CS787: Advanced Algorithms

Scribe: Mayank Maheshwari, Dan Rosendorf Lecturer: Shuchi Chawla
Topic: Primal-Dual Algorithms Date: October 19 2007

15.1 Introduction

In the last lecture, we talked about Weak LP-Duality and Strong LP-Duality Theorem and gave
the concept of Dual Complementary Slackness (DCS) and Primal Complementary Slackness (PCS).
We also analyzed the problem of finding maximum flow in a graph by formulating its LP.

In this lecture, we will develop a 2-approximation for Vertex Cover using LP and introduce the
Basic Primal-Dual Algorithm. As an example, we analyze the primal-dual algorithm for vertex
cover and later on in the lecture, give a brief glimpse into a 2-player zero-sum game and show how
the pay-offs to players can be maximized using LP-Duality.

15.2 Vertex Cover

We will develop a 2-approximation for the problem of weighted vertex cover. So for this problem:
Given: A graph G(V, E) with weight on vertex v as w,,.

Goal: To find a subset V' C V' such that each edge e € E has an end point in V" and }_ i w, is
minimized.

The Linear Program relaxation for the vertex cover problem can be formulated as:

The variables for this LP will be z, for each vertex v. So our objective function is
min Z Loy Wy
v
subject to the constraints that
Ty + Ty 21 V(u,v) € E
Ty >0 YoeV

The Dual for this LP can be written with variables for each edge e € FE as maximizing its objective
function:

subject to the constraints

Now to make things simpler, let us see how the unweighted case for vertex cover can be formulated
in the form of a Linear Program. We have the objective function as:

max Z Ye

eceE

such that

> we<1 Vuev
e incident on «

Ye =0 Vee E

These constraints in the linear program correspond to finding a matching in the graph G and so
the objective function becomes finding a maximum matching in the graph. Hence, this is called
the Matching LP.

Now remember from the previous lecture where we defined Dual and Primal Complementary Slack-
ness. These conditions follow from the Strong Duality Theorem.

Corollary 15.2.1 (Strong Duality) = and y are optimal for Primal and Dual LP respectively
iff they satisfy:

1. Primal Complementary Slackness (PCS) i.e. Vi, either x; =0 or 3, Ajjy; = ¢;.
2. Dual Complementary Slackness (DCS) i.e. Yj, either y; =0 or Y. Ajjx; = bj.

15.3 Basic Primal-Dual Algorithm

1. Start with = 0 (variables of primal LP) and y = 0 (variables of dual LP) . The conditions
that:

e y is feasible for Dual LP.

e Primal Complementary Slackness is satisfied.
are invariants and hence, hold for the algorithm. But the condition that:
e Dual Complementary Slackness is satisfied.
might not hold at the beginning of algorithm. z does not satisfy the primal LP as yet.
2. Raise some of the y;’s, either simultaneously or one-by-one.

3. Whenever a dual constraint becomes tight, freeze values of corresponding y’s and raise value
of corresponding z.

4. Repeat from Step 2 until all the constraints become tight.

Now let us consider the primal-dual algorithm for our earlier example of vertex cover.

15.3.1 Primal-Dual Algorithm for Vertex Cover

1.

2.

Start with z = 0 and y = 0.

Pick any edge e for which y. is not frozen yet.

. Raise the value of y. until some vertex constraint v goes tight.
. Freeze all y.’s for edges incident on v. Raise z, to 1.

. Repeat until all y.’s are frozen.

Let us see an example of how this algorithm works on an instance of the vertex cover problem. We
consider the following graph:

Ezxample: Given below is a graph with weights assigned to vertices as shown in the figure and we
start with assigning y. = 0 for all edges e € F.

Fig 1: The primal-dual algorithm for vertex cover.

So the algorithm proceeds as shown in the figure above. In steps (a)-(d), an edge is picked for
which y. is not frozen and the value of y. is raised until the corresponding vertex constraint goes
tight. All the edges incident on that vertex are then frozen and value of z, is raised to 1.

Fig 1: The vertex cover for the example graph.

When all the y.’s get frozen, the algorithm terminates. So the Value of Primal=11 and the Value
of Dual=6.

Hence,
Valy,(z) < 2Valy(y)
and so we get the 2-approximation for our instance of vertex cover.

Lemma 15.3.1 When the algorithm ends, x is a feasible solution for the primal and y is a feasible
solution for the dual.

Proof: That y is a feasible solution is obvious since at every step we make sure that y is a feasible
solution, so it is feasible at the last when the algorithm ends. To see that z is a feasible solution we
proceed by contradiction. Let us suppose it is not a feasible solution. Then there is a constraint
T, + x, > 1 which is violated. That means both x, and x, are zero and thus it must be possible
to raise the value of the edge between them since neither of them has a tight bound. This is a
contradiction with the fact that all y.’s are frozen. [

Lemma 15.3.2 z and y satisfy PCS.
Proof: This is obvious since at every step we make sure that x and y satisfy PCS. [|

Definition 15.3.3 Let x and y be feasible solutions to the primal and dual respectively. Then we
say that = and y satisfy a-approzimate DCS if Vi, (y; # 0) — (3, Aijzi < abj).

Lemma 15.3.4 z and y satisfy 2-approximate DCS.

Proof: This follows from the fact that x, is either 0 or 1 for any v so z, + =, < 2 for any
e = (u,v). |

The next lemma shows us why we would want an a-approximation for DCS.

Lemma 15.3.5 Suppose x and y satisfy PCS are feasible for Primal and Dual respectively and
a-approximate DCS then Valp(z) < aValp(y).

Proof: To prove this we only need to write out the sums. We have Valp(z) =), ¢;z; now
since we know that x,y satisfy PCS we have that) c;z; = ZZ(Z] A;jyj)x; by reordering the

summation we get >_ (3, Aijzi)y; < D2, abjy; = ad,bjy; = aValp(y) where the < follows from
a-approximate DCS. [|

The last two lemmas then directly yield the desired result which is that our algorithm is a 2-
approximation for Vertex cover.

We should also note that we never used anywhere in our analysis what order we choose our edges
in or how exactly we raise the values of y.’s. A different approach might be to raise the values of
all our y.’s simultaneously until some condition becomes tight. Using this approach with the graph
we had earlier would give a different result. We would start by raising the values of all edges to
% at which point the vertex at the bottom of the diamond would become full and it’s tightness
condition would be met. We freeze all the edges adjecent to that vertex add it to our vertex cover
and continue raising the values of the other y.’s. The next condition to be met will be the left
bottom most node when we raise the value of the incoming edge to 1. After that we continue
rasing the values of the remaining unfrozen edges until 1% when both the left and right edge of
the diamond become full and we freeze all the remaining edges. The run of this algorithm with
the circled numbers denoting frozen edge capacities and the emptied nodes denoting nodes in the

graph cover can be seen in the following figures.

Figure 15.3.2: Step 1 Figure 15.3.4: Step 3

Note that while this approach gives a better result in this case than the first one we used, it is not
that case in general. In fact there are no known polynomial time algorithms that give a result of

(2 — e)-approximation for any e small constant.

15.4 Minimax principle

Next we will look at an application of LP-duality in the theory of games. In particular we will
prove the Minimax theorem using LP-duality. First though we will need to explain some terms.
By a 2-player zero sum game, we mean a protocol in which 2 players choose strategies in turn and
given two strategies x and y, we have a valuation function f(x,y) which tells us what the payoff for
the first player is. Since it is a zero sum game, the payoff for the second player is exactly —f(x,y).
We can view such a game as a matrix of payoffs for one of the players.

As an example take the game of Rock-paper-scissors, where the payoff is one for the winning party
or 0 if there is a tie. The matrix of winnings for player one will then be the following:

Where A;; corresponds to the payoff for player one if player one picks the i-th element and player two
the j-th element of the sequence (Rock, Paper, Scissors). We will henceforth refer to player number
two as the column player and player number one as the row player. If the row player goes first, he
obviously wants to minimize the possible gain of the column player. So the payoff to the row player
in that case will be min;(max;(A;i;)). On the other hand if the column player goes first, we get
the payoff being max;(min;(A;;). It is clearly the case that max;(min;(A;;)) < min;(maz;(A;j)).

The Minimax theorem states that if we allow the players to choose probability distributions instead
of a given column or row then equality holds or slightly more formally:

Theorem 15.4.1 Ifz andy are probability vectors then maz, (min, (y’ Ax) = ming(maz,(y* Az)).

Proof: We will only give a proof sketch. Notice that once we have chosen a strategy, if our
opponent wants to minimize his loss, he will always just pick the one row which gives the best
result, not a distribution. For mawz,(min,(y? Az)), we wish to find a distribution over the rows
such that whatever column gets picked, we get at least a payoff of ¢ such that ¢ is maximal. This
can be formulated in terms of an LP-problem as maximizing ¢ given the following set of constraints:

vj ZyiAij >t

and
Z yi=1

, which can be changed into a more standard form by writing the equations as

Vj t_zyiAij <0

(2

Zyj S 1.
J

and relaxing the second condition as

6

On the other hand min,(max,(y’ Az)) can be thought of as trying to minimize the loss and can
thus be rewritten in terms of an LP-problem in a similar fashion as minimizing s given that

Zx]§1
J

and
Vi s— ZAijl‘j § 0

J

In other words, we are trying to minimize the loss, no matter which column our opponent chooses.
We leave it as an exercise to prove that the second problem is a dual of the first problem and thus
by the Strong duality theorem, the proof is concluded. [

