## Slides 8: Bayesian inference (2)

- Bayesian estimation
- Loss function
- Posterior risk
- Credibility intervals
- Bayesian hypothesis testing
- Posterior odds
- A case study


Two Polish mathematicians, Tomasz Gliszczynski and Waclaw Zawadowski, set their university statistics classes to research the subject with the Belgian one euro coin. The test was carried out by spinning the coins on a table rather than tossing them in the air.

Out of $n=250$ spins,
$x=140$ showed the head of
the Belgian monarch, King Albert, while $n-x=110$ showed the one euro symbol.


The probability of heads $p$ is the parameter of interest.

## Zoom discussion.

The Bayesian approach treats $p$ as a random variable. How can this make sense? Discuss this issue in groups of 3-4 students.

Think also of an appropriate prior distribution.

In the language of decision theory we are searching for an optimal action

$$
\text { action } a=\{\text { assign value } a \text { to unknown parameter } \theta\} .
$$

The optimal $a$ depends on the choice of the loss function $l(\theta, a)$. Bayes action minimises posterior risk

$$
R(a \mid x)=\mathrm{E}(l(\Theta, a) \mid x)
$$

so that

$$
R(a \mid x)=\int l(\theta, a) h(\theta \mid x) d \theta \quad \text { or } \quad R(a \mid x)=\sum_{\theta} l(\theta, a) h(\theta \mid x) .
$$

We consider two loss functions

1. Zero-one loss function: $l(\theta, a)=1_{\{\theta \neq a\}}$
2. Squared error loss: $l(\theta, a)=(\theta-a)^{2}$
leading to two Bayesian estimators
3. $\hat{\theta}_{\text {map }}$ maximum aposteriori probability
4. $\hat{\theta}_{\text {pme }}$ posterior mean estimate
5. Using the zero-one loss function we find that the posterior risk is the probability of misclassification

$$
R(a \mid x)=\sum_{\theta \neq a} h(\theta \mid x)=1-h(a \mid x) .
$$

It follows that to minimise the risk we have to maximise the posterior probability. We define $\hat{\theta}_{\text {map }}$ as the value of $\theta$ that maximises $h(\theta \mid x)$. Observe that with the uninformative prior, $\hat{\theta}_{\text {map }}=\hat{\theta}_{\text {mle }}$.
2. Using the squared error loss function we find that the posterior risk is a sum of two components

$$
R(a \mid x)=\mathrm{E}\left((\Theta-a)^{2} \mid x\right)=\operatorname{Var}(\Theta \mid x)+[\mathrm{E}(\Theta \mid x)-a]^{2} .
$$

Since the first component is independent of $a$, we minimise the posterior risk by putting

$$
\hat{\theta}_{\mathrm{pme}}=\mathrm{E}(\Theta \mid x)=\int \theta h(\theta \mid x) d \theta
$$

Posterior mean estimate.

Let $x$ stand for the data in hand. For a $95 \%$ confidence interval formula

$$
I_{\theta}=\left(a_{1}(x), a_{2}(x)\right),
$$

the parameter $\theta$ is an unknown constant and a the confidence interval is treated as random

$$
\mathrm{P}\left(a_{1}(X)<\theta<a_{2}(X)\right)=0.95 .
$$

A credibility interval (or credible interval)

$$
J_{\theta}=\left(b_{1}(x), b_{2}(x)\right)
$$

is treated as a nonrandom interval. A $95 \%$ credibility interval is computed as $\mathrm{P}\left(b_{1}<\Theta<b_{2}\right)=0.95$ using posterior distribution

$$
\int_{b_{1}}^{b_{2}} h(\theta \mid x) d \theta=0.95
$$

Question. Which one of the two explanations of $95 \%$ is more intuitive?

Given $n=1$, we have $\bar{X} \sim \mathrm{~N}(\mu ; 10)$ and an exact $95 \%$ confidence interval for $\mu$ takes the form

$$
I_{\mu}=130 \pm 1.96 \cdot 10=130 \pm 19.6
$$

Posterior distribution of the mean is $\mathrm{N}(120.7 ; 8.3)$ and therefore a $95 \%$ credibility interval for $\mu$ is

$$
J_{\mu}=120.7 \pm 1.96 \cdot 8.3=120.7 \pm 16.3
$$

Bayesian hypotheses testing
Consider a choice between two simple hypotheses $H_{0}: \theta=\theta_{0}$ and $H_{1}$ : $\theta=\theta_{1}$ given the likelihoods $f\left(x \mid \theta_{0}\right), f\left(x \mid \theta_{1}\right)$ and prior probabilities

$$
\mathrm{P}\left(H_{0}\right)=\pi_{0}, \quad \mathrm{P}\left(H_{1}\right)=\pi_{1}
$$

Decision should be taken depending on the following four cost values

|  | Decision | $H_{0}$ true | $H_{1}$ true |
| :---: | :---: | :---: | :---: |
| $x \notin \mathcal{R}$ | Accept $H_{0}$ | cost $=0$ | $c_{1}=$ the error type II cost |
| $x \in \mathcal{R}$ | Accept $H_{1}$ | $c_{0}=$ the error type I cost | cost $=0$ |

For a given rejection region $\mathcal{R}$, the average cost is
$c_{0} \pi_{0} \mathrm{P}\left(X \in \mathcal{R} \mid H_{0}\right)+c_{1} \pi_{1} \mathrm{P}\left(X \notin \mathcal{R} \mid H_{1}\right)=c_{1} \pi_{1}+\int_{\mathcal{R}}\left(c_{0} \pi_{0} f\left(x \mid \theta_{0}\right)-c_{1} \pi_{1} f\left(x \mid \theta_{1}\right)\right) d x$.
Now observe that
$\int_{\mathcal{R}}\left(c_{0} \pi_{0} f\left(x \mid \theta_{0}\right)-c_{1} \pi_{1} f\left(x \mid \theta_{1}\right)\right) d x \geq \int_{\mathcal{R}^{*}}\left(c_{0} \pi_{0} f\left(x \mid \theta_{0}\right)-c_{1} \pi_{1} f\left(x \mid \theta_{1}\right)\right) d x$,
where

$$
\mathcal{R}^{*}=\left\{x: c_{0} \pi_{0} f\left(x \mid \theta_{0}\right)<c_{1} \pi_{1} f\left(x \mid \theta_{1}\right)\right\} .
$$

It follows that the rejection region minimising the average cost is $\mathcal{R}=\mathcal{R}^{*}$. Thus the optimal decision rule is to reject $H_{0}$ for $x$ such that

$$
\frac{f\left(x \mid \theta_{0}\right)}{f\left(x \mid \theta_{1}\right)}<\frac{c_{1} \pi_{1}}{c_{0} \pi_{0}}
$$

or in other terms, we reject $H_{0}$ for small values of the posterior odds

$$
\frac{h\left(\theta_{0} \mid x\right)}{h\left(\theta_{1} \mid x\right)}<\frac{c_{1}}{c_{0}}
$$

The defendant "A" charged with rape, is a male of age 37 living in the area not very far from the crime place. The jury have to choose between two alternative hypotheses
$H_{0}$ : "A" is innocent, $H_{1}$ : "A" is guilty.

An uninformative prior probability


$$
\pi_{1}=\frac{1}{200000}, \text { so that } \frac{\pi_{0}}{\pi_{1}}=200000
$$

takes into account the number of males who theoretically could have committed the crime without any evidence taken into account.

There were tree conditionally independent pieces of evidence
$E_{1}$ : strong DNA match
$E_{2}$ : "A" is not recognised by the victim
$E_{3}$ : an alibi supported by "A"s girlfriend
evidence in favour of $H_{1}$
evidence in favour of $H_{0}$
evidence in favour of $H_{0}$

The reliability of these pieces of evidence was quantified as

$$
\begin{array}{ll}
\mathrm{P}\left(E_{1} \mid H_{0}\right)=\frac{1}{200,000,000}, \mathrm{P}\left(E_{1} \mid H_{1}\right)=1, & \frac{\mathrm{P}\left(E_{1} \mid H_{0}\right)}{\mathrm{P}\left(E_{1} \mid H_{1}\right)}=\frac{1}{200,000,000} \\
\mathrm{P}\left(E_{2} \mid H_{1}\right)=0.1, \mathrm{P}\left(E_{2} \mid H_{0}\right)=0.9, & \frac{\mathrm{P}\left(E_{2} \mid H_{0}\right)}{\mathrm{P}\left(E_{2} \mid H_{1}\right)}=9 \\
\mathrm{P}\left(E_{3} \mid H_{1}\right)=0.25, \mathrm{P}\left(E_{3} \mid H_{0}\right)=0.5, & \frac{\mathrm{P}\left(E_{3} \mid H_{0}\right)}{\mathrm{P}\left(E_{3} \mid H_{1}\right)}=2
\end{array}
$$

Then the posterior odds was computed as

$$
\frac{\mathrm{P}\left(H_{0} \mid E\right)}{\mathrm{P}\left(H_{1} \mid E\right)}=\frac{\pi_{0} \mathrm{P}\left(E \mid H_{0}\right)}{\pi_{1} \mathrm{P}\left(E \mid H_{1}\right)}=\frac{\pi_{0}}{\pi_{1}} \frac{\mathrm{P}\left(E_{1} \mid H_{0}\right)}{\mathrm{P}\left(E_{1} \mid H_{1}\right)} \frac{\mathrm{P}\left(E_{2} \mid H_{0}\right)}{\mathrm{P}\left(E_{2} \mid H_{1}\right)} \mathrm{P}\left(E_{3} \mid H_{0}\right),
$$

Thus we reject $H_{0}$ if the cost values are assigned so that

$$
\frac{c_{1}}{c_{0}}=\frac{\text { cost for unpunished crime }}{\text { cost for punishing an innocent }}>0.018
$$

Question. What would be your decision as a jury member?

