
Serik Sagitov: Statistical Inference course

Slides 4: Maximum likelihood estimates

• Likelihood function

• Maximum likelihood

• Sufficient statistics

• Large sample properties of MLE
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Likelihood function

Consider a binomial model T ∼ Bin(10, p). Suppose after observing
n = 10 binary values we got t = 1 successful outcomes. The probability
of the observed data

L(p) = P(T = 1) = 10p(1− p)9, 0 ≤ p ≤ 1,

treated as a function of the unknown population parameters is called the
likelihood function.

For three outcomes t = 1, 3, 6 we obtain three likelihood functions

Question. Clearly, the areas under each of the three likelihood curves on
the figure are less than 1. Aren’t they all supposed to be equal 1?
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Maximum likelihood

The parameter value that maximises the likelihood function is called a
maximum likelihood estimate.

For the binomial model T ∼ Bin(n, p) if the observed value is T = t, then

L(p) =

(
n

t

)
pt(1− p)n−t

and to maximise L(p) is equivalent to maximise the log-likelihood

logL(p) = const + t log(p) + (n− t) log(1− p)

Take the derivative and put it equal to zero
t

p
− n− t

1− p = 0

The solution gives p̂ = t
n
. We conclude that the sample proportion is the

MLE of the population proportion p.

Question. Does the figure above confirm this conclusion for n = 10 and
t = 1, 3, 6?
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Sufficient statistics

Let us turn to the normal distribution N(µ, σ) model. For a given sample
(x1, . . . , xn) generated from N(µ, σ), the likelihood function is

L(µ, σ) =

n∏
i=1

1

σ
√

2π
e
− (xi−µ)

2

2σ2 =
1

σn(2π)n/2
e
− t2−2µt1+nµ2

2σ2

fully determined by a pair of summary statistics

t1 =

n∑
i=1

xi, t2 =

n∑
i=1

x2
i

We can speak of a two-dimensional sufficient statistic (t1, t2), since it is
sufficient to know this pair of numbers (t1, t2) to write down the
likelihood. The MLEs for (µ, σ) will be the following functions of (t1, t2)

µ̂ = t1
n
, σ̂ =

√
t2
n
− ( t1

n
)2

Question. What is the relation between (µ̂, σ̂) and (x̄, s)?
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Gamma distribution model

For a random sample (x1, . . . , xn) from Gam(α, λ),

L(α, λ) =

n∏
i=1

1

Γ(α)
λαxα−1

i e−λxi

=
λnα

Γn(α)
(x1 · · ·xn)α−1e−λ(x1+...+xn) =

λnα

Γn(α)
tα−1
2 e−λt1 ,

with a pair of sufficient statistics

t1 = x1 + . . .+ xn, t2 = x1 · · ·xn.

To find the MLE of (α, λ), take two partial derivatives of

logL(α, λ) = nα log λ− n log Γ(α) + (α− 1) log t2 − λt1

set the derivatives equal to zero and numerically the system of equations

0 = n ln(λ)− nΓ′(α)
Γ(α)

+ ln t2,

0 = nα
λ
− t1.

Question. Why the likelihood function is the product of n densities?
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Large sample properties of MLE

More generally, for a random sample (x1, . . . , xn) taken from a
population distribution f(x|θ), the likelihood function is given by the
product

L(θ) = f(x1|θ) · · · f(xn|θ).

This implies that the log-likelihood function can be treated as a sum of
independent and identically distributed random variables log f(Xi|θ).

Using the CLT argument one can derive a normal approximation for the
maximum likelihood estimator θ̂

Θ̂ ≈ N(θ, 1√
nI(θ)

), as n� 1

I(θ) is the Fisher information in a single observation, see below.

Approximate 95% confidence interval Iθ ≈ θ̂ ± 1.96 · 1√
nI(θ̂)

Question. Can you see now that the MLEs are asymptotically unbiased
and consistent?
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Fisher information

The larger is the value of

g(x, θ) = − ∂2

∂θ2
ln f(x|θ)

at the top of the log-likelihood curve, the more information on the
parameter θ is contained at the single observation x.

The Fisher information in a single observation is the expected value

I(θ) = E[g(X, θ)] =

∫
g(x, θ)f(x|θ)dx.

Then nI(θ) is the Fisher information in n observations.

MLE is asymptotically efficient (have minimal variance) in the sense of
Cramer-Rao inequality:

If θ∗ is an unbiased estimator of θ, then Var(Θ∗) ≥ 1
nI(θ) .

Question. Can a biased estimate θ∗ have a smaller mean square error
E[(Θ∗ − θ)2] than an unbiased estimate?
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Exponential model

We illustrate by example. Data: lifetimes of five batteries in hours

x1 = 0.5, x2 = 14.6, x3 = 5.0, x4 = 7.2, x5 = 1.2.

We propose an exponential model X ∼ Exp(λ). The likelihood function

L(λ) =

n∏
i=1

λe−λxi = λne−λ(x1+...+xn) = λ5e−λ·28.5

first grows from 0 to 2.2 · 10−7 and then falls down towards zero. The
maximum is reached at λ̂ = 0.175.

Fisher information for the exponential model is easy to compute:

g(x, λ) = − ∂2

∂λ2 ln f(x|λ) = 1
λ2 , I(λ) = E[g(X,λ)] = 1

λ2 .

This yields a standard error sλ̂ ≈
√

λ̂2

n
= λ̂√

n
and a confidence interval

Iλ ≈ 0.175± 1.96 · 0.175√
5

= 0.175± 0.153.

Question. Is λ̂ a biased estimate of λ?
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