Slides 7: Bayesian inference (1)

- Bayesian vs frequentist approach
- posterior \propto likelihood \times prior
- Maximum Aposteriori Probability
- Conjugate priors
- Binomial-Beta model
- Multinomial-Dirichlet model

Bayesian vs frequentist approach
Frequentist approach: estimate unknown constant θ by maximising the likelihood function $L(\theta)=f(x \mid \theta)$.

Bayesian approach treats θ as a random number. New ingredient: a prior distribution $g(\theta)$ which reflects our beliefs on θ before data x is collected.

After the data x is obtained, we update our beliefs on θ using the Bayes formula for the posterior distribution

$$
h(\theta \mid x)=\frac{g(\theta) f(x \mid \theta)}{\phi(x)},
$$

The denominator, the marfinal probability of the data x,

$$
\phi(x)=\int f(x \mid \theta) g(\theta) d \theta \quad \text { or } \quad \phi(x)=\sum_{\theta} f(x \mid \theta) g(\theta)
$$

is treated as a constant and the Bayes formula can be summarised as

$$
\text { posterior } \propto \text { likelihood } \times \text { prior }
$$

where \propto means proportional.

MAP estimate

We define $\hat{\theta}_{\text {map }}$ as the value of θ that maximises $h(\theta \mid x)$.
With uninformative prior, $g(\theta)=$ const, we get

$$
h(\theta \mid x) \propto f(x \mid \theta) \text { so that } \hat{\theta}_{\mathrm{map}}=\hat{\theta}_{\mathrm{mle}}
$$

Example. A randomly chosen individual has an unknown IQ value θ.
The prior distribution of θ is $\mathrm{N}(100,15)$ describing the population distribution of IQ with mean of $m=100$ and standard deviation $v=15$.
The result x of an IQ measurement is generated by $N(\theta, 10)$. The measurement has a random error of a known size $\sigma=10$. Since

$$
g(\theta) \propto e^{-\frac{(\theta-m)^{2}}{2 v^{2}}}, \quad f(x \mid \theta) \propto e^{-\frac{(x-\theta)^{2}}{2 \sigma^{2}}}
$$

and the posterior is proportional to $g(\theta) f(x \mid \theta)$, we get
$h(\theta \mid x) \propto \exp \left\{-\frac{(\theta-m)^{2}}{2 v^{2}}-\frac{(x-\theta)^{2}}{2 \sigma^{2}}\right\} \propto \exp \left\{-\frac{(\theta-\gamma m-(1-\gamma) x)^{2}}{2 \gamma v^{2}}\right\}$,
where $\gamma=\frac{\sigma^{2}}{\sigma^{2}+v^{2}}$ is the so-called shrinkage factor.

We conclude that if the prior is normal and the likelihood is normal, then the posterior distribution is also normal

$$
h(\theta \mid x) \propto e^{-\frac{(\theta-\mu)^{2}}{2 \sigma^{2}}}, \quad \mu=\gamma m+(1-\gamma) x, \quad \sigma^{2}=\gamma v^{2}
$$

In particular, if the observed IQ result is $x=130$, then the posterior distribution becomes $\mathrm{N}(120.7,8.3)$. We conclude that

$$
\hat{\theta}_{\text {map }}=120.7
$$

lies between the prior expectation $m=100$ and the observed IQ result $x=130$.

The posterior variance 69.2 is smaller than that of the prior distribution 225 by the shrinkage factor $\gamma=0.308$. Our posterior beliefs are less uncertain than the prior beliefs.
Question. What is $\hat{\theta}_{\text {mle }}$ in this example?

Definition. Suppose we have two parametric families of probability distributions \mathcal{G} and $\mathcal{H} . \mathcal{G}$ is called a family of conjugate priors to \mathcal{H}, if a \mathcal{G}-prior and a \mathcal{H}-likelihood give a \mathcal{G}-posterior.

Below we present five models involving conjugate priors.

Data distribution	Prior	Posterior distribution
$X_{1}, \ldots, X_{n} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$	$\mu \sim \mathrm{N}\left(\mu_{0}, \sigma_{0}\right)$	$\mathrm{N}\left(\gamma \mu_{0}+(1-\gamma) \bar{x} ; \sigma_{0} \sqrt{\gamma}\right)$
$X \sim \operatorname{Bin}(n, p)$	$p \sim \operatorname{Beta}(a, b)$	$\operatorname{Beta}(a+x, b+n-x)$
$\left(X_{1}, \ldots, X_{r}\right) \sim \operatorname{Mn}\left(n ; p_{1}, \ldots, p_{r}\right)$	$\left(p_{1}, \ldots, p_{r}\right) \sim \operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$	$\operatorname{Dir}\left(\alpha_{1}+x_{1}, \ldots, \alpha_{r}+x_{r}\right)$
$X_{1}, \ldots, X_{n} \sim \operatorname{Geom}(p)$	$p \sim \operatorname{Beta}(a, b)$	$\operatorname{Beta}(a+n, b+n \bar{x}-n)$
$X_{1}, \ldots, X_{n} \sim \operatorname{Pois}(\mu)$	$\mu \sim \operatorname{Gam}\left(\alpha_{0}, \lambda_{0}\right)$	$\operatorname{Gam}\left(\alpha_{0}+n \bar{x}, \lambda_{0}+n\right)$
$X_{1}, \ldots, X_{n} \sim \operatorname{Gam}(\alpha, \lambda)$	$\lambda \sim \operatorname{Gam}\left(\alpha_{0}, \lambda_{0}\right)$	$\operatorname{Gam}\left(\alpha_{0}+\alpha n, \lambda_{0}+n \bar{x}\right)$

For the Normal-Normal model, the shrinkage factor

$$
\gamma=\frac{\sigma^{2}}{\sigma^{2}+n \sigma_{0}^{2}}
$$

gives the ratio between the posterior variance to the prior variance, and

$$
\hat{\mu}_{\text {map }}=\gamma \mu_{0}+(1-\gamma) \bar{x}
$$

The contribution of the prior distribution becomes smaller for larger n.
$\operatorname{Beta}(a, b)$ distribution is determined by two parameters $a>0, b>0$ which are called pseudo-counts. It has density,

$$
f(p) \propto p^{a-1}(1-p)^{b-1}, \quad 0<p<1
$$

with mean and variance having the form

$$
\mu=\frac{a}{a+b}, \quad \sigma^{2}=\frac{\mu(1-\mu)}{a+b+1} .
$$

Beta (a, b) is a rich family of distributions describing a random $p \in(0,1)$.

For the Binomial-Beta model the update rule has the form
posterior pseudo-counts $=$ prior pseudo-counts plus sample counts
A simple demonstration that beta distribution gives a conjugate prior to the binomial likelihood. If

$$
\text { prior } \propto p^{a-1}(1-p)^{b-1}
$$

and

$$
\text { likelihood } \propto p^{x}(1-p)^{n-x}
$$

then obviously posterior is also a beta distribution:

$$
\text { postterior } \propto \text { prior } \times \text { likelihood } \propto p^{a+x-1}(1-p)^{b+n-x-1} .
$$

You can verify that for $a+x>1$ and $b+n-x>1$, the maximum of the posterior density $\operatorname{Beta}(a+x, b+n-x)$ is attained at

$$
\hat{p}_{\text {map }}=\frac{a+x-1}{a+b+n-2} .
$$

Question. What is $\operatorname{Beta}(1,1)$-distribution? What is $\hat{p}_{\text {map }}$ if $a=b=1$?

Multinomial distribution is a multivariate extension of the binomial distribution.

Dirichlet distribution is a multivariate extension of the beta distribution.
$\operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ is a probability distribution over $\left(p_{1}, \ldots, p_{r}\right)$ with

$$
p_{1} \geq 0, \ldots, p_{r} \geq 0, \quad p_{1}+\ldots+p_{r}=1
$$

Positive $\alpha_{1}, \ldots, \alpha_{r}$ are also called pseudo-counts. Dirichlet density

$$
f\left(p_{1}, \ldots, p_{r}\right) \propto p_{1}^{\alpha_{1}-1} \ldots p_{r}^{\alpha_{r}-1}
$$

$\operatorname{Dir}(1, \ldots, 1)$ gives an uninformative prior.
Posterior mean estimates

$$
\hat{\theta}_{\mathrm{pme}}=\left(\frac{\alpha_{1}+x_{1}}{\alpha_{0}+n}, \ldots, \frac{\alpha_{r}+x_{r}}{\alpha_{0}+n}\right)
$$

where $\alpha_{0}=\alpha_{1}+\ldots+\alpha_{r}$ is the total number of pseudo-counts.

A die is rolled $n=18$ times, giving 4 ones, 3 twos, 4 threes, 4 fours, 3 fives, and 0 sixes:

$$
2,1,1,4,5,3,3,2,4,1,4,2,3,4,3,5,1,5 .
$$

Parameter of interest $\theta=\left(p_{1}, \ldots, p_{6}\right)$. The MLE

$$
\hat{\theta}_{\mathrm{mle}}=\left(\frac{4}{18}, \frac{3}{18}, \frac{4}{18}, \frac{4}{18}, \frac{3}{18}, 0\right)
$$

assigns value zero to p_{6}, effectively excluding future 6 values.
Take uninformative prior $\operatorname{Dir}(1,1,1,1,1,1)$ and compare two Bayesian estimates

$$
\hat{\theta}_{\text {map }}=\left(\frac{4}{18}, \frac{3}{18}, \frac{4}{18}, \frac{4}{18}, \frac{3}{18}, 0\right), \quad \hat{\theta}_{\text {pme }}=\left(\frac{5}{24}, \frac{4}{24}, \frac{5}{24}, \frac{5}{24}, \frac{4}{24}, \frac{1}{24}\right) .
$$

The latter has an advantage of assigning a positive value to p_{6}.

