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Bayesian vs frequentist inference

Two Polish mathematicians, Tomasz Gliszczynski and Waclaw
Zawadowski, set their university statistics classes to research the subject
with the Belgian one euro coin. The test was carried out by spinning the
coins on a table rather than tossing them in the air.

Out of n = 250 spins,

x = 140 showed the head of
the Belgian monarch, King Albert, while
n− x = 110 showed the one euro symbol.

The probability of heads p is the parameter of interest.

Zoom discussion.

The Bayesian approach treats p as a random variable. How can this
make sense? Discuss this issue in groups of 3-4 students.

Think also of an appropriate prior distribution.
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Bayesian estimation

In the language of decision theory we are searching for an optimal action

action a = {assign value a to unknown parameter θ}.

The optimal a depends on the choice of the loss function l(θ, a). Bayes
action minimises posterior risk

R(a|x) = E
(
l(Θ, a)|x

)
so that

R(a|x) =
∫
l(θ, a)h(θ|x)dθ or R(a|x) =

∑
θ l(θ, a)h(θ|x).

We consider two loss functions

1. Zero-one loss function: l(θ, a) = 1{θ 6=a}

2. Squared error loss: l(θ, a) = (θ − a)2

leading to two Bayesian estimators

1. θ̂map maximum aposteriori probability

2. θ̂pme posterior mean estimate
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Loss functions

1. Using the zero-one loss function we find that the posterior risk is the
probability of misclassification

R(a|x) =
∑
θ 6=a

h(θ|x) = 1− h(a|x).

It follows that to minimise the risk we have to maximise the posterior
probability. We define θ̂map as the value of θ that maximises h(θ|x).
Observe that with the uninformative prior, θ̂map = θ̂mle.

2. Using the squared error loss function we find that the posterior risk is
a sum of two components

R(a|x) = E((Θ− a)2|x) = Var(Θ|x) + [E(Θ|x)− a]2.

Since the first component is independent of a, we minimise the posterior
risk by putting

θ̂pme = E(Θ|x) =

∫
θh(θ|x)dθ.

Posterior mean estimate.
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Credibility intervals

Let x stand for the data in hand. For a 95% confidence interval formula

Iθ = (a1(x), a2(x)),

the parameter θ is an unknown constant and a the confidence interval is
treated as random

P(a1(X) < θ < a2(X)) = 0.95.

A credibility interval (or credible interval)

Jθ = (b1(x), b2(x))

is treated as a nonrandom interval. A 95% credibility interval is
computed as P(b1 < Θ < b2) = 0.95 using posterior distribution∫ b2

b1

h(θ|x)dθ = 0.95.

Question. Which one of the two explanations of 95% is more intuitive?
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Example: IQ measurement

Given n = 1, we have X̄ ∼ N(µ; 10) and an exact 95% confidence interval
for µ takes the form

Iµ = 130± 1.96 · 10 = 130± 19.6.

Posterior distribution of the mean is N(120.7; 8.3) and therefore a 95%
credibility interval for µ is

Jµ = 120.7± 1.96 · 8.3 = 120.7± 16.3.

Bayesian hypotheses testing

Consider a choice between two simple hypotheses H0: θ = θ0 and H1:
θ = θ1 given the likelihoods f(x|θ0), f(x|θ1) and prior probabilities

P(H0) = π0, P(H1) = π1.

Decision should be taken depending on the following four cost values
Decision H0 true H1 true

x /∈ R Accept H0 cost = 0 c1 = the error type II cost

x ∈ R Accept H1 c0 = the error type I cost cost = 0
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Posterior odds

For a given rejection region R, the average cost is

c0π0P(X ∈ R|H0)+c1π1P(X /∈ R|H1) = c1π1+

∫
R

(
c0π0f(x|θ0)−c1π1f(x|θ1)

)
dx.

Now observe that∫
R

(
c0π0f(x|θ0)− c1π1f(x|θ1)

)
dx ≥

∫
R∗

(
c0π0f(x|θ0)− c1π1f(x|θ1)

)
dx,

where
R∗ = {x : c0π0f(x|θ0) < c1π1f(x|θ1)}.

It follows that the rejection region minimising the average cost is
R = R∗. Thus the optimal decision rule is to reject H0 for x such that

f(x|θ0)
f(x|θ1)

< c1π1
c0π0

,

or in other terms, we reject H0 for small values of the posterior odds

h(θ0|x)
h(θ1|x)

< c1
c0
.
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A case study

The defendant ”A” charged with rape, is a male of age 37 living in the
area not very far from the crime place. The jury have to choose between
two alternative hypotheses

H0: ”A” is innocent, H1: ”A” is guilty.

An uninformative prior probability

π1 = 1
200000

, so that π0
π1

= 200000

takes into account the number of males who theoretically could have
committed the crime without any evidence taken into account.

There were tree conditionally independent pieces of evidence

E1: strong DNA match evidence in favour of H1

E2: ”A” is not recognised by the victim evidence in favour of H0

E3: an alibi supported by ”A”s girlfriend evidence in favour of H0
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A case study

The reliability of these pieces of evidence was quantified as

P(E1|H0) = 1
200,000,000

, P(E1|H1)=1, P(E1|H0)
P(E1|H1)

= 1
200,000,000

P(E2|H1) = 0.1, P(E2|H0) = 0.9, P(E2|H0)
P(E2|H1)

= 9

P(E3|H1) = 0.25, P(E3|H0) = 0.5, P(E3|H0)
P(E3|H1)

= 2

Then the posterior odds was computed as

P(H0|E)
P(H1|E)

= π0P(E|H0)
π1P(E|H1)

= π0
π1

P(E1|H0)
P(E1|H1)

P(E2|H0)
P(E2|H1)

P(E3|H0)
P(E3|H1)

= 0.018.

Thus we reject H0 if the cost values are assigned so that

c1
c0

=
cost for unpunished crime

cost for punishing an innocent
> 0.018.

Question. What would be your decision as a jury member?
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