Serik Sagitov: Statistical Inference course

1 Horh Alport

Slides 14: Non-parametric tests

• Sign test	1. Held Alpert
• Digit test	2. Madonna
• Confidence interval for the median	3. Celine Dion
• Rank sum test	4. Julio Iglesias
• Signed rank test	5. Beyonce
	6. Dolly Parton
• Kruskal-Wallis test	7. Gloria Estefan
• Fridman test	8. Bruce Springsteen
	9. Victoria Beckham
	10. Barbara Streisand

Example of ranking: 10 richest singers

The list of frequentist tests

One-sample tests

- One sample t-test: normal population distribution
- Large sample test for mean
- Large sample test for proportion: categorical data
- Small sample test for proportion: categorical data
- Chi-squared test of goodness of fit: categorical data, large sample
- Chi-squared test of independence: categorical data, large sample
- Model utility test: linear model, several explanatory variables, normal noise, homoscedasticity

Two-sample tests

- Two sample t-test: normal populations, equal variances, independent samples
- Fisher's exact test: categorical data, independent samples
- McNemar: categorical data, matched samples, large samples

Several samples

- ANOVA 1: normal population distributions, equal variances, independent samples
- ANOVA 2: normal population distributions, equal variances, matched samples
- Chi-squared test of homogeneity: categorical data, independent samples, large samples

Non-parametric tests

- Sign test: one sample
- Signed rank test: two matched samples, symmetric distribution of differences
- Rank sum test: two independent samples
- Kruskal-Wallis: several independent samples
- Fridman: several matched samples

Consider a random sample (x_1, \ldots, x_n) without assuming any parametric model for the unknown population distribution. The population median m is defined by the equality

$$P(X < m) = P(X > m).$$

If it is known that the population distribution is continuous, we get $P(X \le m) = \frac{1}{2}$.

The sign test is a non-parametric test of H_0 : $m = m_0$ against the two-sided alternative H_1 : $m \neq m_0$. The sign test statistic

$$y_0 = \sum_{i=1}^n \mathbf{1}_{\{x_i \le m_0\}}$$

counts the number of observations below the null hypothesis value. It has a simple null distribution $Y_0 \stackrel{H_0}{\sim} \operatorname{Bin}(n, 0.5)$.

Question. 11 subjects exhibited values (y_i, x_i) before and after smoking a cigarette. Only one had $y_i > x_i$. How can we apply the sign test?

Confidence interval for the median

Consider a random sample (x_1, \ldots, x_n) from a population distribution with unknown median m. Let $(x_{(1)}, \ldots, x_{(n)})$ be the ordered sample. For any given $k < \frac{n}{2}$ we treat

$$I_m = (x_{(k)}, x_{(n-k+1)})$$

as a confidence interval for m. The number of observations below m

$$y = \sum_{i=1}^n \mathbb{1}_{\{x_i \le m\}}$$

has the symmetric binomial distribution $Y \sim Bin(n, 0.5)$. The confidence level of I_m is computed from

$$p_k = P(X_{(k)} < m < X_{(n-k+1)}) = P(k \le Y \le n-k) = \sum_{i=k}^{n-k} \binom{n}{i} 2^{-n}$$

For example, if n = 25,

k	6	7	8	9	10	11	12
p_k	99.6%	98.6%	95.7%	89.2%	77.0%	57.6%	31.0%

The rank sum test is a non-parametric test for two independent samples (x_1, \ldots, x_n) and (y_1, \ldots, y_m) , which does not assume normality of population distributions.

Assume continuous population distributions F_1 and F_2 , and consider

$$H_0: F_1 = F_2$$
 against $H_1: F_1 \neq F_2$.

The rank sum test procedure:

- 1. pool the samples and replace the data values by their ranks $1, 2, \ldots, n + m$, from the smallest value to the largest,
- 2. compute two test statistics $r_1 = \text{sum of the ranks of } x$ -observations, and $r_2 = \text{sum of } y$ -ranks, where $r_1 + r_2 = \frac{(n+m)(n+m+1)}{2}$,
- 3. use the null distribution table, which depend only on the sample sizes n and m, to find a p-value.

For $n \ge 10$, $m \ge 10$ apply approximate null distributions $N(\mu_1, \sigma)$ and $N(\mu_2, \sigma)$

$$\mu_1 = \frac{n(n+m+1)}{2}, \quad \mu_2 = \frac{m(n+m+1)}{2}, \quad \sigma^2 = \frac{mn(n+m+1)}{12}.$$

Two friends A and B competing on 100 m distance made independent runnings. Athlete A ran n = 3 times and B m = 4 times. All three best times were shown by A.

What is the one-sided p-value?

The rank sum test statistics

$$r_1 = 1 + 2 + 3 = 6$$
, $r_2 = 4 + 5 + 6 + 7 = 22$.

Under the null hypothesis of no difference, the event $r_1 = 6$ corresponds to drawing from an urn containing 3 black and 4 white balls.

If 3 balls are drawn without replacement, the probability that all 3 are black balls is

$$\frac{3}{7}\frac{2}{6}\frac{1}{5} = \frac{1}{35} = 0.03$$

The one-sided p-value is

 $P(R_1 \le 6) = P(R_1 = 6) = P(\text{all three balls are black}) = 0.03$

less than 5%.

Signed rank test

Before y_i	After x_i	$d_i = x_i - y_i$	Rank of $ d_i $	Signed rank
25	27	2	2	+2
25	29	4	3.5	+3.5
27	37	10	6	+6
28	43	15	8.5	+8.5
30	46	16	10	+10
44	56	12	7	+7
52	61	9	5	+5
53	57	4	3.5	+3.5
53	80	27	11	+11
60	59	-1	1	-1
67	82	15	8.5	+8.5

Return to smoking and platelet aggregation example.

Without assumption of normality, we can apply the sign test to

 $H_0: m = 0$ against $H_1: m \neq 0$

where m is the median of the differences. A two-sided p-value of the sign test is $2[(0.5)^{11} + 11(0.5)^{11}] = 0.012$.

The sign test takes into account only the sign of the differences. The signed rank test is another non-parametric test of $H_0: m = 0$. It requires an extra assumption: the distribution of differences is symmetric about its median m. Test statistics: either w_+ or w_-

$$w_{+} = \sum_{i:d_{i}>0} \operatorname{rank}(|d_{i}|), \qquad w_{-} = \sum_{i:d_{i}<0} \operatorname{rank}(|d_{i}|)$$

The null distributions of W_+ and W_- are the same and tabulated for smaller values of n. For $n \ge 20$, one can use the $N(\mu, \sigma)$ approximation of the null distribution with

$$\mu = \frac{n(n+1)}{4}, \qquad \sigma^2 = \frac{n(n+1)(2n+1)}{24}.$$

Example: platelet aggregation

Observed value of the test statistic $w_{-} = 1$. Two-sided p-value = 0.002. It is important to verify the extra assumption and check the symmetry of differences (d_i) around its sample median.

Kruskal-Wallis test

A nonparametric test for $I \ge 3$ independent samples each of size n, without assuming normality. Null hypothesis of no treatment effect

 H_0 : all $N = I \cdot n$ observations are equal in distribution.

Extending the idea of the rank-sum test dealing with I = 2 samples, consider the pooled sample of size N.

Let r_{ik} be the pooled ranks of the sample values y_{ik} , so that

$$\sum_{i} \sum_{k} r_{ik} = 1 + 2 + \ldots + N = \frac{N(N+1)}{2},$$

implying that the mean rank is $\bar{r}_{..} = \frac{N+1}{2}$.

Kruskal-Wallis test statistic
$$W = \frac{12n}{N(N+1)} \sum_{i=1}^{I} (\bar{r}_{i} - \frac{N+1}{2})^2$$

Reject H_0 for large W using the exact null distribution table.

An approximate null distribution $W \stackrel{H_0}{\approx} \chi^2_{I-1}$ is used if $N \ge 15$.

In the table below the actual measurements are replaced by their ranks $1 \div 70$. The observed Kruskal-Wallis test statistic W = 28.17. Using χ_6^2 -distribution table we get a p-value of approximately 0.0001.

Labs	1	2	3	4	5	6	7
	70	4	35	6	46	48	38
	63	3	45	7	21	5	50
	53	65	40	13	47	22	52
	64	69	41	20	8	28	58
	59	66	57	16	14	37	68
	54	39	32	26	42	2	1
	43	44	51	17	9	31	15
	61	56	25	11	10	34	23
	67	24	29	27	33	49	60
	55	19	30	12	36	18	62
Means	58.9	38.9	38.5	15.5	26.6	27.4	42.7

Question. What is $\bar{r}_{..}$ in this case? Why df = 6?

Friedman test

Data y_{ij} for I treatments and J blocks. Friedman test is a nonparametric test for testing H_0 : no treatment effect.

The Friedman test is based on within block ranking:

$$(r_{1j},\ldots,r_{Ij})$$
 = ranks of (y_{1j},\ldots,y_{Ij}) ,

so that for each $j = 1, \ldots, J$,

$$r_{1j} + \ldots + r_{Ij} = 1 + 2 + \ldots + I = \frac{I(I+1)}{2}$$

For these ranks, we have $\frac{1}{I}(r_{1j}+\ldots+r_{Ij})=\frac{I+1}{2}$ and therefore $\bar{r}_{..}=\frac{I+1}{2}$.

Friedman test statistic
$$Q = \frac{12J}{I(I+1)} \sum_{i=1}^{I} (\bar{r}_{i.} - \frac{I+1}{2})^2$$

Test statistic Q is a measure of agreement between J rankings, so we reject H_0 for large values of Q.

An approximate null distribution $Q \stackrel{H_0}{\approx} \chi^2_{I-1}$.

Question. Why the Kruskal-Wallis test cannot be applied here?

Example: itching

From the rank values r_{ij} and \bar{r}_{i} given in the next table and $\frac{I+1}{2} = 4$, we find the Friedman test statistic value to be Q = 14.86.

Using the chi-squared distribution table with df = 6 we obtain the p-value is approximately 2.14%.

Subject	No Drug	Placebo	Papa	Morphine	Amin	\mathbf{Pent}	Trip
BG	5	7	1	6	3.5	2	3.5
$_{ m JF}$	6	5	1	2	3	7	4
BS	7	6	4	2	1	5	3
\mathbf{SI}	6	7	1	4	3	2	5
BW	3	4	2	5	1	7	6
TS	7	3	1	5	2	4	6
GM	7	5	1	2	3	6	4
\mathbf{SS}	1	2	5	3	7	6	4
MU	5	3	2	4	6	7	1
OS	4	7	5	2	1	3	6
$\bar{r}_{i.}$	5.10	4.90	2.30	3.50	3.05	4.90	4.25

Question. What is $\bar{r}_{..}$ in this case?