Serik Sagitov: Statistical Inference course

Slides 6: Likelihood ratio tests

- Likelihood ratio
- Nested hypotheses
- Chi-square null distribution
- Chi-squared test of goodness of fit
- A case study

Likelihood ratio test statistic =
$$-2 \log \frac{\max_{\theta \in \Omega_0} L(\theta)}{\max_{\theta \in \Omega} L(\theta)}$$

has $\chi^2_{\rm df}$ as an approximate null distribution, with

$$df = \dim(\Omega) - \dim(\Omega_0)$$

Two simple hypotheses

A general method of finding asymptotically optimal tests (having the largest power for a given α) takes likelihood ratio as the test statistic.

Consider a parametric population distribution with a single parameter θ and a likelihood function $L(\theta) = L(\theta; x_1, \dots, x_n)$. For testing

$$H_0: \theta = \theta_0 \text{ against } H_1: \theta = \theta_1,$$

use the likelihood ratio

$$\lambda = \frac{L(\theta_0)}{L(\theta_1)}$$

as a test statistic. Large values of λ suggest that H_0 explains the data set better than H_1 . Therefore, the likelihood ratio test rejects H_0 for small values of the likelihood ratio.

Likelihood ratio rejection rule is
$$\{\lambda \leq \lambda_{\alpha}\}$$
.

Neyman-Pearson lemma: the likelihood ratio test is optimal in the case of two simple hypothesis.

Question. How do we find the critical value λ_{α} ?

Nested hypotheses

For example, consider $N(\mu, \sigma)$ model with $\theta = (\mu, \sigma)$. Instead of a pair of two alternative hypotheses $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$, one can think in terms of a pair of nested hypothesis

$$H_0: \mu = \mu_0, \quad H: \mu \in (-\infty, \infty).$$

More generally, consider

$$H_0: \theta \in \Omega_0, \quad H: \theta \in \Omega,$$

where parameter sets $\Omega_0 \subset \Omega$ are such that $\dim(\Omega) > \dim(\Omega_0)$. Generalised likelihood ratio

$$\tilde{\lambda} = \frac{L(\hat{\theta}_0)}{L(\hat{\theta})},$$

is defined in terms of two maximum likelihood estimates

 $\hat{\theta}_0 = \text{maximises the likelihood function } L(\theta) \text{ over } \theta \in \Omega_0,$

 $\hat{\theta} = \text{maximises the likelihood function } L(\theta) \text{ over } \theta \in \Omega.$

Question. What is $df = dim(\Omega) - dim(\Omega_0)$ in the example above?

Chi-square null distribution

Generalised likelihood ratio test rejects H_0 for small values of $\tilde{\lambda}$ or equivalently for large values of

$$-\ln \tilde{\lambda} = \ln L(\hat{\theta}) - \ln L(\hat{\theta}_0).$$

It turns out that the test statistic $-2\ln\tilde{\Lambda}$ has a nice approximate null distribution

$$-2\ln\tilde{\Lambda}\stackrel{H_0}{pprox}\chi_{\mathrm{df}}^2,\quad \mathrm{where}\ \mathrm{df}=\dim(\Omega)-\dim(\Omega_0).$$

 χ_k^2 -distribution is the gamma distribution with $\alpha = \frac{k}{2}, \lambda = \frac{1}{2}$. If independent Z_1, \ldots, Z_k have the same N(0,1) distribution, then

$$Z_1^2 + \ldots + Z_k^2 \sim \chi_k^2$$
.

Question. Consider $N(\mu, \sigma)$ model with $\theta = (\mu, \sigma)$. With $H_0 : \mu = \mu_0$ against $H_1 : \mu \neq \mu_0$, how would you connect the corresponding likelihood ratio test to the large sample test for the mean?

Chi-squared test of goodness of fit

Suppose that the population distribution is discreet with probabilities (p_1, \ldots, p_J) . A sample of size n is summarised by the vector of observed counts whose joint distribution is multinomial

$$(O_1, \dots, O_J) \sim \operatorname{Mn}(n; p_1, \dots, p_J),$$

 $P(O_1 = k_1, \dots, O_J = k_J) = \frac{n!}{k_1! \cdots k_J!} p_1^{k_1} \cdots p_J^{k_J}.$

Consider a parametric model for the data

$$H_0: (p_1, \ldots, p_J) = (v_1(\delta), \ldots, v_J(\delta))$$

with unknown r-dimensional parameter $\delta = (\delta_1, \ldots, \delta_r)$.

To see if the proposed model fits the data, compute $\hat{\delta}$, the maximum likelihood estimate of δ , and then the expected cell counts

$$E_j = n \cdot v_j(\hat{\delta}),$$

where "expected" means expected under the null hypothesis model.

Question. What is Ω_0 and Ω in this setting?

In the current setting, the likelihood ratio test statistic $-2\log\tilde{\lambda}$ is approximated by the so-called chi-squared test statistic

$$X^{2} = \sum_{j=1}^{J} \frac{(O_{j} - E_{j})^{2}}{E_{j}}.$$

The approximate null distribution of X^2 is χ^2_{df} with df = J - 1 - r, since

$$\dim(\Omega_0) = r$$
 and $\dim(\Omega) = J - 1$,

where dim stands for dimension or the number of independent parameters. A mnemonic rule for the number of degrees of freedom:

df = (number of cells) - 1

- (number of independent parameters estimated from the data).

Since the chi-squared test is approximate, all *expected* counts are recommended to be at least 5. If not, then you should combine small cells in larger cells and recalculate the number of degrees of freedom df.

Case study: sex ratio

A 1889 study made in Germany recorded the numbers of boys (x_1, \ldots, x_n) for n = 6115 families with 12 children each. The general model is described by a vector $\theta = (p_0, p_1, \ldots, p_{12})$ such that

$$p_j = P(X = j), \quad j = 0, 1, \dots, 12.$$

We first test a simple null hypothesis claiming that $X \sim \text{Bin}(12, 0.5)$, or

$$H_0: p_j = {12 \choose j} \cdot 2^{-12}, \quad j = 0, 1, \dots, 12.$$

The expected cell counts

$$E_j = 6115 \cdot {12 \choose j} \cdot 2^{-12}, \quad j = 0, 1, \dots, 12,$$

are summarised in the table below. The chi-squared test statistic

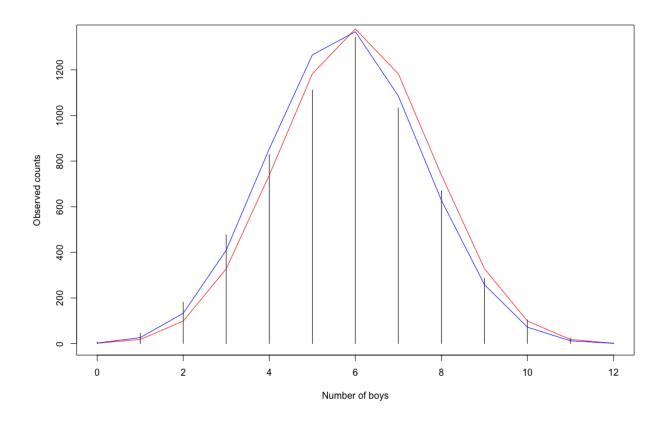
$$X^{2} = \sum_{j=0}^{12} \frac{(O_{j} - E_{j})^{2}}{E_{j}}.$$

has the observed value $X^2 = 249.2$. We have df = 13 - 1 - 0 = 12. Since $\chi_{12}^2(0.005) = 28.3$, we reject H_0 at 0.5% level.

-cell j	O_j	Model 1: E_j	and $\frac{(O_j - E_j)^2}{E_j}$	Model 2: E_j	and $\frac{(O_j - E_j)^2}{E_j}$
0	7	1.5	20.2	2.3	9.6
1	45	17.9	41.0	26.1	13.7
2	181	98.5	69.1	132.8	17.5
3	478	328.4	68.1	410.0	11.3
4	829	739.0	11.0	854.2	0.7
5	1112	1182.4	4.2	1265.6	18.6
6	1343	1379.5	1.0	1367.3	0.4
7	1033	1182.4	18.9	1085.2	2.5
8	670	739.0	6.4	628.1	2.8
9	286	328.4	5.5	258.5	2.9
10	104	98.5	0.3	71.8	14.4
11	24	17.9	2.1	12.1	11.7
12	3	1.5	1.5	0.9	4.9
Total	6115	6115	$X^2 = 249.2$	6115	$X^2 = 110.5$

Consider next a more flexible model $X \sim \text{Bin}(12, \delta)$. Model 2 leads to a composite null hypothesis

$$H_0: p_j = {12 \choose j} \cdot \delta^j (1-\delta)^{12-j}, \quad j = 0, \dots, 12, \quad 0 \le \delta \le 1.$$



Estimate δ using the maximum likelihood estimate of the proportion of boys in a family

$$\hat{\delta} = \frac{\text{number of boys}}{\text{number of children}} = \frac{1 \cdot 45 + 2 \cdot 181 + \ldots + 12 \cdot 3}{6115 \cdot 12} = 0.481$$

The expected cell counts

$$E_j = 6115 \cdot {12 \choose j} \cdot \hat{\delta}^j \cdot (1 - \hat{\delta})^{12-j}$$

are given in the table and the graph above.

The observed chi-squared test statistic for Model 2

$$X^2 = 110.5$$

is much smaller than that for Model 1. However, with r = 1, df = 11, and the table value $\chi_{11}^2(0.005) = 26.76$, we reject even Model 2 at 0.5% level.

We see that what is needed is an even more flexible model addressing large variation in the observed cell counts.

Suggestion for Model 3: allow the probability of a male child δ to differ from family to family. Namely, assume that for each family the value δ is generated by a beta-distribution Beta(a, b).

Question. What is dimension r for the suggested Model 3?