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Options and Mathematics: Lecture 23

December 10, 2020

The Asian option

For European call and put options, and for other simple standard European
derivatives, the Black-Scholes pricing formula can be reduced to a simple
expression in terms of the standard normal distribution.

For non-standard derivatives, i.e.. when the pay-off depends on the price of
the stock at different times (and not only at maturity), this reduction is in
general not possible.

Nevertheless the risk-nentral pricing formula can be used to compute numer-
ically the Black-Scholes price of non-standard derivatives using the so called
Monte Carlo method.

We illustrate the procedure in the important case of the Asian option.
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where K > 0 is the strike price of the option.
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The Black-Scholes price at time = 0 of these options are given respectively
by

Mac(0) =€ "By [Year). Map(0) = e ""Ey[Yean].

Exercise 6.23

Derive the following put-call parity identity:

(€T 1
> Mae(0) —Tap(0) = ¢ 7 (“ — SO—K).
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The Asian call with geometric average is the non-standard European deriva-
tive with pay-off THS (S bord Swick®
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Q= (i‘,i,_J K) . G A STANDARD
EomEtMlc Av\l:d.k&u

Show that the Black- Scholes price at time £ = 0 of this derivative is given by c xLtl

(0) = e T (T Syd(dy) — KD(dy))
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where

Derive also the analogous formula the Black-Scholes price of the put option
as well as the corresponding put-call parity.
P P parity - \(? o

HINT: You need Theorem 6.6 (and not@s written in the book!).
S
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The Monte Carlo method e = - 12-_‘ z
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The Monte Carlo method is, in its simplest form, a numerical method to \rZ'ﬂ'
compute the expectation of a fandom variable.

Its mathematical validation is based on the Law of Large Numbers. which | | o

states the following: Suppose {X;};>1 is a sequence of i.i.d. random variables _
with expectation E[X;] = p. Then the sample average of the first n compo- N PEFENPTNT
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The law of large numbers can be used to justify the fact that if we are given

a large number of independent trials X,..., X, of the random variable X,

then —

1
E[X] = ;(X, +Xo+-+ X,

To measure how reliable is the approximation of E[X] given by the sample
average, consider the standard deviation of the trials X, ..., X,:

X =Xt e 2o ()
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A simple application of the Central Limit Theorem proves that the random
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converges in distribution to a standard normal random variable. We use this

3 b
A~ A \lixz
| F M 1S SoRROGENTIY W["V<VM<,”\ - \gm ) < ¥
LARGE =
- S—

Lecture 23 Page 4



WD NTT - CARLD ATTEDXCRITION 3 ® o

W

x
i T —eloaL
RASE T= 950 e PP (el

'S >aUT\D
H«/c:\@e WA T result to show that the true value z of E[X] has about 95% probability to
793[ ?Q,O&?,A—Rluy be in the interval
l . f

— s 7 2
u,_,__,___.,’—-llub Mo [f—l.%%,)(+1.96ﬁ], wWaTvk 4§ [, SRoBAB LT
7\-1-‘“’; Xalee (V€ M VS LxRel
$ix Indeed, for n large
b E Novw )
e - n
" = X | _.) /1-% —:172/2 dx
Pl-1.96< <1.96) = : —— == (0.95.
( T osx/vin T . —1.96‘1 Vam 2

Application to the Asian option

Consider now a European derivative with pay-off ¥ at maturity 7. We
approximate the price at time = 0 by
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As the pay-off depends on the path of the stock price, the trials Y)
can be created by first generating a sample of paths for the stock price.

Letting 0 =g <, < --- <ty = T be a partition of the interval [0, 7] with
size t; — t;— = h, we may construct a sample of n paths of the geometric
Brownian motion on the given partition with the following simple Matlab

function: S(pj Skra) SH) ~ : ‘ F(‘l"@:?{.sﬁ_)
function Path=StockPath(s,sigma,r,T,N,n) 3( C N o \7

Yy t, &> N
h=T/N; / 4 =90 LD " | =T
W=randn(n,N); ;(Dj PEMBER oF ° /T .

q=ones(n,N); CATLrS
Path=s*exp((r-sigma~2/2)*h.*cumsum(q’)+sigma*sqrt (h)*cumsum(W’)) ;
Path=[s*ones(1,n) ;Path]; z
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Note carefully that the stock price is modeled as a geometric Brownian mo-
tion with mean of log return o = r — ¢2/2, which means that the geometric
Brownian motion is defined in the risk-neutral probability.

This is of course correct, since the expectation that we want to compute is
in the risk-neutral probability measure.

In the case of the Asian call option with strike K and maturity T the pay-off

is given by /
(1 [ s ) LS s
== tHydt— K| =|—= () — K| .
T Jo ; N =1 N4 N

The following function computes the approximate price of the Asian option

< w\ce= T_\ (0-) using the Monte Carlo method: ¥ eol NS (N
1 - TOT PARTITON

L » function [price, err]=MonteCarlo_AC(s,sigma,r,K,T,N,n)
Tz WYL= tice / > Y&
M stockPath=StockPath(s,sigma,r,T,N,n); 4+ oF SN

payOff=max(0,mean(stockPath)-K) ;. - TS

price=exp(-r*T)£mean (pay0ff) ;

err=1.96Hstd (pay0ff) /sqrt(n);
CA—
tocg
~ o

The function also returns the error in the 95% confidence interval. that is

Err = 1.96—=—=. \2
i v S o T
TuE sTece CRUCG
For example, by running the command

[price, err]=MonteCarlo AC(100,0.5,0.05,100,1/2, 100, 1000000) <10

we get price==8.5799, err=0.0283, which means that the Black-Scholes price
of the Asian option with the given parameters has 95% probability to be in
the interval 8.5799 + 0.0283. The calculation took about 4 seconds. Note
that the 95% confidence is 0.0565/8.5799 = 100 %@G of the price.
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lin order to reduce the error, i.e.; to shrink the confidence interval. of the
Monte Carlo approximation. one needs to either

(i) increase the number of trials n or

(ii) reduce the standard derivation s. Increasing n can be very costly in terms
of computational time, hence the approach (ii) is more efficient.

There exist several methods to decrease the standard deviation of a Monte
Carlo computation, which are known as variance reduction techniques.
An example for the Asian option can be found in the book
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Solution to Exercise 6.23
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Solution to Exercise 6.24

den 10 december 2020 14:46
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