Exam for the course "Options and Mathematics" (CTH[MVE095], GU[MMG810]) 2021/22

For questions call the examiner at +46 (0)31 7723562
January $13^{\text {th }}, 2022$ (8.30-12.30)

REMARKS: (1) NO aids permitted (2) Write as clear as possible: if some step is not clearly readable it will be assumed to be wrong.

Part I

1. Prove that in a 1-period binomial market there exists a self-financing arbitrage portfolio if and only if $r \notin(d, u)$ (max 3 points). Prove that the condition $r \in(d, u)$ is equivalent to the existence of a martingale probability in the N-period binomial market (max 3 points).
2. Give and explain the definition of self-financing arbitrage portfolio in the binomial market (max 3 points).
3. Assume that the market is arbitrage-free. Let $P(t, S(t), K, T)$ be the price at time $t \in[0, T]$ of the European put with strike K and maturity T and $\widehat{P}(t, S(t), K, T)$ be the price of the corresponding American put. Assume that the risk-free rate r is negative and that the underlying stock pays no dividend in the interval $[0, T]$. Decide whether the following statements are true or false and explain your answer (max 3 points):
(a) It is never optimal to exercise the American derivative prior to maturity.
(b) $P(0, S(0), K, T)$ is no greater than K.
(c) $\widehat{P}(0, S(0), K, T)=P(0, S(0), K, T)$.

Solution. (a) True. By the put call-parity,

$$
\widehat{P}(t, S(t), K, T) \geq P(t, S(t), K, T)=C(t, S(t), K, T)+K e^{-r(T-t)}-S(t)>K-S(t),
$$

hence when the American put is in the money we have $P(t, S(t), K, T)>(K-S(t))_{+}$, thus there is no optimal exercise time $t<T$. (b) False. Again by the put-call parity, and using $C(0, S(0), K, T) \rightarrow 0$ as $S(0) \rightarrow 0$, we have $P(0, S(0), K, T) \rightarrow K e^{-r T}>K$ as $S(0) \rightarrow 0$. Hence when the stock price is very small, the put option may be more expensive than the maximum pay-off K. (c) is true because of (a).

Part II

1. Let $S(t)>0$ be the price at time t of a non-dividend paying stock. At $t=0$ an investor wants to open a constant portfolio \mathcal{A} on European calls on the stock such that the portfolio value at time T is

$$
V(T)=\min \left((S(T)-2)_{+}, \frac{1}{2} H(S(T)-1),(5-S(T))_{+}\right)
$$

where H is the Heaviside function. Find \mathcal{A} (max. 3 points). Assuming that the stock price follows a geometric Brownian motion with mean of log-return α and volatiliy σ, find the probability that $V(T)>0$; express the latter result in terms of the standard normal distribution (max. 3 points).
Solution. The graph of $V(T)$ as a function of $S(T)$ is given as in the following picture

by which we can derive that $\mathcal{A}=(C(2),-C(5 / 2),-C(9 / 2), C(5))$, where $C(K)$ is the call option with strike K and maturity T. This concludes the first part of the exercise (3 points). Moreover

$$
\mathbb{P}(V(T)>0)=\mathbb{P}(2<S(T)<5)=\mathbb{P}\left(2<S(0) e^{\alpha T+\sigma W(T)}<5\right)=\mathbb{P}\left(\Gamma(2)<\frac{W(T)}{\sqrt{T}}<\Gamma(5)\right)
$$

where

$$
\Gamma(a)=\frac{\log \frac{a}{S(0)}-\alpha T}{\sigma \sqrt{T}}
$$

Using that $W(T) / \sqrt{T} \in \mathcal{N}(0,1)$ we find

$$
\mathbb{P}(V(T)>0)=\int_{\Gamma(2)}^{\Gamma(5)} e^{-\frac{1}{2} y^{2}} \frac{d y}{\sqrt{2 \pi}}=\Phi(\Gamma(5))-\Phi(\Gamma(2))
$$

where Φ is the standard normal distribution.
2. Let $T_{2}>T_{1}$. A chooser option with maturity T_{1} is a contract that gives the owner the right to obtain at time T_{1} a European call or a European put expiring at time T_{2} with no extra cost. Assume $T_{1}=2, T_{2}=3$ and that the underlying stock of the options follows a 3 -period binomial model with parameters

$$
S(0)=64, \quad u=\log (5 / 4), \quad d=\log (1 / 2), \quad r=0, \quad p=1 / 2 .
$$

Assume that the strike of the call is $K=23$, while the put option is at the money at time $t=1$. Compute the price of the chooser option at $t=0$ (max 4 points) and the probability of positive return for the owner of the chooser option in the interval $[0,3]$ (max 2 points).
Solution. The binomial tree of the stock price is given by

The pay-off of the chooser option at time of maturity $t=T_{1}=2$ is $Y=\max (C(2), P(2))$, where $C(t), P(t)$ are the values of the call/put option at time t. To compute $C(2)$ we use the recurrence formula for the price of European derivatives:

$$
C(2)=e^{r}\left(q_{u} C^{u}(3)+q_{d} C^{d}(3)\right)=\frac{2}{3} C^{u}(3)+\frac{1}{3} C^{d}(3),
$$

where we used that $r=0$ and $q_{u}=\frac{e^{r}-e^{d}}{e^{u}-e^{d}}=2 / 3, q_{d}=1-q_{u}=1 / 3$. Hence, since $C(3)=$ $(S(3)-23)_{+}$,

$$
C(2, u, u)=\frac{2}{3} C(3, u, u, u)+\frac{1}{3} C(3, u, u, d)=\frac{2}{3}(125-23)+\frac{1}{3}(50-23)=77,
$$

and similarly

$$
C(2, u, d)=C(2, d, u)=18, \quad C(d, d)=0 .
$$

As the put option is at the money at $t=1$, then the strike of the put is $K=80$ if the stock price goes up in the first step and $K=32$ if the stock price goes down in the first step. Hence

$$
\begin{gathered}
P(2, u, u)=\frac{1}{3} P(3, u, u, d)=\frac{1}{3}(80-50)=10, \\
P(2, u, d)=\frac{2}{3} P(3, u, d, u)+\frac{1}{3} P(3, u, d, d)=\frac{2}{3}(80-50)+\frac{1}{3}(80-20)=40, \\
P(2, d, u)=\frac{1}{3} P(3, d, u, d)=\frac{1}{3}(32-20)=4, \\
P(2, d, d)=\frac{2}{3} P(3, d, d, u)+\frac{1}{3} P(3, d, d, d)=\frac{2}{3}(32-20)+\frac{1}{3}(32-8)=16 .
\end{gathered}
$$

Thus the pay-off of the chooser option at maturity $T_{1}=2$ is

$$
\begin{array}{ll}
Y(u, u)=C(2, u, u)=77, & Y(u, d)=P(2, u, d)=40 \\
Y(d, u)=C(2, d, u)=18, & Y(d, d)=P(2, d, d)=16 .
\end{array}
$$

Notice that this chooser option is a non-standard derivative. The price $\Pi(0)$ of the chooser option at $t=0$ is

$$
\Pi(0)=e^{-2 r} \mathbb{E}_{q}[Y]=\mathbb{E}_{q}[Y]=\left(q_{u}\right)^{2} Y(u, u)+q_{u} q_{d}(Y(u, d)+Y(d, u))+\left(q_{d}\right)^{2} Y(d, d)=\frac{440}{9} .
$$

The pay-off at $t=3$ for the owner of the option equals the pay-off of the call along the paths $(u, u, u),(u, u, d),(d, u, u),(d, u, d)$ and the pay-off of the put along the other paths $(u, d, u),(u, d, d),(d, d, u),(d, d, d)$. Hence
$R(u, u, u)=102-\frac{440}{9}>0, \quad R(3, u, u, d)=R(3, d, u, u)=27-440 / 9<0, \quad R(3, d, u, d)<0$
$R(u, d, u)=30-\frac{440}{9}<0, \quad R(u, d, d)=60-\frac{440}{9}>0, \quad R(d, d, u)=12-\frac{440}{9}<0, \quad R(d, d, d)<0$ hence $\mathbb{P}(R>0)=\mathbb{P}\left(S^{(u, u, u)}\right)+\mathbb{P}\left(S^{(u, d, d)}\right)=p^{3}+p(1-p)^{2}=1 / 4$.
3. Let $K>0, T>0$ and $t \in[0, T]$. Find the Black-Scholes price $\Pi_{Y}(t)$ of the European derivative with maturity T and pay-off $Y=(\log S(T)-K)_{+}$and the number of stock shares $h_{S}(t)$ in the hedging portfolio for this derivative (max. $3+3$ points).
Solution. We have $\Pi_{Y}(t)=v(t, S(t))$, where the pricing function $v(t, x)$ is given by

$$
v(t, x)=e^{-r \tau} \int_{\mathbb{R}} g\left(x e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \sqrt{\tau} y}\right) e^{-\frac{1}{2} y^{2}} \frac{d y}{\sqrt{2 \pi}},
$$

where $\tau=T-t$ is the time left to mautiry at time t. Using $g(z)=(\log z-K)_{+}$we find

$$
g\left(x e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \sqrt{\tau} y}\right)= \begin{cases}\log x+\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \sqrt{\tau} y-K & \text { if } y>-d \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
d=\frac{\log x-K+\left(r-\frac{\sigma^{2}}{2}\right) \tau}{\sigma \sqrt{\tau}} .
$$

Replacing in the formula for $v(t, x)$ and computing the integral we find

$$
v(t, x)=e^{-r \tau}\left[\left(\log x-K+\left(r-\frac{\sigma^{2}}{2}\right) \tau\right) \Phi(d)+\sigma \sqrt{\tau} \frac{e^{-\frac{1}{2} d^{2}}}{\sqrt{2 \pi}}\right]=e^{-r \tau} \sigma \sqrt{\tau}(d \Phi(d)+\phi(d))
$$

where Φ is the standard normal distribution and $\phi(d)=\Phi^{\prime}(d)$ is the standard normal density. This concludes the first part of the exercise (3 points). The number of shares $h_{S}(t)$ in the hedging portfolio is given by $h_{S}(t)=\Delta(t, S(t))$, where
$\Delta(t, x)=\partial_{x} v(t, x)=e^{-r \tau} \sigma \sqrt{\tau} \frac{\partial}{\partial d}(d \Phi(d)+\phi(d)) \frac{\partial d}{\partial x}=e^{-r \tau} \frac{\Phi(d)+d \phi(d)+\phi^{\prime}(d)}{x}=e^{-r \tau} \frac{\Phi(d)}{x}$.
This concludes the second part of the exercise (3 points).

