Slides 12: ANOVA one-way layout

- Normal theory model
- Maximum likelihood estimates
- F-tests
- Simultaneous confidence interval
- Bonferroni and Tukey

Suppose the expectation of the response variable is a function of a single main factor having I different levels so that

$$
Y(i)=\mu_{i}+\epsilon, \quad \epsilon \sim \mathrm{N}(0, \sigma), \quad i=1, \ldots, I .
$$

We will use a representation $\mu_{i}=\mu+\alpha_{i}$, where $\alpha_{1}+\ldots+\alpha_{I}=0$, $\mu=\frac{\mu_{1}+\ldots+\mu_{I}}{I}$ is the overall mean
$\alpha_{i}=\mu_{i}-\mu$ is the effect of the main factor at the level i
Given I independent random samples of the same size n

$$
\left(y_{i 1}, \ldots, y_{i n}\right), \quad i=1, \ldots, I
$$

we want to develop a test of

$$
H_{0}: \mu_{1}=\ldots=\mu_{I}, \text { against } H_{1}: \mu_{u} \neq \mu_{v} \text { for some }(u, v)
$$

In terms of I different treatments in a comparison study, this null hypothesis claims that the compared treatments have the same effect.

Example: seven labs
Data: each of $I=7$ labs made $n=10$ measurements of chlorpheniramine maleate in tablets with a nominal dosage of 4 mg . See seven boxplots on the first slide.

Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6	Lab 7
4.13	3.86	4.00	3.88	4.02	4.02	4.00
4.07	3.85	4.02	3.88	3.95	3.86	4.02
4.04	4.08	4.01	3.91	4.02	3.96	4.03
4.07	4.11	4.01	3.95	3.89	3.97	4.04
4.05	4.08	4.04	3.92	3.91	4.00	4.10
4.04	4.01	3.99	3.97	4.01	3.82	3.81
4.02	4.02	4.03	3.92	3.89	3.98	3.91
4.06	4.04	3.97	3.9	3.89	3.99	3.96
4.10	3.97	3.98	3.97	3.99	4.02	4.05
4.04	3.95	3.98	3.90	4.00	3.93	4.06

Ordered means

Lab i	1	3	7	2	5	6	4
Mean $\hat{\mu}_{i}$	4.062	4.003	3.998	3.997	3.957	3.955	3.920

Question. Are the observed differences between sample means statistically significant?

With $N=I \cdot n$ independent random variables

$$
Y_{i k}=\mu+\alpha_{i}+\epsilon_{i k}, \quad \epsilon_{i k} \sim \mathrm{~N}(0, \sigma)
$$

the maximum likelihood approach gives the following point estimates

$$
\hat{\mu}=\bar{y}_{. .}, \quad \hat{\mu}_{i}=\bar{y}_{i .}, \quad \hat{\alpha}_{i}=\bar{y}_{i .}-\bar{y}_{. .},
$$

expressed in terms of the sample means

$$
\bar{y}_{i .}=\frac{1}{n} \sum_{k} y_{i k}, \quad \bar{y} . .=\frac{1}{I} \sum_{i} \bar{y}_{i .}=\frac{1}{N} \sum_{i} \sum_{k} y_{i k} .
$$

The observed responses can be represented as

$$
y_{i k}=\hat{\mu}+\hat{\alpha}_{i}+\hat{\epsilon}_{i k}, \quad \hat{\epsilon}_{i k}=y_{i k}-\bar{y}_{i .},
$$

where $\hat{\epsilon}_{i k}$ are the so-called residuals.
Question. What is the sum of all $\hat{\alpha}_{i}$? What is the total sum of residuals?

The ANOVA tests are built around the following observation:
Decomposition of the total sum of squares: $S S_{\mathrm{T}}=S S_{\mathrm{A}}+S S_{\mathrm{E}}$
saying that the total variation in response values is the sum of the between-group variation and the within-group variation.
$S S_{\mathrm{T}}=\sum_{i} \sum_{k}\left(y_{i k}-\bar{y}_{. .}\right)^{2}$ is the total sum of squares,
$S S_{\mathrm{A}}=n \sum_{i} \hat{\alpha}_{i}^{2}$ is the factor A sum of squares,

$$
\begin{array}{r}
\mathrm{df}_{\mathrm{A}}=I-1, \\
\mathrm{df}_{\mathrm{E}}=I \cdot(n-1)
\end{array}
$$

$S S_{\mathrm{E}}=\sum_{i} \sum_{k} \hat{\epsilon}_{i k}^{2}$ is the error sum of squares,
Define two mean squares

$$
M S_{\mathrm{A}}=\frac{S S_{\mathrm{A}}}{\mathrm{df}_{\mathrm{A}}}, \quad M S_{\mathrm{E}}=\frac{S S_{\mathrm{E}}}{\mathrm{df}_{\mathrm{E}}} .
$$

where $\mathrm{df}_{\mathrm{A}}=I-1$ is the number of degrees of freedom in $S S_{\mathrm{A}}$, and $\mathrm{df}_{\mathrm{E}}=I \cdot(n-1)$ is the number of degrees of freedom in $S S_{\mathrm{E}}$.

Question. What is the number of degrees of freedom df_{T} in $S S_{\mathrm{T}}$?

If treated as random variables, the mean squares lead the following formulas for the expected values

$$
\mathrm{E}\left(M S_{\mathrm{A}}\right)=\sigma^{2}+\frac{n}{I-1} \sum_{i} \alpha_{i}^{2}, \quad \mathrm{E}\left(M S_{\mathrm{E}}\right)=\sigma^{2},
$$

which suggest looking for the ratio between the two mean squares

$$
F=\frac{M S_{\mathrm{A}}}{M S_{\mathrm{E}}}
$$

to find an evidence against the null hypothesis

$$
H_{0}: \alpha_{1}=\ldots=\alpha_{I}=0
$$

F-test: reject H_{0} for large values of F based on the null distribution

$$
F \stackrel{H_{0}}{\sim} F_{n_{1}, n_{2}} \text {, where } n_{1}=I-1, n_{2}=I(n-1) .
$$

$F_{n_{1}, n_{2}}$ is called F-distribution with degrees of freedom $\left(n_{1}, n_{2}\right)$.
It is the distribution for the ratio $\frac{X_{1} / n_{1}}{X_{2} / n_{2}} \sim F_{n_{1}, n_{2}}$, where $X_{1} \sim \chi_{n_{1}}^{2}$ and $X_{2} \sim \chi_{n_{2}}^{2}$ are independent random variables.

ANOVA 1 table
The pooled sample variance is an unbiased estimate of σ^{2}.

$$
s_{\mathrm{p}}^{2}=M S_{\mathrm{E}}=\frac{1}{I} \sum_{i=1}^{I}\left(\frac{1}{n-1} \sum_{k=1}^{n}\left(y_{i k}-\bar{y}_{i .}\right)^{2}\right)
$$

Example: seven labs

The normal probability plot of residuals $\hat{\epsilon}_{i k}$ supports the normality assumption. Noise size σ is estimated by $s_{\mathrm{p}}=\sqrt{0.0037}=0.061$. One-way Anova table

Source	df	SS	MS	F	P
Labs	6	.125	.0210	5.66	.0001
Error	63	.231	.0037		
Total	69	.356			

Conclusion: the largest pairwise difference $(1-4)$ is significant.
Question. Which of the $\binom{7}{2}=21$ pairwise differences are significant?

The multiple comparison problem
A naiv approach to find significant pairwise differences is to apply a 95% confidence interval for two independent samples (u, v)

$$
I_{\mu_{u}-\mu_{v}}=\left(\bar{y}_{u .}-\bar{y}_{v .}\right) \pm t_{63}(0.025) \cdot \frac{s_{\mathrm{p}}}{\sqrt{5}}=\left(\bar{y}_{u .}-\bar{y}_{v .}\right) \pm 0.055
$$

where $t_{63}(0.025)=2.00$.
This confidence interval formula detects 9 significant differences:

$u-v$	$1-4$	$1-6$	$1-5$	$3-4$	$7-4$	$2-4$	$1-2$	$1-7$	$1-3$
$\hat{\mu}_{u}-\hat{\mu}_{v}$	0.142	0.107	0.105	0.083	0.078	0.077	0.065	0.064	0.059

For all other pairs, $\left|\hat{\mu}_{u}-\hat{\mu}_{v}\right|<0.055$ and zero is covered by $I_{\mu_{u}-\mu_{v}}$.
However, there exists the so called multiple comparison problem.
The above confidence interval formula is aimed at a single difference, and may produce false discoveries. What we need instead, is a simultaneous confidence interval formula taking care of all $c=21$ pairwise comparisons.

Question. Why do we use $\mathrm{df}=63$ for the pairwise confidence interval $I_{\mu_{u}-\mu_{v}}$?

Think of a statistical test repeatedly applied to c independent samples of size n. The overall result is positive if we get at least one positive result among these c tests.

Bonferroni's correction: to ensure the overall significance level α, each single test is performed at significance level $\alpha_{c}=\frac{\alpha}{c}$.

Indeed, assuming H_{0} is true, the number of positive results among c tests is $X \sim \operatorname{Bin}\left(c, \alpha_{c}\right)$. Thus for small values of α_{c},

$$
\mathrm{P}\left(X \geq 1 \mid H_{0}\right)=1-\left(1-\alpha_{c}\right)^{c} \approx c \alpha_{c}=\alpha
$$

Bonferroni's $100(1-\alpha) \%$ simultaneous confidence interval for $c=\binom{I}{2}$ pairwise differences

$$
B_{\mu_{u}-\mu_{v}}=\bar{y}_{u .}-\bar{y}_{v .} \pm t_{\mathrm{df}}\left(\frac{\alpha_{c}}{2}\right) \cdot s_{\mathrm{p}} \sqrt{\frac{2}{n}}, \quad 1 \leq u<v \leq I .
$$

where $\mathrm{df}=I(n-1)$ and $\alpha_{c}=\frac{2 \alpha}{I(I-1)}$.
Question. Are pairwise differences $\mu_{u}-\mu_{v}$ independent?

Pairwise differences $\delta_{u, v}=\mu_{u}-\mu_{v}$ are not independent. For example

$$
\delta_{1,2}+\delta_{2,3}=\delta_{1,3}
$$

To take account of linear dependence between $\delta_{u, v}$, consider

$$
Z_{i}=\bar{Y}_{i .}-\mu_{i} \sim \mathrm{~N}\left(0, \frac{\sigma}{\sqrt{n}}\right), \quad i=1, \ldots, I
$$

independent and identically distributed random variables. The range

$$
R=\max \left\{Z_{1}, \ldots, Z_{I}\right\}-\min \left\{Z_{1}, \ldots, Z_{I}\right\}
$$

gives the largest pairwise difference between the components of the vector $\left(Z_{1}, \ldots, Z_{I}\right)$. The corresponding normalised range has a distribution that is free from the parameter σ

$$
\frac{R}{S_{\mathrm{p}} / \sqrt{n}} \sim \mathrm{SR}(I, \mathrm{df}), \quad \mathrm{df}=I(n-1)
$$

The so-called studentised range distribution SR has two parameters: the number of samples and the number of df used in the variance estimate s_{p}^{2}.

Tukey's method
Tukey's $100(1-\alpha) \%$ simultaneous confidence interval is built using an appropriate quantile $q_{I, \mathrm{df}}(\alpha)$ of the studentised range distribution

$$
T_{\mu_{u}-\mu_{v}}=\bar{y}_{u .}-\bar{y}_{v .} \pm q_{I, \mathrm{df}}(\alpha) \cdot \frac{s_{\mathrm{p}}}{\sqrt{n}}
$$

Bonferroni method gives slightly wider intervals compared to the Tukey method.

Example: seven labs

Bonferroni's 95% (using $t_{63}(0.0012)=3.17$)

$$
B_{\mu_{u}-\mu_{v}}=\left(\bar{y}_{u .}-\bar{y}_{v .}\right) \pm t_{63}\left(\frac{.025}{21}\right) \cdot \frac{s_{\mathrm{p}}}{\sqrt{5}}=\left(\bar{y}_{u .}-\bar{y}_{v .}\right) \pm 0.086,
$$

detects 3 significant differences between labs $(1,4),(1,5),(1,6)$.
Tukey's 95%

$$
T_{\mu_{u}-\mu_{v}}=\bar{y}_{u .}-\bar{y}_{v .} \pm q_{7,63}(0.05) \cdot \frac{0.061}{\sqrt{10}}=\bar{y}_{u .}-\bar{y}_{v .} \pm 0.083,
$$

brings four significant pairwise differences: $(1,4),(1,5),(1,6),(3,4)$.

