Serik Sagitov: Statistical Inference course

Slides 14: Non-parametric tests

- Sign test

1. Herb Alpert
2. Madonna

- Confidence interval for the median
- Rank sum test
- Signed rank test
- Kruskal-Wallis test
- Fridman test

3. Celine Dion
4. Julio Iglesias
5. Beyonce
6. Dolly Parton
7. Gloria Estefan
8. Bruce Springsteen
9. Victoria Beckham
10. Barbara Streisand

Example of ranking: 10 richest singers

The list of frequentist tests

One-sample tests

- One sample t-test: normal population distribution
- Large sample test for mean
- Large sample test for proportion: categorical data
- Small sample test for proportion: categorical data
- Chi-squared test of goodness of fit: categorical data, large sample
- Chi-squared test of independence: categorical data, large sample
- Model utility test: linear model, several explanatory variables, normal noise, homoscedasticity

Two-sample tests

- Two sample t-test: normal populations, equal variances, independent samples
- Fisher's exact test: categorical data, independent samples
- McNemar: categorical data, matched samples, large samples

Several samples

- ANOVA 1: normal population distributions, equal variances, independent samples
- ANOVA 2: normal population distributions, equal variances, matched samples
- Chi-squared test of homogeneity: categorical data, independent samples, large samples

Non-parametric tests

- Sign test: one sample
- Signed rank test: two matched samples, symmetric distribution of differences
- Rank sum test: two independent samples
- Kruskal-Wallis: several independent samples
- Fridman: several matched samples

Consider a random sample $\left(x_{1}, \ldots, x_{n}\right)$ without assuming any parametric model for the unknown population distribution. The population median m is defined by the equality

$$
\mathrm{P}(X<m)=\mathrm{P}(X>m)
$$

If it is known that the population distribution is continuous, we get $\mathrm{P}(X \leq m)=\frac{1}{2}$.

The sign test is a non-parametric test of $H_{0}: m=m_{0}$ against the two-sided alternative $H_{1}: m \neq m_{0}$. The sign test statistic

$$
y_{0}=\sum_{i=1}^{n} 1_{\left\{x_{i} \leq m_{0}\right\}}
$$

counts the number of observations below the null hypothesis value. It has a simple null distribution $Y_{0} \stackrel{H_{0}}{\sim} \operatorname{Bin}(n, 0.5)$.
Question. 11 subjects exhibited values (y_{i}, x_{i}) before and after smoking a cigarette. Only one had $y_{i}>x_{i}$. How can we apply the sign test?

Consider a random sample $\left(x_{1}, \ldots, x_{n}\right)$ from a population distribution with unknown median m. Let $\left(x_{(1)}, \ldots, x_{(n)}\right)$ be the ordered sample. For any given $k<\frac{n}{2}$ we treat

$$
I_{m}=\left(x_{(k)}, x_{(n-k+1)}\right)
$$

as a confidence interval for m. The number of observations below m

$$
y=\sum_{i=1}^{n} 1_{\left\{x_{i} \leq m\right\}}
$$

has the symmetric binomial distribution $Y \sim \operatorname{Bin}(n, 0.5)$. The confidence level of I_{m} is computed from

$$
p_{k}=\mathrm{P}\left(X_{(k)}<m<X_{(n-k+1)}\right)=\mathrm{P}(k \leq Y \leq n-k)=\sum_{i=k}^{n-k}\binom{n}{i} 2^{-n}
$$

For example, if $n=25$,

k	6	7	8	9	10	11	12
p_{k}	99.6%	98.6%	95.7%	89.2%	77.0%	57.6%	31.0%

The rank sum test is a non-parametric test for two independent samples $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{m}\right)$, which does not assume normality of population distributions.

Assume continuous population distributions F_{1} and F_{2}, and consider

$$
H_{0}: F_{1}=F_{2} \text { against } H_{1}: F_{1} \neq F_{2} .
$$

The rank sum test procedure:

1. pool the samples and replace the data values by their ranks $1,2, \ldots, n+m$, from the smallest value to the largest,
2. compute two test statistics $r_{1}=$ sum of the ranks of x-observations, and $r_{2}=$ sum of y-ranks, where $r_{1}+r_{2}=\frac{(n+m)(n+m+1)}{2}$,
3. use the null distribution table, which depend only on the sample sizes n and m, to find a p-value.
For $n \geq 10, m \geq 10$ apply approximate null distributions $\mathrm{N}\left(\mu_{1}, \sigma\right)$ and $\mathrm{N}\left(\mu_{2}, \sigma\right)$

$$
\mu_{1}=\frac{n(n+m+1)}{2}, \quad \mu_{2}=\frac{m(n+m+1)}{2}, \quad \sigma^{2}=\frac{m n(n+m+1)}{12} .
$$

Example: two athletes

Two friends A and B competing on 100 m distance made independent runnings. Athlete A ran $n=3$ times and $\mathrm{B} m=4$ times. All three best times were shown by A.

What is the one-sided p-value?
The rank sum test statistics

$$
r_{1}=1+2+3=6, \quad r_{2}=4+5+6+7=22 .
$$

Under the null hypothesis of no difference, the event $r_{1}=6$ corresponds to drawing from an urn containing 3 black and 4 white balls.

If 3 balls are drawn without replacement, the probability that all 3 are black balls is

$$
\frac{3}{7} \frac{2}{6} \frac{1}{5}=\frac{1}{35}=0.03
$$

The one-sided p-value is

$$
\mathrm{P}\left(R_{1} \leq 6\right)=\mathrm{P}\left(R_{1}=6\right)=\mathrm{P}(\text { all three balls are black })=0.03
$$

less than 5%.

Signed rank test
Return to smoking and platelet aggregation example.

Before y_{i}	After x_{i}	$d_{i}=x_{i}-y_{i}$	Rank of $\left\|d_{i}\right\|$	Signed rank
25	27	2	2	+2
25	29	4	3.5	+3.5
27	37	10	6	+6
28	43	15	8.5	+8.5
30	46	16	10	+10
44	56	12	7	+7
52	61	9	5	+5
53	57	4	3.5	+3.5
53	80	27	11	+11
60	59	-1	1	-1
67	82	15	8.5	+8.5

Without assumption of normality, we can apply the sign test to

$$
H_{0}: m=0 \text { against } H_{1}: m \neq 0
$$

where m is the median of the differences. A two-sided p -value of the sign test is $2\left[(0.5)^{11}+11(0.5)^{11}\right]=0.012$.

The sign test takes into account only the sign of the differences. The signed rank test is another non-parametric test of $H_{0}: m=0$. It requires an extra assumption: the distribution of differences is symmetric about its median m. Test statistics: either w_{+}or w_{-}

$$
w_{+}=\sum_{i: d_{i}>0} \operatorname{rank}\left(\left|d_{i}\right|\right), \quad w_{-}=\sum_{i: d_{i}<0} \operatorname{rank}\left(\left|d_{i}\right|\right)
$$

The null distributions of W_{+}and W_{-}are the same and tabulated for smaller values of n. For $n \geq 20$, one can use the $\mathrm{N}(\mu, \sigma)$ approximation of the null distribution with

$$
\mu=\frac{n(n+1)}{4}, \quad \sigma^{2}=\frac{n(n+1)(2 n+1)}{24} .
$$

Example: platelet aggregation
Observed value of the test statistic $w_{-}=1$. Two-sided p-value $=0.002$. It is important to verify the extra assumption and check the symmetry of differences $\left(d_{i}\right)$ around its sample median.

A nonparametric test for $I \geq 3$ independent samples each of size n, without assuming normality. Null hypothesis of no treatment effect

$$
H_{0}: \text { all } N=I \cdot n \text { observations are equal in distribution. }
$$

Extending the idea of the rank-sum test dealing with $I=2$ samples, consider the pooled sample of size N.

Let $r_{i k}$ be the pooled ranks of the sample values $y_{i k}$, so that

$$
\sum_{i} \sum_{k} r_{i k}=1+2+\ldots+N=\frac{N(N+1)}{2}
$$

implying that the mean rank is $\bar{r}_{. .}=\frac{N+1}{2}$.

$$
\text { Kruskal-Wallis test statistic } W=\frac{12 n}{N(N+1)} \sum_{i=1}^{I}\left(\bar{r}_{i .}-\frac{N+1}{2}\right)^{2}
$$

Reject H_{0} for large W using the exact null distribution table.
An approximate null distribution $W \stackrel{H_{0}}{\approx} \chi_{I-1}^{2}$ is used if $N \geq 15$.

In the table below the actual measurements are replaced by their ranks $1 \div 70$. The observed Kruskal-Wallis test statistic $W=28.17$. Using χ_{6}^{2}-distribution table we get a p-value of approximately 0.0001 .

Labs	1	2	3	4	5	6	7
	70	4	35	6	46	48	38
	63	3	45	7	21	5	50
	53	65	40	13	47	22	52
	64	69	41	20	8	28	58
	59	66	57	16	14	37	68
	54	39	32	26	42	2	1
	43	44	51	17	9	31	15
	61	56	25	11	10	34	23
	67	24	29	27	33	49	60
	55	19	30	12	36	18	62
Means	58.9	38.9	38.5	15.5	26.6	27.4	42.7

Question. What is $\bar{r}_{\text {.. }}$ in this case? Why $\mathrm{df}=6$?

Data $y_{i j}$ for I treatments and J blocks. Friedman test is a nonparametric test for testing H_{0} : no treatment effect.

The Friedman test is based on within block ranking:

$$
\left(r_{1 j}, \ldots, r_{I j}\right)=\text { ranks of }\left(y_{1 j}, \ldots, y_{I j}\right)
$$

so that for each $j=1, \ldots, J$,

$$
r_{1 j}+\ldots+r_{I j}=1+2+\ldots+I=\frac{I(I+1)}{2} .
$$

For these ranks, we have $\frac{1}{I}\left(r_{1 j}+\ldots+r_{I j}\right)=\frac{I+1}{2}$ and therefore $\bar{r}_{. .}=\frac{I+1}{2}$.

$$
\text { Friedman test statistic } Q=\frac{12 J}{I(I+1)} \sum_{i=1}^{I}\left(\bar{r}_{i .}-\frac{I+1}{2}\right)^{2}
$$

Test statistic Q is a measure of agreement between J rankings, so we reject H_{0} for large values of Q.
An approximate null distribution $Q \stackrel{H_{0}}{\approx} \chi_{I-1}^{2}$.
Question. Why the Kruskal-Wallis test cannot be applied here?

Example: itching
From the rank values $r_{i j}$ and \bar{r}_{i}. given in the next table and $\frac{I+1}{2}=4$, we find the Friedman test statistic value to be $Q=14.86$.

Using the chi-squared distribution table with $\mathrm{df}=6$ we obtain the p-value is approximately 2.14%.

Subject	No Drug	Placebo	Papa	Morphine	Amin	Pent	Trip
BG	5	7	1	6	3.5	2	3.5
JF	6	5	1	2	3	7	4
BS	7	6	4	2	1	5	3
SI	6	7	1	4	3	2	5
BW	3	4	2	5	1	7	6
TS	7	3	1	5	2	4	6
GM	7	5	1	2	3	6	4
SS	1	2	5	3	7	6	4
MU	5	3	2	4	6	7	1
OS	4	7	5	2	1	3	6
$\bar{r}_{i .}$	5.10	4.90	2.30	3.50	3.05	4.90	4.25

Question. What is $\bar{r}_{\text {.. }}$ in this case?

