Lecture_20

den 4 december 2020

15:06

Lecture_20

THE BINDWIAL MODEL, te (0,1,2,... P), SH) HAS t+1 Options and Mathematics: Lecture 20 THE INTERVAL December 3, 2020 Black-Scholes markets P: F-) CO117 **Definition 6.7** Let $\{W(t)\}_{t\geq 0}$ be a Brownian motion, $\alpha\in\mathbb{R}$, $\sigma>0$ and $S_0 > 0$ be constants. The positive stochastic process $\{S(t)\}_{t\geq 0}$ given by $S(t) = S_0 e^{\alpha t + \sigma W(t)} \qquad \iff S(t) = S_0 e^{\alpha t + \sigma W(t)}$ (IN THE SINOPLIAL is called a **geometric Brownian motion** (GBM). MODEL) We shall use geometric Brownian motions to model the dynamics of stock prices in the time-continuum case. More precisely, a Black-Scholes market is a market that consists of a stock with price given by a GBM, and a risk-free asset with constant interest rate r; in particular, the value of the risk-free asset at time t is given by $B(t) = B_0 e^{rt} \quad B_0 = B(0) > 0$

(SH), 8(4))

\$H= e s(+) = Sne

$$S(H) = S_0 e$$
 $T_{us}S(H) = (0, 90)$

DE PRESENTINE

TE MATURITY OF A

MERCUATISE ON THE

We assume throughout that $t \in [0, T]$, where T > 0 could be for instance the time of maturity of a financial derivative on the stock.

The probability \mathbb{P} with respect to which $\{W(t)\}_{t\geq 0}$ is Brownian motion is the **physical** (or **real-world**) **probability** of the Black-Scholes market.

 α is the instantaneous mean of log-return, σ is the instantaneous volatility and σ^2 is the instantaneous variance of the geometric Brownian motion.

To justify this terminology we now show that α and σ satisfy the analogous interpretations as in the binomial model. Namely, for all $t \in [0,T]$ and h>0 such that $t+h \leq T$ we have

$$\alpha = \frac{1}{h} \mathbb{E}[\log S(t+h) - \log S(t)], \quad \sigma^2 = \frac{1}{h} \operatorname{Var}[\log S(t+h) - \log S(t)].$$

In fact, since $W(t) \in \mathcal{N}(0,t)$, we have

$$\mathbb{E}[\log S(t+h) - \log S(t)] = \mathbb{E}[\widehat{\alpha h} + \sigma W(t+h) - \sigma W(t)]$$

$$= \alpha h + \sigma(\mathbb{E}[W(t+h)] - \mathbb{E}[W(t)]) = \alpha h.$$
idarly

Similarly

$$Var[\log S(t+h) - \log S(t)] = Var[\underline{M} + \sigma W(t+h) - \sigma W(t)]$$
$$= \sigma^{2} Var[\underline{W(t+h) - W(t)}] = \sigma^{2} h,$$

where we used that the increment W(t+h) - W(t) belongs to $\mathcal{N}(0,h)$.

Next we derive the density function of the geometric Brownian motion.

Theorem 6.10

The density of the random variable S(t) is given by

$$f_{S(t)}(x) = \frac{H(x)}{\sqrt{2\pi\sigma^2 t}} \frac{1}{x} \exp\left(-\frac{(\log x - \log S(0) - (gt)^2)}{2\sigma^2 t}\right),$$

$$\text{PROBABILITY} \quad \text{where } H(x) \text{ is the Heaviside function.}$$

$$2$$

$$1 \times > 0$$

$$0 \times \leq 0$$

Proof. The density of S(t) is given by

It is given by
$$f_{S(t)}(x) = \frac{d}{dx} F_{S(t)}(x), \qquad S(t) = S_0 e$$
 at $t \in W(t)$ at ion of $S(t)$, i.e.,

where
$$F_{S(t)}$$
 is the distribution of $S(t)$, i.e.,
$$F_{S(t)}(x) = \mathbb{P}(S(t) \leq x).$$
 Clearly, $f_{S(t)}(x) = F_{S(t)}(x) = 0$, for $x \leq 0$. For $x > 0$ we use that
$$F_{S(t)}(x) = F_{S(t)}(x) = F_{S(t)}(x) = 0$$

Thus, using
$$W(t) \in \mathcal{N}(0,t)$$
, $S(t) = 0$, for $t = 0$. For $t = 0$ we use that
$$\underbrace{S(t) \leq x}_{S(t)} = x \text{ if and only if } \underbrace{W(t) \leq \frac{1}{\sigma} \left(\log \frac{x}{S(0)} - \alpha t \right)}_{S(t)} := \underbrace{A(x)}_{S(t)} = \underbrace{A(x)}_{S(t)}$$

$$\mathbb{P}(S(t) \leq x) = \mathbb{P}(-\infty < \underline{W(t)} \leq \underline{A}(x)) = \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{A(x)} e^{-\frac{y^2}{2t}} dy, \ \mathbf{z} \ \mathbf{F}_{\mathrm{S(h)}}(\mathbf{x}) = \mathbf{F}_{\mathrm{S(h)}}(\mathbf{x})$$

where for the second equality we used that $W(t) \in \mathcal{N}(0,t)$. Hence

for the second equality we used that
$$W(t) \in \mathcal{N}(0,t)$$
. Hence
$$f_{S(t)}(x) = \frac{d}{dx} \left(\frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{\widehat{A(x)}} e^{-\frac{y^2}{2t}} dy \right) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{A(x)^2}{2t}} \frac{dA(x)}{dx},$$

$$0, \text{ that is}$$

for x > 0, that is

$$f_{S(t)}(x) = \frac{1}{\sqrt{2\pi\sigma^2 t}} \frac{1}{x} \exp\left\{-\frac{(\log x - \log S(0) - \alpha t)^2}{2\sigma^2 t}\right\}, \quad x > 0.$$

The proof is complete.

GOAL: DEFINE THE BLACK-SCHOLES
POLICE OF EUROPEAN DERIVATIVES Try(0) = C # [7] (AT t=0) The risk-neutral pricing formula in Black-Scholes markets

The purpose of this section is to introduce the definition of Black-Scholes price of European derivatives from a probability theory point of view.

MODEL

Recall that the probabilistic interpretation of the binomial price is encoded in the risk-neutral pricing formula.

Our goal is to derive a similar risk-neutral pricing formula (at time t = 0) for the time-continuum Black-Scholes model.

Motivated by the approach for the binomial model, we first look for a probability measure in which the discounted stock price in Black-Scholes markets is a martingale (martingale probability measure).

It is natural to seek such martingale probability within the class of Girsanov probabilities $\{\mathbb{P}_{\theta}\}_{\theta\in\mathbb{R}}$; recall that \mathbb{P}_{θ} is equivalent to the physical probability $\mathbb{P} = \mathbb{P}_0 \text{ for all } \theta \in \mathbb{R}.$

We shall need the form of the density function of the geometric Brownian motion in the probability measure \mathbb{P}_{θ} .

Theorem 6.11

Let $\theta \in \mathbb{R}$ and $\{W(t)\}_{t\geq 0}$ be a \mathbb{P} -Brownian motion. The geometric Brownian motion has the following density in the probability measure (\mathbb{P}_{θ}) :

 $f_{S(t)}^{(\theta)}(x) = \frac{H(x)}{\sqrt{2\pi\sigma^2 t}} \frac{1}{x} \exp\left(-\frac{(\log x - \log S_0 - (\alpha - \theta \sigma)t)^2}{2\sigma^2 t}\right).$

Proof. Since $W(t) = W(t) + \delta t - \delta t = W(t) - \delta t$ $S(t) = S_0 e^{\alpha t + \sigma W(t)} = S_0 e^{(\alpha - \theta \sigma)t + \sigma W(\theta)(t)}, \quad W^{(\theta)}(t) = W(t) + \theta t$

 $S(t) = S_0 e^{\alpha t + \sigma W(t)} = S_0 e^{(\alpha - \theta \sigma)t + \sigma W(\theta)(t)}, \quad W^{(\theta)}(t) = W(t) + \theta t$ and since $\{W^{(\theta)}(t)\}_{t \geq 0}$ is a Brownian motion in the probability measure \mathbb{P}_{θ} (by Girsanov's Theorem), then the density $f_{S(t)}^{(\theta)}$ is the same as in Theorem 6.10 with α replaced by $\alpha - \theta \sigma$.

RECALL THAT S*(+) = E-RT SH) IS THE DISCOUNTED

AT t=0 PRICE OF THE STOCK AT THE t, FOR THE

GBM =D S*(+) = So (d-R)t + GW(+) THIS IS NOT

P MARTINGAGE IN P

GOAL: FIND THE SUCH THAT 25 (1) STEED, IS

A MARTINGACE IN THE PROBABILITY PO. SINCE

MARTINGACES HAVE CONSTANT EXPECTATION, THEN IN SOUTH

O MARTINGACE PROBABILITY WE WOST HAVE E [SH] = SOE

(RISK-NEUTRAL)

Let $\mathbb{E}_{\theta}[\cdot]$ denote the expectation in the measure \mathbb{P}_{θ} . Recall that martingales have constant expectation. Hence in the martingale (or risk-neutral) probability measure the expectation of the discounted value of the stock must be constant, i.e., $\mathbb{E}_{\theta}[S(t)] = S_0 e^{rt}$. We now show that this condition alone suffices to single out a unique possible value of θ , namely

The identity $\mathbb{E}_{\theta}[S(t)] = S_0 e^{rt}$ holds if and only if $\theta = q$, where

$$q = \frac{\alpha - r}{\sigma} + \frac{\sigma}{2}.$$

In fact, using the density of S(t) in the probability \mathbb{P}_{θ} we have

$$\mathbb{E}_{\theta}[S(t)] = \int_{\mathbb{R}} x f_{S(t)}^{(\theta)}(x) \, dx = \frac{1}{\sqrt{2\pi\sigma^2 t}} \int_{0}^{\infty} \exp\left(-\frac{(\log x - \log S_0 - (\alpha - \theta\sigma)t)^2}{2\sigma^2 t}\right) dx.$$

With the change of variable

$$y = \frac{\log x - \log S_0 - (\alpha - \theta \sigma)t}{\sigma \sqrt{t}}, \quad dx = x\sigma \sqrt{t} \, dy,$$

we obtain

$$\mathbb{E}_{\theta}[S(t)] = \frac{S_0}{\sqrt{2\pi}} e^{(\alpha - \theta \sigma)t} \int_{\mathbb{R}} e^{-\frac{y^2}{2} + \sigma\sqrt{t}y} \, dy = S_0 e^{(\alpha - \theta \sigma + \frac{\sigma^2}{2})t} \underbrace{\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{(y + \sigma\sqrt{t})^2}{2}} \, dy}. = 1$$
As $\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{x^2}{2}} \, dx = 1$, the claim follows. $S_0 = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-\frac{(y + \sigma\sqrt{t})^2}{2}} \, dy$.

Even though the validity of $\mathbb{E}_{\theta}[S(t)] = S_0 e^{rt}$ is only necessary for the discounted geometric Brownian motion to be a martingale, one can show that the following result holds.

Theorem 6.12 The discounted value of the geometric Brownian motion stock price is a martingale in the Girsanov probability measure \mathbb{P}_{θ} if and only if $\theta = q$, where q is given as above.

9= d-R+ == == 26°

The probability measure \mathbb{P}_q is called the martingale probability, or risk**neutral probability**, of the Black-Scholes market. Replacing $\alpha = r + q\sigma$ $\frac{1}{2}\sigma^2$ in the the GBM we may rewrite the stock price as

 $S(t) = S(t) e^{-\sigma^2 t} + c w''(t)$ $S(t) = S(0)e^{(r-\frac{\sigma^2}{2})t + \sigma W^{(q)}(t)}$ $S(t) = S(0)e^{(r-\frac{\sigma^2}{2})t + \sigma W^{(q)}(t)}$ $E(t) = S(0)e^{(r-\frac{\sigma^2}{2})t + \sigma W^{(q)}(t)}$

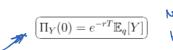
where we recall that $W^{(q)}(t) = W(t) + qt$ and, by Girsanov's theorem, $\{W^{(q)}(t)\}_{t\geq 0}$ is a Brownian motion in the risk-neutral probability.

It follows that in the probability measure \mathbb{P}_q , S(t) is a geometric Brownian motion with volatility σ and mean of log return $\mu = r - \frac{1}{2}\sigma^2$.

At this point we have all we need to define the Black-Scholes price of European derivatives at time t=0 using the risk-neutral pricing formula.

Definition 6.18

The Black-Scholes price at time t=0 of the European derivative with pay-off Y at maturity T is given by the risk-neutral pricing formula



i.e., it equals the expected value of the discounted pay-off in the risk-neutral probability measure of the Black-Scholes market.

In the case of standard European derivatives we can use the density of the geometric Brownian motion in the risk-neutral probability measure to write the Black-Scholes price in the following integral form.

/ = g(s(T))

 $\pi_{\gamma}(0) = \kappa_{0}(S_{0}) = e^{-n\tau} \left\{ g\left(S_{0}e^{(n-s^{2})T+\sigma\sqrt{\tau}\gamma}\right) e^{-\frac{1}{2}\gamma^{2}} \frac{dy}{\sqrt{2\pi}} \right\}$

Theorem 6.13

For the standard European derivative with pay-off Y = g(S(T)) at maturity T>0, the Black-Scholes price at time t=0 can be written as

$$\boxed{\Pi_Y(0) = v_0(S_0)}$$

where S_0 is the price of the underlying stock at time t=0 and $v_0:(0,\infty)\to\mathbb{R}$ is the **pricing function** of the derivative at time t = 0, which is given by

 $v_0(x) = e^{-rT} \int_{\mathbb{R}} g(x e^{(r-\frac{\sigma^2}{2})T + \sigma\sqrt{T}y}) e^{-\frac{1}{2}y^2} \frac{dy}{\sqrt{2\pi}}$ $A + (w \in \mathcal{H})$ $(w \in \mathcal{H})$

Proof. Replacing $\theta = q$ in the density of GBM in the risk-neutral probability we obtain that the geometric Brownian motion has the following density in the probability \mathbb{P}_q : RE PLACE

$$f_{S(t)}^{(q)}(x) = \frac{H(x)}{\sqrt{2\pi\sigma^2}t}\frac{1}{x}\exp\left(-\frac{(\log x - \log S_0 - (r - \frac{\sigma^2}{2})t)^2}{2\sigma^2t}\right). \qquad \forall x \in \mathcal{S}_0$$

Using this density for t=T in the risk-neutral pricing formula we obtain $\Pi_Y(0)=e^{-rT}\mathbb{E}_q[Y]=\underbrace{e^{-rT}}\mathbb{E}_q[g(S(T))]=\underbrace{\int_{\mathbb{B}}g(x)f_{S(T)}^{(n)}(x)\,dx}^{\mathbb{Q}(T)}$

$$=\frac{e^{-rT}}{\sqrt{2\pi\sigma^2t}}\int_0^\infty \frac{g(x)}{\sqrt{x}}\exp\left(-\frac{(\log x - \log S_0 - (r - \frac{\sigma^2}{2})t)^2}{2\sigma^2t}\right)dx.$$
 With the change of variable $y = \frac{\log x - \log S_0 - (\alpha - \theta\sigma)t}{\sigma\sqrt{t}}$ we obtain

$$\Pi_Y(0) = e^{-rT} \int_{\mathbb{R}} g(S_0 e^{(r - \frac{\sigma^2}{2})T + \sigma\sqrt{T}y}) e^{-\frac{1}{2}y^2} \frac{dy}{\sqrt{2\pi}} = v_0(S_0),$$

as claimed.

