¢ FMu o &
in the interval [s, f] with the information available at time s.

Twe
g_?_)( (51 = \wroWWAWN This intuitive definition is encoded in the formula Soch AT C

\ TUE TEs5 NPT

) % T Ro(ESS

AT ELX(D)iFx(s) = X(s), 0<s<t,
—_ ¢ Fxle)l =Xt
0 S 7

x(»)

which generalizes the definition of martingales in finite probability theory.

The left hand side of the previous formula is the conditional expectation of
X(t) with respect to the information Fx(s), whose precise definition is not
needed here.

It can be shown that martingales have constant expectation.

E0x©) = #LXE) |

?o"- A'L(. % 7/ O
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Brownian motion

Next we define the most important of all stochastic processes.
Definition 6.3

A Brownian motion, or Wiener process, is a stochastic process {1 (t) };=o
. . . N
/ with the following properties:

1. For all w € Q, the paths-are~eqntinuous (i.e., t = W(t,&) is a continu-
ous function) aud W (DZe W C+‘7 W

2. Forall 0 =1ty <t; <ty < ..., the increments
T o 420 - -
W) = Wit = W), Wie) - Wt 52 T

~ N—— . .

> are independent random variables and . W [»LQ -\ H-a -
E[H"’(ti+1)—H’!(ti)] = U, \/'ar[H-"(t,;H)—‘W{ti)] = ti+l _tij for all 7 = 0., 1...;

P — —— - '

3. The increments are normally distributed, that is to say, for all 0 < s <

/ £ ) S %L b)) dw
/ e M dy, < A W ) -
A

1
for all Borel sets A C R. A\ 1) __m [5\ & N (’D + _ ')S
— !
It can be shown that Brownian motions exist, yet a formal construction is
technically quite difficult and beyond the purpose of this course J:‘[]

It is useful to think of Brownian motions as time-continuum generalizations W (ﬂ EN \‘[f)
/7 of the symmetrie random walk. (L U

Remarks.

e Since the definition of Brownian motion depends on the probability
measure P, then a stochastic process {W(t)};>p which is a Brownian
motion in the probability measure [P will in general not be a Brownian
motion in another probability measure P. When we want to emphasize
that {W(¢)}i=o is a Brownian motion in the probability measure P, we
shall say that {W(t)};>0 is a P-Brownian motion.

—

8
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e Letting s = 0 in property 3 in Definition 6.3 we obtain that W(t) €
N(0,¢t), for all £ > 0. In particular, W (t) has zero expectation for all
times. It can also be shown that Brownian motions are martingales.

Equivalent probability measures. Girsanov theorem

&

One further technical complication arising for uncountable sample spaces
is the existence of non-trivial events with zero probability, e.g., the event

woy=oy.
We shall need to consider the concept of equivalent probability measures.
Definition 6.4 {7 ¥ (o4 )

Two probability measure P, P are said to be equivalent if P(A) = 0 < ]“E—D(A) =
\ ,

0 for all events( A € ) ‘,\Tg‘fy‘%i"»ﬂ

Hence equivalent probability measures agree on which events are impossible.

Note that in a finite probability space all probability measures are equivalent,
as in the finite case the empty set is the only event with zero probability.

9

Lecture 19 Page 10



The main question we now want to answer is the following: Given a prob-
ability measure P, how can we find all probability measures I’ equivalent to
P?

The answer to this question is given in the Radon-Nikodym theorem.

Theorem 6.7 (Radon-Nikodym theorem) & E = Exvtce {A’I\D »
B LN T
Let P : F — [0,1] be a probability measure. Then P : F — [0,1] is a ?‘Logp\gl(,!‘(f
probability measure equivalent to P if and only if there exists a random
variable Z : 2 — R such that Z > 0 (with probability 1), E[Z] = 1 and (?
_ ~— ~—
B(A) =E[ZL,], forall A€F, where Iy(w)= {%) foed & .
< . r _— 7 ' ! I\ mj‘j_/
Examples —

B - AL
e Assume 2 = R and that [P and P are defined as in the example on page

3, namely
P(A) = .p(w)dw P(A) = L;Z{;u) dw, ?/ L g} R - L»a (Oo‘)

for all Borel sets A and for some given continuous non-negative func-
tions p, p such that X ?[u')g\ w =\

S L L R

Then, according to Theorem 6.7, P and P are equivalent if and only if (’\?[ \R-) - \-)
there exists a function Z : R — R such that Z = 0 and

o~ / -
: 7

It can be shown that the latter equality is satisfied for all Borel sets
A C R if and only if p(w) = Z(w)p(w) (with probability 1).
’ T

that is

10
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e Let {IW(t)}i>0 be a P-Brownian motion, # € R and 7" > 0. Define
- e

- _lg2
Zp = e~ OW(T)=30°T

W \-LolT WD ST R
Clearly Zy > 0 and moreover € 2 = % [ W (_T}\ _
— eN(o,T )

S e
]E[Zg] = E[E—HW[T}—%G‘W-] _ /e—ﬂm—%ﬂlz'}

where we used the density of the normal random variable W(T) € Gk[x) =0
N(0,T) to compute the expectation of Z, in the probability measure
P. Thus, according to the Radon-Nikodym theorem, Py(A) = E[Zy14]

is a probability measure equivalent to P, for all § € R.
/\—\_—/—— e —_—
'l?o 4 ? > tﬂ? \ i ‘3

As the last example will play a erucial role in the discussion on Black-Scholes
theory, it deserves a proper definition. -q> ‘ Bn - E [2 'ﬂ: /]
v oA

Definition 6.5

dr =1,

_9x~'

2

Let {W(t)},>0 be a P-Brownian motion, ¢ € R, 7" > 0 and Z, be the random

variable

o geemoer 2 A
The probability measure Py(A) = E[Zpl4] is called Girsanov probability /RD e /)?3
with parameter f. e !

0

Note that the Girsanov probability measure Py depends also on T', but this F ( A,\ = & a: ]
© X

is not reflected in our notation.

In the following we denote by(Eg[-) the expectation computed in the proba- = (?Hh
bility measure Py. When # = 0 we have Py = IP, in which case we denote the
expectation as usual by E[-].

E (%= )

11
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Now we can state a fundamental theorem in probability theory with deep
applications in financial mathematics, namely Girsanov’s theorem.

Theorem 6.7 (Girsanov theorem) KS eeC\ AL ({)(563

Let {W{t)};=0 be a P-Brownian motion. Given 6 € R, define the stochastic

process {W @ (2)},50 by
= WOR =W+ o) (MO x PRAET T
- " THS Blown Al
\ Then {W ()}, is a Pp-Brownian motion. VoL 0N

Note carefully that ii-'t"[e)gt) >0 is not a P-Brownian motion for 6 # 0,
because E[WW(t)] = 6t # 0.

In particular, according to the probability measure [P, the stochastic process

> (WO (#)} 120 has a drift, i.e., a tendency to move up (if # > 0) or down (if
f < 0). However in the Girsanov probability [Py this drift is removed, because
Eg[l’i’r(m [f')] =0. —~

[
Lo Bmioe (WIEZ_ o A oed P &)
/’D
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