
Serik Sagitov: Statistical Inference course

Slides 1: Random sampling

• Probability theory and Mathematical statistics

• Randomisation

• Sample mean and sample variance

• Approximate confidence intervals

• Finite population correction factor

Course compendium can be viewed from here:

http://www.math.chalmers.se/∼serik/Statistical Inference.pdf
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Probability theory and Mathematical statistics

Statistical analysis : collection and summarising data, making inferences.

REAL WORLD

DATA

Statistical Models

Parameters of the model

Probability Theory      
predicts data patterns      

for a given parametric model

Mathematical Statistics
parameter estimation  

hypotheses testing   

      

The main focus of this course is on the issues of parameter estimation
and hypothesis testing using properly collected, relatively small data sets.

probability. Previous studies showed that the drug was 80% effective. Then we can
anticipate that for a study on 100 patients, in average 80 will be cured and at least 65
will be cured with 99.99% chances.

statistics. It was observed that 78 out of 100 patients were cured. We are 95%
confident that for other similar studies, the drug will be effective on between 69.9%
and 86.1% of patients.

Question. How data should be sampled, so that probability theory can
be applied to analyse the data?
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Population distribution

What is the population distribution of heights? If you pick an individual
at random, the individual height can be x1 = 182 cm. Another random
measurement might give x2 = 173 cm.

It is convenient to think of a population distribution in terms of a
random variable X generated by taking a measurement of a randomly
chosen individual. The population mean and standard deviation

µ = E(X), σ =
√

Var(X)

give a center of the distribution and its spread around the mean.

Recall that for a random variable X with mean µ, the difference (X − µ)

is called deviation and the variance of X is defined

σ2 = E[(X − µ)2]

as the mean of the squared deviation. Show that σ2 = E(X2)− µ2.

Question. A company producing clothes is interested in the population
distribution of heights. What it would like to know beyond µ and σ?
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Randomisation

A random sample of n observations (x1, . . . , xn) is a single realisation of
a random vector (X1, . . . , Xn), whose components are independent
random variables, with each Xi having the same population distribution.

Randomisation protects against investigator’s biases even unconscious

The population distribution is unknown and we would like to estimate
the unknown population parameters (µ, σ) using the random sample
(x1, . . . , xn) at hand.

Example: 24 heights. A random sample of n = 24 male students was
drawn from a certain population. Their heights in cm (x1, . . . , xn) are
given below in an ascending order:

170, 175, 176, 176, 177, 178, 178, 179, 179,

180, 180, 180, 180, 180, 181, 181, 182, 183, 184, 186, 187, 192, 192, 199.

Question. What is your best guess on the population mean µ for the
heights?
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Sample mean and sample variance

For a given random sample (x1, . . . , xn), the most basic summary
statistics are the sample mean and sample variance

x̄ =
x1 + . . .+ xn

n
, s2 =

1

n− 1

∑
(xi − x̄)2.

An alternative formula for the sample variance

s2 = n
n−1

(x2 − x̄2), where x2 =
x21+...+x2n

n
.

The summary statistics x̄ and s2 are realisations of the random variables

X̄ =
X1 + . . .+Xn

n
, S2 =

1

n− 1

∑
(Xi − X̄)2.

The sample mean x̄ and sample variance s2 are unbiased estimators for
the population mean µ and variance σ2 respectively

E(X̄) = µ, E(S2) = σ2.

Question. Why defining s2 do we divide by n− 1 and not by n?
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Systematic and random errors

Unbiased estimates have no systematic error: if you produce k different
samples and compute their sample means and variances, then

x̄1 + . . .+ x̄k
k

→ µ,
s2

1 + . . .+ s2
k

k
→ σ2, k →∞

The random errors are captured by the variances

Var(X̄) = σ2

n
, Var(S2) = σ4

n

(
E(X−µ

σ
)4 − n−3

n−1

)
Since the variances tend to zero as n→∞, both x̄ and s2 are consistent
estimators of µ and σ2 in that

x̄→ µ, s→ σ2, n→∞

The standard deviation of X̄ is σ√
n
. The standard error of x̄ is obtained

after replacing the unknown σ by its estimate s

sx̄ =
s√
n

Question. Is s a consistent estimate of σ? Is it an unbiased estimate?
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Approximate confidence intervals

The normal distribution N(µ, σ) is uniquely determined by its mean µ
and standard deviation σ. If Z ∼ N(0, 1), then

P(|Z| < 1.645) = 0.90, P(|Z| < 1.96) = 0.95, P(|Z| < 2.58) = 0.99.

Central Limit Theorem (CLT). A sum of n independent random
variables is asymptotically normally distributed as n→∞, provided that
none of the summands dominates the others.

By CLT, the distribution of the sample mean is approximately normal

X̄ ≈ N(µ, σ√
n

) for large n.

This yields the following formulas of approximate 90%, 95%, and 99%
confidence interval for µ:

I 90
µ ≈ x̄± 1.645 · sx̄, I 95

µ ≈ x̄± 1.96 · sx̄, I 99
µ ≈ x̄± 2.58 · sx̄

- the larger is n the narrower is Iµ, since sx̄ = s√
n
,

- the higher is confidence level the wider is the confidence interval.
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Example: 24 heights

The population mean height µ is estimated by the sample mean

x̄ = 181.46 cm

Furhtermore, we compute

x2 = 32964.2, x2 − x̄2 = 37.08, s2 =
24

23
· 37.08 = 38.69

and get
s = 6.22, sx̄ =

s√
n

= 1.27.

This brings the following 95% confidence interval

Iµ = 181.46± 1.96 · 1.27 = 181.46± 2.49 ≈ (179, 184)

The exact meaning of the confidence level 95% is tricky, because
{179 < µ < 184} is not a random event. Randomness in the sampling
procedure and (179, 184) is just one possible outcome of a random trial.

Question. If we collect 10 samples and then compute 10 confidence
intervals Iµ, how many of them will cover the true value of µ?
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Urn models

A population of size N can be viewed as an urn containing N balls
labeled by values x(1), x(2), . . . , x(N). Population mean and population
variance in this case are computed as

µ =
x(1) + . . .+ x(N)

N

σ2 =
(x(1) − µ)2 + . . .+ (x(N) − µ)2

N

There are two basic ways of random sampling:

drawing with replacement,

drawing without replacement.

Drawing n balls with replacement produces what we call random sample.
Drawing n balls without replacement results in (negatively) dependent
observations (x1, . . . , xn), which will be called a simple random sample.

Question. If n
N

is small, then the two approaches are almost
indistinguishable. Why?
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Finite population correction factor

For sampling wout replacment, x̄ is still an unbiased and consistent
estimate of µ, despite the dependence between observations

E(X̄) = µ, Var(X̄) = σ2

n
(1− n−1

N−1
),

where N is the finite population size. However, the sample variance s2 is
a biased estimate of σ2 because

E(S2) = σ2 N
N−1

.

An unbiased estimate of σ2 given by s2 · N−1
N

, leads to an unbiased
estimate of Var(X̄)

s2
x̄ = s2

n
N−1
N

(1− n−1
N−1

) = s2

n
(1− n

N
).

Thus, for the sampling without replacement, the formula for the
estimated standard error takes a new form

sx̄ = s√
n

√
1− n

N
.

The extra term
√

1− n
N

is called the finite population correction factor.
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