
Serik Sagitov: Statistical Inference course

Slides 7: Bayesian inference (1)

• Bayesian vs frequentist approach

• posterior ∝ likelihood × prior

• Maximum Aposteriori Probability

• Conjugate priors

• Binomial-Beta model

• Multinomial-Dirichlet model
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Bayesian vs frequentist approach

Frequentist approach: estimate unknown constant θ by maximising the
likelihood function L(θ) = f(x|θ).

Bayesian approach treats θ as a random number. New ingredient: a prior
distribution g(θ) which reflects our beliefs on θ before data x is collected.

After the data x is obtained, we update our beliefs on θ using the Bayes
formula for the posterior distribution

h(θ|x) =
g(θ)f(x|θ)
φ(x)

,

The denominator, the marfinal probability of the data x,

φ(x) =

∫
f(x|θ)g(θ)dθ or φ(x) =

∑
θ

f(x|θ)g(θ)

is treated as a constant and the Bayes formula can be summarised as

posterior ∝ likelihood × prior

where ∝ means proportional.
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MAP estimate

We define θ̂map as the value of θ that maximises h(θ|x).

With uninformative prior, g(θ) = const, we get

h(θ|x) ∝ f(x|θ) so that θ̂map = θ̂mle

Example. A randomly chosen individual has an unknown IQ value θ.
The prior distribution of θ is N(100, 15) describing the population
distribution of IQ with mean of m = 100 and standard deviation v = 15.

The result x of an IQ measurement is generated by N(θ, 10). The
measurement has a random error of a known size σ = 10. Since

g(θ) ∝ e−
(θ−m)2

2v2 , f(x|θ) ∝ e−
(x−θ)2

2σ2 ,

and the posterior is proportional to g(θ)f(x|θ), we get

h(θ|x) ∝ exp

{
− (θ −m)2

2v2
− (x− θ)2

2σ2

}
∝ exp

{
− (θ − γm− (1− γ)x)2

2γv2

}
,

where γ = σ2

σ2+v2 is the so-called shrinkage factor.
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Example: IQ measurement

We conclude that if the prior is normal and the likelihood is normal,
then the posterior distribution is also normal

h(θ|x) ∝ e−
(θ−µ)2

2σ2 , µ = γm+ (1− γ)x, σ2 = γv2

In particular, if the observed IQ result is x = 130, then the posterior
distribution becomes N(120.7, 8.3). We conclude that

θ̂map = 120.7

lies between the prior expectation m = 100 and the observed IQ result
x = 130.

The posterior variance 69.2 is smaller than that of the prior distribution
225 by the shrinkage factor γ = 0.308. Our posterior beliefs are less
uncertain than the prior beliefs.

Question. What is θ̂mle in this example?
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Conjugate priors

Definition. Suppose we have two parametric families of probability
distributions G and H. G is called a family of conjugate priors to H, if a
G-prior and a H-likelihood give a G-posterior.

Below we present five models involving conjugate priors.
Data distribution Prior Posterior distribution

X1, . . . , Xn ∼ N(µ, σ2) µ ∼ N(µ0, σ0) N(γµ0 + (1 − γ)x̄; σ0
√
γ)

X ∼ Bin(n, p) p ∼ Beta(a, b) Beta(a + x, b + n − x)

(X1, ..., Xr) ∼ Mn(n; p1, ..., pr) (p1, ..., pr) ∼ Dir(α1, ..., αr) Dir(α1 + x1, . . . , αr + xr)

X1, . . . , Xn ∼ Geom(p) p ∼ Beta(a, b) Beta(a + n, b + nx̄ − n)

X1, . . . , Xn ∼ Pois(µ) µ ∼ Gam(α0, λ0) Gam(α0 + nx̄, λ0 + n)

X1, . . . , Xn ∼ Gam(α, λ) λ ∼ Gam(α0, λ0) Gam(α0 + αn, λ0 + nx̄)

For the Normal-Normal model, the shrinkage factor

γ = σ2

σ2+nσ2
0

gives the ratio between the posterior variance to the prior variance, and

µ̂map = γµ0 + (1− γ)x̄

The contribution of the prior distribution becomes smaller for larger n.
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Binomial-Beta model

Beta(a, b) distribution is determined by two parameters a > 0, b > 0

which are called pseudo-counts. It has density,

f(p) ∝ pa−1(1− p)b−1, 0 < p < 1,

with mean and variance having the form

µ = a
a+b

, σ2 = µ(1−µ)
a+b+1

.

Beta (a, b) is a rich family of distributions describing a random p ∈ (0, 1).
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For the Binomial-Beta model the update rule has the form

posterior pseudo-counts = prior pseudo-counts plus sample counts

A simple demonstration that beta distribution gives a conjugate prior to
the binomial likelihood. If

prior ∝ pa−1(1− p)b−1,

and
likelihood ∝ px(1− p)n−x,

then obviously posterior is also a beta distribution:

postterior ∝ prior × likelihood ∝ pa+x−1(1− p)b+n−x−1.

You can verify that for a+ x > 1 and b+ n− x > 1, the maximum of the
posterior density Beta(a+ x, b+ n− x) is attained at

p̂map =
a+ x− 1

a+ b+ n− 2
.

Question. What is Beta(1, 1)-distribution? What is p̂map if a = b = 1?
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Multinomial-Dirichlet model

Multinomial distribution is a multivariate extension of the binomial
distribution.

Dirichlet distribution is a multivariate extension of the beta distribution.

Dir(α1, . . . , αr) is a probability distribution over (p1, . . . , pr) with

p1 ≥ 0, . . . , pr ≥ 0, p1 + . . .+ pr = 1.

Positive α1, . . . , αr are also called pseudo-counts. Dirichlet density

f(p1, . . . , pr) ∝ pα1−1
1 . . . pαr−1

r

Dir(1, . . . , 1) gives an uninformative prior.

Posterior mean estimates

θ̂pme =
(
α1+x1
α0+n

, . . . , αr+xr
α0+n

)
where α0 = α1 + . . .+ αr is the total number of pseudo-counts.
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Example: loaded die experiment

A die is rolled n = 18 times, giving 4 ones, 3 twos, 4 threes, 4 fours, 3
fives, and 0 sixes:

2, 1, 1, 4, 5, 3, 3, 2, 4, 1, 4, 2, 3, 4, 3, 5, 1, 5.

Parameter of interest θ = (p1, . . . , p6). The MLE

θ̂mle = ( 4
18
, 3
18
, 4
18
, 4
18
, 3
18
, 0)

assigns value zero to p6, effectively excluding future 6 values.

Take uninformative prior Dir(1, 1, 1, 1, 1, 1) and compare two Bayesian
estimates

θ̂map = ( 4
18
, 3
18
, 4
18
, 4
18
, 3
18
, 0), θ̂pme = ( 5

24
, 4
24
, 5
24
, 5
24
, 4
24
, 1
24

).

The latter has an advantage of assigning a positive value to p6.
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