Serik Sagitov: Statistical Inference course
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Bayesian vs frequentist approach

Frequentist approach: estimate unknown constant # by maximising the
likelihood function L(0) = f(x|0).

Bayesian approach treats 6 as a random number. New ingredient: a prior

distribution g(#) which reflects our beliefs on 8 before data z is collected.

After the data x is obtained, we update our beliefs on 0 using the Bayes

formula for the posterior distribution

~g(0) f(x]0)
h(0|r) = o@)

The denominator, the marfinal probability of the data x,

o) = [ Fal0)g(0)d0 or () = f(zl6)g(®)

is treated as a constant and the Bayes formula can be summarised as

posterior o likelihood X prior

where o« means proportional.



MAP estimate
We define Opap as the value of 6 that maximises h(6|z).

With uninformative prior, g(6) = const, we get

h(0|z)  f(x]0) so that Omap = Omie

Example. A randomly chosen individual has an unknown IQ value 6.
The prior distribution of 8 is N(100, 15) describing the population
distribution of IQ with mean of m = 100 and standard deviation v = 15.

The result z of an IQ measurement is generated by N(6, 10). The
measurement has a random error of a known size o = 10. Since

_(6—m)? _ (z—6)2

g(0) xe 222 | f(z|f) xe 202 |

and the posterior is proportional to g(0)f(z|0), we get

h(6]2) o eXp{_(9—m)2 - (w—9)2} N exp{_(ﬁ—vm— (1 —y)z)? }

202 2072 2yv?

where v = % is the so-called shrinkage factor.



Example: 1QQ measurement

We conclude that if the prior is normal and the likelihood is normal,

then the posterior distribution is also normal

2
(0_/1’) 2

h(flz) xe” 22, p=ym+(1—v)z, o =0’

In particular, if the observed IQ result is £ = 130, then the posterior
distribution becomes N(120.7,8.3). We conclude that

A

Omap = 120.7

lies between the prior expectation m = 100 and the observed IQ result
x = 130.

The posterior variance 69.2 is smaller than that of the prior distribution
225 by the shrinkage factor v = 0.308. Our posterior beliefs are less

uncertain than the prior beliefs.

Question. What is émle in this example?



Conjugate priors

Definition. Suppose we have two parametric families of probability

distributions G and H. G is called a family of conjugate priors to H, if a

G-prior and a H-likelihood give a G-posterior.

Below we present five models involving conjugate priors.

Data distribution

Prior

Posterior distribution

X1,...,Xn NN(,U,,O'Q)

n ~ N(ung, o)

N(ypug + (1 — v)Z; 00/7)

X ~ Bin(n, p)

p ~ Beta(a, b)

Beta(a + z,b + n — x)

(X1,..., Xy) ~ Mn(n;p1, ..., Pr) (p1, .-, Pr) ~ Dir(aq, ..., ap) Dir(aey + 1, ..., ar + )
X1,...,Xn ~ Geom(p) p ~ Beta(a, d) Beta(a + n,b + nz — n)
X1,...,Xn ~ Pois(u) p ~ Gam(og, Ag) Gam(ag + n&, A\g + n)
X1,...,Xn ~ Gam(a, \) A~ Gam(aqg, A\g) Gam(ag + an, Ag + nT)

For the Normal-Normal model, the shrinkage factor

0_2

/7 o 02—{—7108

gives the ratio between the posterior variance to the prior variance, and

fimap = Yo + (1 — )T

The contribution of the prior distribution becomes smaller for larger n.



Binomial-Beta model

Beta(a, b) distribution is determined by two parameters a > 0, b > 0

which are called pseudo-counts. It has density,

f(p)oxp® (1—p)°", 0<p<1,
with mean and variance having the form

_a 2 _ p(l—p)
H = at+b’ o = at+b+1 -

Beta (a, b) is a rich family of distributions describing a random p € (0, 1).

5

45

4+

3.5

3H

25F

ol

151

1

0.5

0 L L = L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1




For the Binomial-Beta model the update rule has the form

posterior pseudo-counts = prior pseudo-counts plus sample counts

A simple demonstration that beta distribution gives a conjugate prior to
the binomial likelihood. If

prior oc p® (1 —p)" ",

and
likelihood o p®(1 —p)" %,

then obviously posterior is also a beta distribution:

a—l—az—l(l b—i—n—az—l.

postterior o< prior X likelihood o p —p)

You can verify that for a4+x > 1 and b+ n —x > 1, the maximum of the
posterior density Beta(a + x,b+ n — x) is attained at

a+x—1
a+b+n—2

Pmap =

Question. What is Beta(1, 1)-distribution? What is pmap if a = b =17



Multinomial-Dirichlet model

Multinomial distribution is a multivariate extension of the binomial

distribution.
Dirichlet distribution is a multivariate extension of the beta distribution.

Dir(a4, ..., a,) is a probability distribution over (pi,...,p,) with

p1=>0,...,p,20, p1+...4+p=1

Positive a1, ..., a, are also called pseudo-counts. Dirichlet density
a1—1 ar—1
f(p1,-..,pr) Xpyt LDy
Dir(1,...,1) gives an uninformative prior.

Posterior mean estimates

2 _ (ocatzx ar+Ty
epme T (ao—l—n 1t ao—l—n)

where ap = a1 + ... + «, is the total number of pseudo-counts.



Example: loaded die experiment

A die is rolled n = 18 times, giving 4 ones, 3 twos, 4 threes, 4 fours, 3

fives, and 0 sixes:
2,1,1,4,5,3,3,2,4,1,4,2,3,4,3,5,1,5.
Parameter of interest 0 = (p1,...,ps). The MLE

_ 4 3 4 4 3
Omie = (75, 75> 157 157 152 0)

assigns value zero to pg, effectively excluding future 6 values.

Take uninformative prior Dir(1,1,1,1,1,1) and compare two Bayesian

estimates

0 — (4, 3 4 4 3 () 0 — (2, 4L 5 5 4 L)
map = {187 187 18’ 18"’ 18"’ ) pme = X249 247 247 247 247 24 /"

The latter has an advantage of assigning a positive value to pg.



