Slides 12: ANOVA one-way layout

- Normal theory model
- Maximum likelihood estimates
- F-tests
- Simultaneous confidence interval
- Bonferroni and Tukey

Suppose the expectation of the response variable is a function of a single main factor having I different levels so that

$$Y(i) = \mu_i + \epsilon, \quad \epsilon \sim N(0, \sigma), \quad i = 1, \dots, I.$$

We will use a representation $\mu_i = \mu + \alpha_i$, where $\alpha_1 + \ldots + \alpha_I = 0$,

 $\mu = \frac{\mu_1 + \ldots + \mu_I}{I}$ is the overall mean

 $\alpha_i = \mu_i - \mu$ is the effect of the main factor at the level *i*

Given I independent random samples of the same size n

$$(y_{i1},\ldots,y_{in}), \quad i=1,\ldots,I$$

we want to develop a test of

$$H_0: \mu_1 = \ldots = \mu_I$$
, against $H_1: \mu_u \neq \mu_v$ for some (u, v) .

In terms of I different treatments in a comparison study, this null hypothesis claims that the compared treatments have the same effect .

Example: seven labs

Data: each of I = 7 labs made n = 10 measurements of chlorpheniramine maleate in tablets with a nominal dosage of 4 mg. See seven boxplots on the first slide.

	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6	Lab 7		
-	4.13	3.86	4.00	3.88	4.02	4.02	4.00		
	4.07	3.85	4.02	3.88	3.95	3.86	4.02		
	4.04	4.08	4.01	3.91	4.02	3.96	4.03		
	4.07	4.11	4.01	3.95	3.89	3.97	4.04		
	4.05	4.08	4.04	3.92	3.91	4.00	4.10		
	4.04	4.01	3.99	3.97	4.01	3.82	3.81		
	4.02	4.02	4.03	3.92	3.89	3.98	3.91		
	4.06	4.04	3.97	3.9	3.89	3.99	3.96		
	4.10	3.97	3.98	3.97	3.99	4.02	4.05		
	4.04	3.95	3.98	3.90	4.00	3.93	4.06		
m	means								
a ا		1	3	7	2	5	6 4		

Lab i	1	3	7	2	5	6	4
Mean $\hat{\mu}_i$	4.062	4.003	3.998	3.997	3.957	3.955	3.920

Question. Are the observed differences between sample means statistically significant?

Ordered

Maximum likelihood estimates

With $N = I \cdot n$ independent random variables

$$Y_{ik} = \mu + \alpha_i + \epsilon_{ik}, \quad \epsilon_{ik} \sim \mathcal{N}(0, \sigma),$$

the maximum likelihood approach gives the following point estimates

$$\hat{\mu} = \bar{y}_{\ldots}, \quad \hat{\mu}_i = \bar{y}_{i\ldots}, \quad \hat{\alpha}_i = \bar{y}_{i\ldots} - \bar{y}_{\ldots},$$

expressed in terms of the sample means

$$\bar{y}_{i.} = \frac{1}{n} \sum_{k} y_{ik}, \quad \bar{y}_{..} = \frac{1}{I} \sum_{i} \bar{y}_{i.} = \frac{1}{N} \sum_{i} \sum_{k} y_{ik}.$$

The observed responses can be represented as

$$y_{ik} = \hat{\mu} + \hat{\alpha}_i + \hat{\epsilon}_{ik}, \quad \hat{\epsilon}_{ik} = y_{ik} - \bar{y}_{i.},$$

where $\hat{\epsilon}_{ik}$ are the so-called residuals.

Question. What is the sum of all $\hat{\alpha}_i$? What is the total sum of residuals?

The ANOVA tests are built around the following observation:

Decomposition of the total sum of squares: $SS_{\rm T} = SS_{\rm A} + SS_{\rm E}$

saying that the total variation in response values is the sum of the between-group variation and the within-group variation.

 $SS_{\rm T} = \sum_i \sum_k (y_{ik} - \bar{y}_{..})^2$ is the total sum of squares,

 $SS_{\rm A} = n \sum_{i} \hat{\alpha}_{i}^{2} \text{ is the factor A sum of squares}, \qquad df_{\rm A} = I - 1,$ $SS_{\rm E} = \sum_{i} \sum_{k} \hat{\epsilon}_{ik}^{2} \text{ is the error sum of squares}, \qquad df_{\rm E} = I \cdot (n - 1).$

Define two mean squares

$$MS_{\rm A} = \frac{SS_{\rm A}}{\mathrm{df}_{\rm A}}, \quad MS_{\rm E} = \frac{SS_{\rm E}}{\mathrm{df}_{\rm E}}.$$

where $df_A = I - 1$ is the number of degrees of freedom in SS_A , and $df_E = I \cdot (n-1)$ is the number of degrees of freedom in SS_E .

Question. What is the number of degrees of freedom df_T in SS_T ?

If treated as random variables, the mean squares lead the following formulas for the expected values

$$\mathcal{E}(MS_{\mathcal{A}}) = \sigma^{2} + \frac{n}{I-1} \sum_{i} \alpha_{i}^{2}, \qquad \mathcal{E}(MS_{\mathcal{E}}) = \sigma^{2},$$

which suggest looking for the ratio between the two mean squares

$$F = \frac{MS_{\rm A}}{MS_{\rm E}}$$

to find an evidence against the null hypothesis

$$H_0: \alpha_1 = \ldots = \alpha_I = 0.$$

F-test: reject H_0 for large values of F based on the null distribution

$$F \stackrel{H_0}{\sim} F_{n_1,n_2}$$
, where $n_1 = I - 1$, $n_2 = I(n - 1)$.

 F_{n_1,n_2} is called F-distribution with degrees of freedom (n_1, n_2) . It is the distribution for the ratio $\frac{X_1/n_1}{X_2/n_2} \sim F_{n_1,n_2}$, where $X_1 \sim \chi^2_{n_1}$ and $X_2 \sim \chi^2_{n_2}$ are independent random variables.

ANOVA 1 table

The pooled sample variance is an unbiased estimate of σ^2 .

$$s_{\rm p}^2 = MS_{\rm E} = \frac{1}{I} \sum_{i=1}^{I} \left(\frac{1}{n-1} \sum_{k=1}^{n} (y_{ik} - \bar{y}_{i.})^2 \right)$$

Example: seven labs

The normal probability plot of residuals $\hat{\epsilon}_{ik}$ supports the normality assumption. Noise size σ is estimated by $s_{\rm p} = \sqrt{0.0037} = 0.061$. One-way Anova table

Source	df	\mathbf{SS}	MS	${ m F}$	Р
Labs	6	.125	.0210	5.66	.0001
Error	63	.231	.0037		
Total	69	.356			

Conclusion: the largest pairwise difference (1-4) is significant.

Question. Which of the $\binom{7}{2} = 21$ pairwise differences are significant?

The multiple comparison problem

A naiv approach to find significant pairwise differences is to apply a 95% confidence interval for two independent samples (u, v)

$$I_{\mu_u - \mu_v} = (\bar{y}_{u.} - \bar{y}_{v.}) \pm t_{63}(0.025) \cdot \frac{s_{\rm p}}{\sqrt{5}} = (\bar{y}_{u.} - \bar{y}_{v.}) \pm 0.055,$$

where $t_{63}(0.025) = 2.00$.

This confidence interval formula detects 9 significant differences:

$u{-}v$	$1{-}4$	$1{-}6$	1 - 5	3-4	$7{-}4$	$2{-}4$	1 - 2	$1{-}7$	1 - 3
$\hat{\mu}_{u}$ - $\hat{\mu}_{v}$	0.142	0.107	0.105	0.083	0.078	0.077	0.065	0.064	0.059

For all other pairs, $|\hat{\mu}_u - \hat{\mu}_v| < 0.055$ and zero is covered by $I_{\mu_u - \mu_v}$.

However, there exists the so called multiple comparison problem.

The above confidence interval formula is aimed at a single difference, and may produce false discoveries. What we need instead, is a simultaneous confidence interval formula taking care of all c = 21 pairwise comparisons.

Question. Why do we use df= 63 for the pairwise confidence interval $I_{\mu_u - \mu_v}$?

Bonferroni's method

Think of a statistical test repeatedly applied to c independent samples of size n. The overall result is positive if we get at least one positive result among these c tests.

Bonferroni's correction: to ensure the overall significance level α , each single test is performed at significance level $\alpha_c = \frac{\alpha}{c}$.

Indeed, assuming H_0 is true, the number of positive results among c tests is $X \sim \text{Bin}(c, \alpha_c)$. Thus for small values of α_c ,

$$P(X \ge 1 | H_0) = 1 - (1 - \alpha_c)^c \approx c\alpha_c = \alpha.$$

Bonferroni's $100(1 - \alpha)$ % simultaneous confidence interval for $c = {I \choose 2}$ pairwise differences

$$B_{\mu_u - \mu_v} = \bar{y}_{u.} - \bar{y}_{v.} \pm t_{df}(\frac{\alpha_c}{2}) \cdot s_p \sqrt{\frac{2}{n}}, \quad 1 \le u < v \le I.$$

where df = I(n-1) and $\alpha_c = \frac{2\alpha}{I(I-1)}$.

Question. Are pairwise differences $\mu_u - \mu_v$ independent ?

Studentised range distribution

Pairwise differences $\delta_{u,v} = \mu_u - \mu_v$ are not independent. For example

$$\delta_{1,2} + \delta_{2,3} = \delta_{1,3}$$

To take account of linear dependence between $\delta_{u,v}$, consider

$$Z_i = \bar{Y}_{i.} - \mu_i \sim \mathcal{N}(0, \frac{\sigma}{\sqrt{n}}), \quad i = 1, \dots, I$$

independent and identically distributed random variables. The range

$$R = \max\{Z_1, \ldots, Z_I\} - \min\{Z_1, \ldots, Z_I\}$$

gives the largest pairwise difference between the components of the vector (Z_1, \ldots, Z_I) . The corresponding normalised range has a distribution that is free from the parameter σ

$$\frac{R}{S_{\rm p}/\sqrt{n}} \sim {\rm SR}(I,{\rm df}), \quad {\rm df} = I(n-1).$$

The so-called studentised range distribution SR has two parameters: the number of samples and the number of df used in the variance estimate s_p^2 .

Tukey's $100(1 - \alpha)\%$ simultaneous confidence interval is built using an appropriate quantile $q_{I,df}(\alpha)$ of the studentised range distribution

$$T_{\mu_u - \mu_v} = \bar{y}_{u.} - \bar{y}_{v.} \pm q_{I,\mathrm{df}}(\alpha) \cdot \frac{s_{\mathrm{p}}}{\sqrt{n}}$$

Bonferroni method gives slightly wider intervals compared to the Tukey method.

Example: seven labs

Bonferroni's 95% (using $t_{63}(0.0012) = 3.17$)

$$B_{\mu_u - \mu_v} = (\bar{y}_{u.} - \bar{y}_{v.}) \pm t_{63}(\frac{.025}{21}) \cdot \frac{s_{\rm p}}{\sqrt{5}} = (\bar{y}_{u.} - \bar{y}_{v.}) \pm 0.086,$$

detects 3 significant differences between labs (1,4), (1,5), (1,6). Tukey's 95%

$$T_{\mu_u - \mu_v} = \bar{y}_{u.} - \bar{y}_{v.} \pm q_{7,63}(0.05) \cdot \frac{0.061}{\sqrt{10}} = \bar{y}_{u.} - \bar{y}_{v.} \pm 0.083,$$

brings four significant pairwise differences: (1,4), (1,5), (1,6), (3,4).