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Definition 6.7 Let {W(t)};~o be a Brownian motion, & € R, ¢ > 0 and
So = 0 be constants. The positive stochastic process {S(t)}1=0 given by
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Black-Scholes markets
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is called a geometric Brownian motion (GBM).

We shall use geometric Brownian motions to model the dynamics of stock
prices in the time-continuum case.

More precisely, a Black-Scholes market is a market that consists of a stock
with price given by a GBM, and a risk-free asset with constant inferest rate

. - . - . - —_ —
r; in particular, the value of the risk-free asset at time £ is given by

B(t) = Bye™ By = B(0) >0
C — A
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We assume throughout that ¢ € [0, T], where T > 0 could be for instance the
time of maturity of a financial derivative on the stock.

The probability P with respect to which {IW(t)};>¢ is Brownian motion is
" the physical (or real-world) probability of the Black-Scholes market.

(anNuA(12ES)
« is the instantaneous mean of log-return, o is the instantaneous

7 volatility and o is the instantaneous variance of the geometric Brownian
motion. (o* ot -weToe M \

To justify this terminology we now show that o and o satisfy the analogous
interpretations as in the binomial model. Namely, for all ¢t € [0,7] and & > 0
such that t + h < T we have

—_— &a—gé*‘ — ,t
1 1 © | N t+h
‘/ a= E[E[li)—g;i'{iilr) —logS(t)]. o%= EVar[log S(t+ h) —log S(t)].

yd
In fact, since W(t) € N(0,t), we have &b‘/g ¥ = 90\( g‘D

+ ab 4« e Wi
Elog S(t + h) —log S(t)] = Elah) + oW (t + h) — s W (t)]
e arvT
= ah + o(E[W(t + h)] — E[W(t)]) = eh.
g g
Similarly A o 7
Var[log S(t + h) —log S(t)] = Var(ph + aW (t + h) — aW(t)]
= o*Var[W(t + h) — W(t)] = o%h,
R e
where we used that the increment W(t + h) — W (t) belongs to N0, k).

Next we derive the density function of the geometric Brownian motion.
Theorem 6.10

The density of the random variable S(t) is given by

H(z) 1 exp (_(logr. —log S(0) —@‘.)2) 1

Lo G - popil 7 ffg}('x) B V2raoit T 20%t x
> O
ToBiS I l'\"f where H(x) is the Heaviside function. \_\, (X\ =
Towst
‘\A‘l 2 o X <o
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Proof. The density of S(t) is given by

a\t +« W [{'ﬁ
sw(x) = Fsm( S (’\,\ ~ SD e

where Fgy is the distribution of S(t), i.e.,

j’

() ¢x «P B@G&Cﬂ i&%"
Fyo(@) = P(S(t) < 7).
i D% S raf 4 §WE)
Clearly, fsq(x) = Fguy(a) =0, for © < 0. For x > 0 we use that OM
Ry . K
S(t) <x ifand only if  W(t) < 1 (]og ﬂt) = A( ,r} (Q
~—— *\/ b([])

Thus, using W(t) € N(U t). g17

Alx) 5
P(S(t) < w) = P(—o0 < W(t) < A(x)) = \/;T;[ {j 1y, = Fsm(ﬂ

where for the second equality we used that W(t) € A(0,t). Hence

-0 0)
(Y
fsw () = /®P ‘zi: dy | = L _%(M(I)
s LT vl = Qﬂe dr
ote eV
for = > 0, that is CoMT
1 1 (log x — log S(0) — at)?
() = ——=—¢ - = ()
/ ﬁ‘){l‘-}("r) \/m T exp { 202t : £
The proof is complete. O
3
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The risk-neutral pricing formula in Black-Scholes lf&
markets Y

The purpose of this section is to introduce the definition of Black-Scholes Mo PE (_3
price of European derivatives from a probability theory point of view.

Recall that the probabilistic interpretation of the binomial price is encoded
in the risk-neutral pricing formula.

Our goal is to derive a similar risk-neutral pricing formula (at time ¢ = 0)
for the time-continnum Black-Scholes model.

Motivated by the approach for the binomial model, we first look for a prob-
ability measure in which the the discounted stock price in Black-Scholes
markets is a martingale {martingale probability measure).

It is natural to seek such martingale probability within the_class of Girsanov
probabilities {Pp}ger; recall that Fy is equivalent to the physical probability
P =P, for all # € R.

We shall need the form of the density function of the geometric Brownian
/ motion in the probability measure Pp.

Theorem 6.11

/ Let 0 € R and {W(t)};>0 be a P-Brownian motion. The geometric Brownian
motion has the following density in the probability measmrc@

0 (g @) 1 (logr ~log S, — (o = o))
7 Y Vamoria P 207t

(&
Proof. Since W)= wH ot - vt = W L“-\ ‘E,E

S(t) = Spe™ oW = Suet‘_"f’j,(”, WOt = Wi(t)+ 6t b THE
— vese, Wo )
and since {W@(t)},= is a Brownian motion {Ln the probability measur@ W) o M
(by Girsanov’s Theorem), then the density fs{g) is the same as in Theorem LB wWiTW
- WG D LR EETURN

6.10 with a replaced by a — fo. O
4 \9~ -5
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Let [Ey[-] denote the expectation in the measure Fy. Recall that martingales
have constant expectation. Hence in the martingale (or risk-neutral) prob-
ability measure the expectation of the discounted value of the stock must
be constant, i.e., Eg[S(t)] = Spe™. We now show that this condition alone
suffices to single out a unique possible value of 8, namely

The identity Eqg[S(t)] = Spe™ holds if and only if 0 = q, where
— —

In fact, using the density of S(t) in the probability Py we have Lo
crthcs 85 (¥ et TuToker '
veblhce &SC—H( D
e, O] x (logz —log Sy — (o — Ho)t)*
Eq[S(t)] = (/R.L si(@)de = \/an exp (— 2577 dr.
[
With the change of variable
logz — 1 —(a — o)t
y= BT~ 08 S0 — (a 7) . dr = xovVtdy, S Q“\?‘/a

Y oI

we obtain

S0 (a- 2 .
E,[S(H)] = e(e.‘r: fa )t / e 3 +oy/Ty G}y _ e(a fo+ 5t
/ 5‘[ ( )] \/ﬂ . /gﬂ ~——

U
: <t
As ‘/% fn& E.'_r'_: dr = 1, the claim follows. %@<
Even though the validity of Eg[S(#)] = Spe™ is only necessary for the dis- 1 -1 ?Z
counted geometric Brownian motion to be a martingale, one can show that (i dz=\
the following result holds. \YZW

Theorem 6.12 The discounted value of the geometric Brownian motion
stock price is a martingale in the Girsanov probability measure Py if and
only if # = ¢, where g is given as above.

5
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The probability mea.qur@is called the martingale probability, or risk-
neutral probability, of the Black-Scholes market. Replacing o = r+ qo —
$0? in the the GBM we may rewrite the stock price as
e o THC GooM Tl
4t S rew () : . wS
C 5@\’\) = 5(@\ i |S(t) = sm)e(r—"TJHJW"”(*)J BN (N
[(——— -
/ - N VAU ALE QQ”%*Q""T]
where we recall that W@ (t) = W(t) + gt and, by Girsanov’s theorem,
THIS ¢ {W@(#)},~q is a Brownian motion in the risk-neutral probability.

X W\l{mék(«e It follows that in the probability measure P, S(t) is a geometric Brownian

motion with volatility o and mean of log return p = r — éarz.

At this point we have all we need to define the Black-Scholes price of Euro-
pean derivatives at time ¢ = 0 using the risk-neutral pricing formula.

Definition 6.18

The Black-Scholes price at time ¢ = 0 of the European derivative with pay-off
/ Y at maturity T is given by the risk-neutral pricing formula
VA YAVIY it / AR
SO We oD wPoilo
T \{(‘D\ A A

i.e., it equals the expected value of the discounted pay-off in the risk-neutral — \y\ 2 BET
probability measure of the Black-Scholes market.

N\Lé o
Yo N

(M (0) = ¢ ""E, Y]]

In the case of standard European derivatives we can use the density of the
geometric Brownian motion in the risk-neutral probability measure to write
the Black-Scholes price in the following integral form.

Y = el
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Theorem 6.13

For the standard European derivative with pay-off Y = ¢(S(71)) at maturity
T > 0, the Black-Scholes price at time ¢ = 0 can be written as

. (0) = w0(50)| &

where Sy is the price of the underlying stock at time ¢ = 0 and vy : (0, 00) — R
is the pricing function of the derivative at time ¢ = 0, which is given by

N
qw\cluﬁ ‘F’\,ch\D

- =0
.- 'S
ey T (r— )T+r1\/_y ——12 dy K A -\ *(Mé
lr)=e¢€ glre N TWT z
% ‘\ 0( ) _/ ( ) ‘fQTrJ (\:;E/ M‘TQq’lT r

7 , P
o | _— s )
Proof. Replacing # = ¢ in the density of GBM in the risk-neutral probability
we obtain that the geometric Brownian motion has the following density in

the probability P,: LC pLACE

F9 () = L—> 1 (logz —log Sy = (r =% 2)t)? / o = ﬂ N
4 58 V2ra?ta Q 2521 Twe c-ot»LUCA
Using this density for # = T in the risk-neutral pricing formula we obtain et P N
T (Y?9 \~ que SG’?
I — _?'TIE: ]E F— i-\ B@‘Kw
- ) =S =" [ a() Sl (o) e Tuzvesv (.0
e—rT o0 glx) (logz —log Sy — (r — %‘"}t)z ]
= T exp | — i ~

d
- Ny — — . — N,
With the change of variable y = w we obtain o
W - T > 2

. o2 ; dy
My (0) = 7 j g(Soer= DT VTu) -1t W gy,
B \32

T

as claimed. — O
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The risk-neutral pricing formula for ¢ = 0 is—
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The right hand side of is the expectation of the discounted pay-off in the
risk-neutral probability measure conditional to the information available at
time ¢, which in a Black-Scholes market is determined by the history of the
stock price up to time ¢.

It can be shown that in the case of the standard European derivative with
pay-oft Y = ¢(S(7")) and maturity 7', the risk-neutral pricing formula at time
t > 0 entails that the Black-Scholes price at time ¢ € [0, 7] can be written in
the integral form

_ ( =9 (st0))
/ !' _ :\[ %(’_ L%r*)_\, vpyo:;—bb
where / e %[%w -

-rr 2 2 ?‘L’L LNe Eop TN
o(t, z) =| < g (e TV o gy =T — ¢t -
CA Y \/‘E RJ (- € € Y L j }_—r T\RL b

Ve

Hence the pricing function v(t, x) of the derivative at time ¢ is the same as
the pricing function at time ¢t = 0 but with maturity 7" replaced by the time

GDV-H-M&‘( z L2

-t Sy <\~C1
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A portfolio process {hs(t), hp(t)}icor invested in a Black-Scholes market d»> =0  S[4)
is said to be hedging the European derivative with pay-off ¥ and maturity VS MoSe Yo st

T =0if |‘
VIT)=Y = T'T uD) S1EFSRENTABLE |
where WeE PeeED  STocuwdsTi(
V() = hs(®)S(2) + ha(t) B(?) ChL Vo> TD PERINT
is the value of the portfolio process at time t € [0, 7. TWE T\ — o0

The portfolio process is said to be replicating the derivative if V(t) = ITy (), 3
for all t € [0, T, where ITy(#) is the Black-Scholes price of the derivative.

It can be shown that the Black-Scholes price Ty () coincides with the value at
time ¢ € [0, 7] of any self-financing portfolio f)ﬁsms hedging the derivative,
precisely as in the binomial model. However the definition of self-financing
portfolio in Black-Scholes markets requires the use of stochastic calculus and
it is therefore beyond the purpose of this course.

Moreover it can be shown that in the case of standard European derivatives
the portfolio process {(hs(t), hp(t))}icp,r given by W TUE BwoynAL

Yool

" ¢
(hs(t) = A(t.S(1)). <A(t’,;ﬂ = d,v(t,)) V= Ty - y 6
€ —¢

Ezg(z) - %(ny(z) - hs(t)S(t)ﬂ

Avp REPLC ATES
is self-financing and hndgoﬁq.}m derivative. Here v denotes the Black-Scholes
pricing function and d,v the partial derivative of v in the second variable
(i.e., the derivative in o assuming that ¢ is constant).

Note that the formula for hg(t) is equivalent to the replicating condition
V(t) = Iy (t) of the portfolio process {hg(t), hp(t) e

Vi s W DS+ WD) BH) = Ty )
9
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