Exam for the course "Options and Mathematics" (CTH[MVE095], GU[MMG810]) 2021/22

For questions call the examiner at +46 (0)31 7723562
April $13^{\text {th }}, 2022$ (8.30-12.30)

REMARKS: (1) NO aids permitted (2) Write as clear as possible: if some step is not clearly readable it will be assumed to be wrong.

Part I

1. Let $V(t)$ be the value at time t of a self-financing portfolio process in a N-period binomial market. Derive the recurrence formula expressing $V(t)$ in terms of $V(t+1)$ (max 3 points). Derive the formula expressing $V(t)$ in terms of $V(N)$ (max 3 points).
2. Give and explain the definition of risk-neutral price of Zero Coupon Bonds (max 3 points).
3. Decide whether the following statements are true or false in an arbitrage free market and explain your answer (max 3 points):
(a) All risk-free assets have the same interest rate.
(b) Zero Coupon bonds may have a negative yield in the interval $[0, T]$ even if the risk-free rate at $t=0$ is positive.
(c) Investors cannot know at time $t=0$ if an investment yields a positive return in the interval $[0, T]$.

Solution: (a) True, otherwise an arbitrage opportunity would arise by taking a long position on the risk-free asset with the higher interest rate and a short position, for the same value, on the risk-free asset with the lowest interest rate. (b) True; the ZCB fixes the interest rate to borrow in the interval $[0, T]$. Even if the risk-free rate is positive at $t=0$ there is no guarantee that will remain so in the whole interval $[0, T]$. (c) True, e.g., a ZCB with positive yield to maturity (which is known at $t=0$).

Part II

1. An investor wants to set-up a constant portfolio on European stock options in the interval $[0, T]$ such that the pay-off $V(T)$ of the portfolio is one if the stock price lies in the intervals $[1,2]$ or $[3,4]$ and is zero otherwise. Give an example for such portfolio (max 3 points). Compute also the Black-Scholes value of this portfolio at time zero, expressed in terms of the standard normal distribution (max 3 points).

Solution: Letting $S(T)$ be the price of the stock at time T, the pay-off of the portfolio can be written as

$$
V(T)=H(S(T)-1)-H(S(T)-2)+H(S(T)-3)-H(S(T)-4),
$$

where H is the Heaviside function. Hence the sought portfolio is replicated by a long position on one share of the cash settled digital options with strikes 1 and 3 and a short position on one share of the same option with strikes 2 and 4 , in each case the notional value being equal to 1 . Letting $v(x, K)$ be the Black-Scholes pricing function at $t=0$ of the cash-settled digital option with strike K, maturity T and notional value one, we then have

$$
V(0)=v(S(0), 1)-v(S(0), 2)+v(S(0), 3)-v(S(0), 4) .
$$

We compute $v(x, K)$ with the Black-Scholes formula:

$$
\begin{aligned}
v(x, K) & =\frac{e^{-r T}}{\sqrt{2 \pi}} \int_{\mathbb{R}} H\left(x e^{\left(r-\frac{\sigma^{2}}{2}\right) T} e^{\sigma \sqrt{T} y}-K\right) e^{-\frac{y^{2}}{2}} d y \\
& =\frac{e^{-r T}}{\sqrt{2 \pi}} \int_{-d_{(-)}(x, K)}^{\infty} e^{-\frac{y^{2}}{2}} d y
\end{aligned}
$$

where $d_{(-)}(x, K)=\frac{1}{\sigma \sqrt{T}}\left[\log (x / K)+\left(r-\frac{\sigma^{2}}{2}\right) T\right]$. With the change of variable $y \rightarrow-y$ we obtain

$$
v(x, K)=e^{-r T} \Phi\left(d_{(-)}(x, K)\right) .
$$

Hence

$$
V(0)=e^{-r T}\left[\Phi\left(d_{(-)}(S(0), 1)\right)-\Phi\left(d_{(-)}(S(0), 2)\right)+\Phi\left(d_{(-)}(S(0), 3)\right)-\Phi\left(d_{(-)}(S(0), 4)\right)\right]
$$

2. Consider a 3 -period binomial market with risk-neutral probability $q=1 / 2$, risk-free rate $r=0$ and physical probability $p \in(0,1)$. A self-financing portfolio in this market has the following values at $t=3$:

$$
V(3, u, u, u)=-4, \quad V(3, u, u, d)=0, \quad V(3, u, d, d)=12, \quad V(3, d, d, d)=-8 .
$$

Compute the portfolio value $V(t)$ for all $t=0,1,2$ (max 2 points). Study how the expected return of the portfolio depends on p; in particular show that there are two values p_{1}, p_{2} of the physical probability such that the expected return of the portfolio in the interval [0,3$]$ is zero (max 3 points). In which of the two cases is the portfolio risk lower? (justify your answer without doing any calculation) (max 1 point)
Solution: Using the recurrence formula (with $r=0$):

$$
V(t)=q V^{u}(t+1)+(1-q) V^{d}(t+1)
$$

we find easily
$V(2, u, u)=-2, V(2, u, d)=V(2, d, u)=6, V(2, d, d)=2, V(1, u)=2, V(1, d)=4, V(0)=3$.

Hence the return in the interval $[0,3]$ is the random variable

$$
R= \begin{cases}-7 & \text { with prob. } p^{3} \\ -3 & \text { with prob. } 3 p^{2}(1-p) \\ 9 & \text { with prob. } 3 p(1-p)^{2} \\ -11 & \text { with prob. }(1-p)^{3}\end{cases}
$$

It follows that

$$
\mathbb{E}[R]=4\left(10 p^{3}-24 p^{2}+15 p\right)-11=f(p)
$$

Notice that $f(1 / 2)=0$. Moreover

$$
f^{\prime}(p)=12\left(10 p^{2}-16 p+5\right) \Rightarrow f^{\prime}(1 / 2)=-6
$$

hence $f(p)>0$ for p smaller but close to $1 / 2$. As $f(0)=-11$ and $f(1)=-7$, then there exists $p_{1} \in(0,1 / 2)$ such that $f(p)<0$ for $p \in\left(0, p_{1}\right)$ and $p \in(1 / 2,1), f(p)>0$ for $p \in\left(p_{1}, 1 / 2\right)$ and $f(p)=0$ for $p=p_{1}$ and $p=1 / 2$. In particular, the expected return as a (positive) maximum at some $p_{*} \in\left(p_{1}, 1 / 2\right)$. The portfolio risk is measured by $\operatorname{Var}(R)$, i.e., by the "randomness" of the return. Now, for $p=p_{1}$ the portfolio value has a tendency to move down and since the variations of the portfolio return are larger on these paths, then the risk of the portfolio is higher for $p=p_{1}$ than for $p=1 / 2$, even though in both cases the expected return is zero.
3. Let $K>0, T>0$ and $\left\{0=t_{0}<t_{1}<\cdots<t_{n}=T\right\}$ be a uniform partition of the interval $[0, T]$ with size $h=t_{i}-t_{i-1}$. Assume $r=0$ and let $t \in[0, T)$ be the present time. Compute the Black-Scholes price $\Pi_{Y}(t)$ of the European derivative with maturity T and pay-off

$$
Y=\left(\sum_{i=1}^{n} S\left(t_{i}\right) h\right)-K
$$

as well as the value of K such that this contract is cost-free at time $t=0$ (max 6 points).
Solution: The answer depends on which interval of the partition lies the present time t. Assume $t \in\left[t_{j-1}, t_{j}\right)$, where $j \in\{1, \ldots, n\}$ is given. Then all stock prices up to time t_{j-1} are known, while the prices $t_{j}, \ldots, t_{n}=T$ are stochastic. Hence if we write the pay-off as

$$
Y=\sum_{i=1}^{j-1} S\left(t_{i}\right) h+\sum_{i=j}^{n} S\left(t_{i}\right) h-K
$$

we have

$$
\Pi_{Y}(t)=\mathbb{E}_{q}\left[\sum_{i=j}^{n} S\left(t_{i}\right) h\right]-K+\sum_{i=1}^{j-1} S\left(t_{i}\right) h=h \sum_{i=j}^{n} \mathbb{E}_{q}\left[S\left(t_{i}\right)\right]-K+\sum_{i=1}^{j-1} S\left(t_{i}\right) h
$$

As the discounted stock price is a martingale in the risk-neutral probability and $r=0$, then $\mathbb{E}\left[S\left(t_{i}\right)\right]=S(t)$ (the stock price has constant expectation), hence

$$
\Pi_{Y}(t)=S(t) h(n-j+1)-K+h \sum_{i=1}^{j-1} S\left(t_{i}\right)=S(t)\left(T-t_{j-1}\right)-K+h \sum_{i=1}^{j-1} S\left(t_{i}\right)
$$

In particular for $t=0$ we set $j=1$ and thus

$$
\Pi_{Y}(0)=S(0) T-K
$$

Hence $\Pi_{Y}(0)=0$ if and only if $K=S(0) T$.

