
Serik Sagitov: Statistical Inference course

Slides 5: Hypothesis testing

• List of frequentist tests studied in the course

• Test statistic

• Two types of error

• Large sample test for proportion

• P-value

• Large sample test for the mean

• Sample size determination
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The list of frequentist tests
One-sample tests

• One sample t-test: normal population distribution

• Large sample test for mean

• Large sample test for proportion: categorical data

• Small sample test for proportion: categorical data

• Chi-squared test of goodness of fit: categorical data, large sample

• Chi-squared test of independence: categorical data, large sample

• Model utility test: linear model, several explanatory variables, normal noise,
homoscedasticity

Two-sample tests

• Two sample t-test: normal populations, equal variances, independent samples

• Fisher’s exact test: categorical data, independent samples

• McNemar: categorical data, matched samples, large samples

Several samples

• ANOVA 1: normal population distributions, equal variances, independent samples

• ANOVA 2: normal population distributions, equal variances, matched samples

• Chi-squared test of homogeneity: categorical data, independent samples, large samples

Non-parametric tests

• Sign test: one sample

• Signed rank test: two matched samples, symmetric distribution of differences

• Rank sum test: two independent samples

• Kruskal-Wallis: several independent samples

• Fridman: several matched samples
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Face mask effect against covid-19

A randomised trial of more than 6,000 participants in Denmark adds
new evidence to what is known about whether masks protect the wearer
from SARS-CoV-2 infection in a setting of social distancing.

Control group without a surgical mask when outside the home.

Mask group with a surgical mask when outside the home.

Mask use outside of hospitals was uncommon in Denmark at the time.
After 1 month of follow-up,

1.8% of participants in the mask group and

2.1% in the control group developed infection.

Question1. In what sense the percentages 1.8% and 2.1% are random
outcomes?

Question 2. Would you wear a mask to decrease the infection risk by
0.3%?
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Test statistics

Task: collect data (x1, . . . , xn) in a randomised experiment and using the
data choose between two mutually exclusive hypotheses

null hypothesis H0: the effect of interest is zero,

alternative hypothesis H1: the effect of interest is not zero.

H0 represents an established theory that must be discredited in order to
demonstrate some effect H1.

A decision rule for hypotheses testing is based a test statistic
t = t(x1, . . . , xn), a function of the data with distinct typical values
under H0 and H1.

The decision rule based on a rejection region R would

reject H0 in favor of H1 if t ∈ R (positive decision)

do not reject H0 if t /∈ R (negative decision)

Question. What kind of test statistic can be useful to decide whether a
face mask have effect against covid-19?
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Two types of error

There are four possible outcomes in making such a decision

State of nature Negative decision Positive decision

H0 is true True negative outcome Type I error

H1 is true Type II error True positive outcome

Four conditional probabilities:

α = P(T ∈ R|H0) conditional probability of type I error,

1− α = P(T /∈ R|H0) specificity of the test,

β = P(T /∈ R|H1) conditional probability of type II error,

1− β = P(T ∈ R|H1) sensitivity of the test (power).

The type I error size α is called the significance level of the test.

Question. Describe the two types of errors in the face mask case. Which
type of error has more severe consequences for the society?

5



Large sample test for proportion

H0 : p = p0 against H1 : p = p1

Take t = p̂ as test statistic. Then for large n,

T
H0≈ N(p0,

√
p0(1−p0)

n
)

T
H1≈ N(p1,

√
p1(1−p1)

n
)

A significance test tries to control the type I error:

1. fix an appropriate significance level α, commonly used significance
levels are 5%, 1%, 0.1%,

2. find R = Rα from α = P(T ∈ R|H0) using the null distribution of
the test statistic T .

Question 1. What happens with the shaded areas as you move the red
line to the left or to the right?

Question 2. Given H0 : p = 0.02, H1 : p = 0.03, α = 0.05, n = 200,
what is the rejection region?
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P-value of the test

A p-value is the probability of obtaining a test statistic value as extreme
or more extreme than the observed one, given that H0 is true.

For a given significance level α = 0.05,

reject H0, if p-value ≤ 0.05, and do not reject H0, if p-value > 0.05

Observe that the p-value depends on the data and therefore, is a
realisation of a random variable P.

Here, the source of randomness is in the sampling procedure: if you take
another sample, you obtain a different p-value.

Search Wikipedia for
data dredging (data fishing, p-hacking).

The p-value has a uniform null distribution.

Question. Given that H0 is true, what is the probability to get a 5%
significant result by chance?
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Large sample test for the mean

Problem. It is hoped that a newly developed pain reliever will more
quickly produce perceptible reduction in pain to patients after minor
surgeries than a standard pain reliever. The standard pain reliever is
known to bring relief in an average of µ0 = 3.5 minutes.

To test whether the new pain reliever works more quickly than the
standard one, n = 50 patients were given the new pain reliever. The
experiment yielded x̄ = 3.1 and s = 1.5.

Is there sufficient evidence at the 5% level of significance, that the new
pain reliever delivers relief more quickly?

Solution. We test H0 : µ = µ0 against H1 : µ < µ0 using x̄−µ0
s/
√
n
as the

test statistic. The one-sided p-value is

P( X̄−µ0
s/
√
n
≤ 3.1−3.5

1.5/
√

50
) ≈ Φ(−1.89) = 1− Φ(1.89) = 1− 0.97 = 0.03

is less than 5%, therefore we reject H0 in favour of the one-sided H1

claiming that the new pain reliever delivers relief more quickly.
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Confidence interval method of hypotheses testing

Observe that at significance level α the rejection rule can be expressed

R = {µ0 /∈ Iµ}

in terms of a 100(1-α)% confidence interval for the mean. Having such
confidence interval, reject H0 : µ = µ0 if the interval does not cover the
value µ0.

Confidence interval is more informative than a test result, as
a wider confidence interval indicates less power of the test

If Iµ stands for the random interval behind Iµ, then

P(µ0 /∈ Iµ|H0) = α

P(µ0 /∈ Iµ|H1) = 1− β

Question. The last example with n = 50, x̄ = 3.1, s = 1.5 gives a 95%

Iµ = 3.1± 1.96 · 1.5√
50

= 3.1± 0.42

covering 3.5. But we previously rejected H0 : µ = 3.5. What is going on?
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Sample size determination

Consider two simple hypotheses

H0 : µ = µ0, H1 : µ = µ1.

The sample size needed when both α and β are given, is computed as

n =
( zα+zβ
|µ1−µ0|

)2
,

where zα is the upper α percentage point of N(0,1). For example

zα = 1.645 for α = 0.05, zβ = 1.28 for β = 0.10

Proof:

β = P
(
X̄−µ0
s/
√
n
≤ zα|H1

)
.

= P
(
X̄−µ1
s/
√
n
≤ zα + µ0−µ1

s/
√
n
|H1

)
≈ Φ

(
zα + µ0−µ1

s/
√
n

)
.

Question. How larger sample is needed if the effect size |µ1 − µ0| gets
twofold smaller?
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