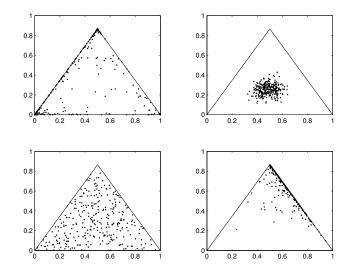
Serik Sagitov: Statistical Inference course

Slides 7: Bayesian inference (1)

- Bayesian vs frequentist approach
- posterior \propto likelihood \times prior
- Maximum Aposteriori Probability
- Conjugate priors
- Binomial-Beta model
- Multinomial-Dirichlet model



Frequentist approach: estimate unknown constant θ by maximising the likelihood function $L(\theta) = f(x|\theta)$.

Bayesian approach treats θ as a random number. New ingredient: a prior distribution $g(\theta)$ which reflects our beliefs on θ before data x is collected. After the data x is obtained, we update our beliefs on θ using the Bayes formula for the posterior distribution

$$h(\theta|x) = \frac{g(\theta)f(x|\theta)}{\phi(x)},$$

The denominator, the marfinal probability of the data x,

$$\phi(x) = \int f(x|\theta)g(\theta)d\theta$$
 or $\phi(x) = \sum_{\theta} f(x|\theta)g(\theta)$

is treated as a constant and the Bayes formula can be summarised as

posterior \propto likelihood \times prior

where \propto means proportional.

MAP estimate

We define $\hat{\theta}_{map}$ as the value of θ that maximises $h(\theta|x)$. With uninformative prior, $g(\theta) = \text{const}$, we get

$$h(\theta|x) \propto f(x|\theta)$$
 so that $\hat{\theta}_{map} = \hat{\theta}_{mle}$

Example. A randomly chosen individual has an unknown IQ value θ . The prior distribution of θ is N(100, 15) describing the population distribution of IQ with mean of m = 100 and standard deviation v = 15. The result x of an IQ measurement is generated by N(θ , 10). The measurement has a random error of a known size $\sigma = 10$. Since

$$g(\theta) \propto e^{-\frac{(\theta-m)^2}{2v^2}}, \quad f(x|\theta) \propto e^{-\frac{(x-\theta)^2}{2\sigma^2}},$$

and the posterior is proportional to $g(\theta)f(x|\theta)$, we get

$$h(\theta|x) \propto \exp\left\{-\frac{(\theta-m)^2}{2v^2} - \frac{(x-\theta)^2}{2\sigma^2}\right\} \propto \exp\left\{-\frac{(\theta-\gamma m - (1-\gamma)x)^2}{2\gamma v^2}\right\},\,$$

where $\gamma = \frac{\sigma^2}{\sigma^2 + v^2}$ is the so-called shrinkage factor.

Example: IQ measurement

We conclude that if the prior is normal and the likelihood is normal, then the posterior distribution is also normal

$$h(\theta|x) \propto e^{-\frac{(\theta-\mu)^2}{2\sigma^2}}, \quad \mu = \gamma m + (1-\gamma)x, \quad \sigma^2 = \gamma v^2$$

In particular, if the observed IQ result is x = 130, then the posterior distribution becomes N(120.7, 8.3). We conclude that

$$\hat{\theta}_{\rm map} = 120.7$$

lies between the prior expectation m = 100 and the observed IQ result x = 130.

The posterior variance 69.2 is smaller than that of the prior distribution 225 by the shrinkage factor $\gamma = 0.308$. Our posterior beliefs are less uncertain than the prior beliefs.

Question. What is $\hat{\theta}_{mle}$ in this example?

Conjugate priors

Definition. Suppose we have two parametric families of probability distributions \mathcal{G} and \mathcal{H} . \mathcal{G} is called a family of conjugate priors to \mathcal{H} , if a \mathcal{G} -prior and a \mathcal{H} -likelihood give a \mathcal{G} -posterior.

Data distribution	Prior	Posterior distribution
$X_1,\ldots,X_n \sim \mathrm{N}(\mu,\sigma^2)$	$\mu \sim N(\mu_0, \sigma_0)$	$N(\gamma \mu_0 + (1 - \gamma)\bar{x}; \sigma_0 \sqrt{\gamma})$
$X \sim \operatorname{Bin}(n,p)$	$p \sim \operatorname{Beta}(a, b)$	Beta(a + x, b + n - x)
$(X_1,, X_r) \sim Mn(n; p_1,, p_r)$	$(p_1, \dots, p_r) \sim \operatorname{Dir}(\alpha_1, \dots, \alpha_r)$	$Dir(\alpha_1 + x_1, \ldots, \alpha_r + x_r)$
$X_1,\ldots,X_n \sim \operatorname{Geom}(p)$	$p \sim \text{Beta}(a, b)$	$Beta(a + n, b + n\bar{x} - n)$
$X_1,\ldots,X_n \sim \operatorname{Pois}(\mu)$	$\mu \sim \operatorname{Gam}(\alpha_0, \lambda_0)$	$\operatorname{Gam}(\alpha_0 + n\bar{x}, \lambda_0 + n)$
$X_1,\ldots,X_n \sim \operatorname{Gam}(\alpha,\lambda)$	$\lambda \sim \operatorname{Gam}(\alpha_0, \lambda_0)$	$\operatorname{Gam}(\alpha_0 + \alpha n, \lambda_0 + n\bar{x})$

Below we present five models involving conjugate priors.

For the Normal-Normal model, the shrinkage factor

$$\gamma = \frac{\sigma^2}{\sigma^2 + n\sigma_0^2}$$

gives the ratio between the posterior variance to the prior variance, and

$$\hat{\mu}_{\rm map} = \gamma \mu_0 + (1 - \gamma) \bar{x}$$

The contribution of the prior distribution becomes smaller for larger n.

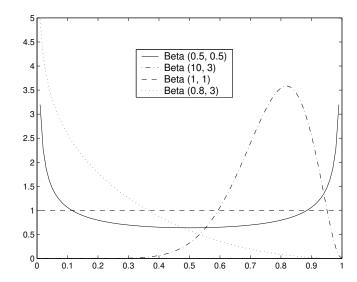
Beta(a, b) distribution is determined by two parameters a > 0, b > 0which are called pseudo-counts. It has density,

$$f(p) \propto p^{a-1} (1-p)^{b-1}, \quad 0$$

with mean and variance having the form

$$\mu = \frac{a}{a+b}, \quad \sigma^2 = \frac{\mu(1-\mu)}{a+b+1}.$$

Beta (a, b) is a rich family of distributions describing a random $p \in (0, 1)$.



For the Binomial-Beta model the update rule has the form

posterior pseudo-counts = prior pseudo-counts plus sample counts

A simple demonstration that beta distribution gives a conjugate prior to the binomial likelihood. If

prior
$$\propto p^{a-1}(1-p)^{b-1}$$
,

and

likelihood
$$\propto p^x (1-p)^{n-x}$$
,

then obviously posterior is also a beta distribution:

postterior \propto prior \times likelihood $\propto p^{a+x-1}(1-p)^{b+n-x-1}$.

You can verify that for a + x > 1 and b + n - x > 1, the maximum of the posterior density Beta(a + x, b + n - x) is attained at

$$\hat{p}_{\rm map} = \frac{a+x-1}{a+b+n-2}$$

Question. What is Beta(1, 1)-distribution? What is \hat{p}_{map} if a = b = 1?

Multinomial-Dirichlet model

Multinomial distribution is a multivariate extension of the binomial distribution.

Dirichlet distribution is a multivariate extension of the beta distribution. $Dir(\alpha_1, \ldots, \alpha_r)$ is a probability distribution over (p_1, \ldots, p_r) with

$$p_1 \ge 0, \dots, p_r \ge 0, \quad p_1 + \dots + p_r = 1.$$

Positive $\alpha_1, \ldots, \alpha_r$ are also called pseudo-counts. Dirichlet density

$$f(p_1,\ldots,p_r) \propto p_1^{\alpha_1-1} \ldots p_r^{\alpha_r-1}$$

 $Dir(1, \ldots, 1)$ gives an uninformative prior.

Posterior mean estimates

$$\hat{\theta}_{\text{pme}} = \left(\frac{\alpha_1 + x_1}{\alpha_0 + n}, \dots, \frac{\alpha_r + x_r}{\alpha_0 + n}\right)$$

where $\alpha_0 = \alpha_1 + \ldots + \alpha_r$ is the total number of pseudo-counts.

Example: loaded die experiment

A die is rolled n = 18 times, giving 4 ones, 3 twos, 4 threes, 4 fours, 3 fives, and 0 sixes:

2, 1, 1, 4, 5, 3, 3, 2, 4, 1, 4, 2, 3, 4, 3, 5, 1, 5.

Parameter of interest $\theta = (p_1, \ldots, p_6)$. The MLE

$$\hat{\theta}_{\text{mle}} = \left(\frac{4}{18}, \frac{3}{18}, \frac{4}{18}, \frac{4}{18}, \frac{3}{18}, 0\right)$$

assigns value zero to p_6 , effectively excluding future 6 values.

Take uninformative prior Dir(1, 1, 1, 1, 1, 1) and compare two Bayesian estimates

$$\hat{\theta}_{\rm map} = \left(\frac{4}{18}, \frac{3}{18}, \frac{4}{18}, \frac{4}{18}, \frac{3}{18}, 0\right), \quad \hat{\theta}_{\rm pme} = \left(\frac{5}{24}, \frac{4}{24}, \frac{5}{24}, \frac{5}{24}, \frac{4}{24}, \frac{1}{24}\right).$$

The latter has an advantage of assigning a positive value to p_6 .