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Slides 16: Simple regression model
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• Least squares estimates

• Coefficient of determination

• Residuals

• Confidence intervals

• Model utility test

• Prediction interval

Correlation does not imply causation
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Regression to mediocrity

Pearson’s father-son data: 1,078 pairs of heights (England, 1900).

Focussing on 6 feet tall fathers, we see that their sons on average are
shorter than their fathers. F. Galton called this regression to mediocrity.

Question. Which of the previous statistical tools could be applied?
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Simple linear regression model

A simple linear regression model is based on the linear relation

Y (x) = β0 + β1x+ ε, ε ∼ N(0, σ),

where ε is the noisy part of the response, that is not explained by the
value x of the main explanatory variable. The assumption of
homoscedasticity requires that σ is independent of the x-value.

For a given collection of x-values (x1, . . . , xn), and a vector (e1, . . . , en)

of independent realisations of ε, we get a sample of response values

yi = β0 + β1xi + ei, i = 1, . . . , n.

The likelihood is a function of the 3D parameter θ = (β0, β1, σ
2)

L(θ) =

n∏
i=1

1√
2πσ

exp
{
− (yi−β0−β1xi)2

2σ2

}
= Cσ−ne−

S(β0,β1)

2σ2 ,

where

C = (2π)−n/2, S(β0, β1) =

n∑
i=1

(yi − β0 − β1xi)
2.
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Maximum likelihood estimates

Log-likelihood function

l(θ) = lnL(θ) = lnC − n lnσ − S(β0,β1)

2σ2

Maximisation of l(θ) over (β0, β1) is equivalent to minimisation of the
sum of squares S(β0, β1).
Therefore, the MLEs of (β0, β1) are called the least squares estimates.

Observe that

S(β0,β1)
n

= 1
n

n∑
i=1

(yi − β0 − β1xi)
2

= β2
0 + 2β0β1x̄− 2β0ȳ − 2β1xy + β2

1x2 + y2

with the following set of five sufficient statistics:

x̄ = x1+...+xn
n

, ȳ = y1+...+yn
n

x2 =
x21+...+x2n

n
, y2 =

y21+...+y2n
n

, xy = x1y1+...+xnyn
n
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Normal equations

To obtain MLEs of θ = (β0, β1, σ
2) compute the derivatives

∂l
∂β0

= − 1
2σ2

∂S
∂β0

,

∂l
∂β1

= − 1
2σ2

∂S
∂β1

,

∂l
∂σ2 = − n

2σ2 + S(β0,β1)

2σ4 ,

and set them equal to zeros.

Putting ∂S
∂β0

= 0 and ∂S
∂β1

= 0, we get the so-called normal equations:

b0 + b1x̄ = ȳ, b0x̄+ b1x2 = xy.

Solving this system of linear equations we get

b1 =
xy − x̄ȳ
x2 − x̄2

=
rsy
sx

, b0 = ȳ − b1x̄,

where r is the sample correlation coefficient and

s2
x = 1

n−1

∑
(xi − x̄)2, s2

y = 1
n−1

∑
(yi − ȳ)2.
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The sample correlation coefficient

The sample correlation coefficient r is an unbiased estimate of ρ

r =
sxy

sxsy
, ρ = Cov(X,Y )

σxσy
,

where the sample covariance sxy is an unbiased estimate of Cov(X,Y )

sxy = 1
n−1

∑
(xi − x̄)(yi − ȳ), Cov(X,Y ) = E(X − µx)(Y − µy),

provided that (x1, . . . , xn) is a random sample from X-distribution.

As a result, the fitted regression line y = b0 + b1x takes the form

y = ȳ + r
sy
sx

(x− x̄),

Notice that

S(b0, b1) =

n∑
i=1

(yi − ŷi)2,

where ŷi are the predicted responses:

ŷi = b0 + b1xi, i = 1, . . . , n.
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Estimating the size of the noise

Putting ∂l
∂σ2 = 0, we get

0 = − n
2σ2 + S(β0,β1)

2σ4

and replacing (β0, β1) with (b0, b1), we find the MLE of σ2 to be

σ̂2 = S(b0,b1)
n

,

The maximum likelihood estimate of σ̂2 is only asymptotically unbiased
estimate of σ2. An unbiased estimate of σ2 is given by

s2 = S(b0,b1)
n−2

.

The error sum of squares

SSE = S(b0, b1) =
∑

(yi − ŷi)2 = (n− 1)s2
y(1− r2)

divided by n− 2 gives a very useful expression

s2 = n−1
n−2

s2
y(1− r2).

Question. If r = 0.5, what proportion of s2
y is explained by s2?
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Residuals

Residuals are differences between observed and predicted responses

êi = yi − ŷi = (yi − ȳ)− r sy
sx

(xi − x̄)

The residuals (ê1, . . . , ên) are linearly connected via

ê1 + . . .+ ên = 0, x1ê1 + . . .+ xnên = 0, ŷ1ê1 + . . .+ ŷnên = 0,

so we can say that êi are uncorrelated with xi and êi are uncorrelated
with ŷi. The residuals êi are realisations of random variables Êi having
normal distributions with zero means and

Var(Êi) = σ2
(

1−
∑

k(xk−xi)2

n(n−1)s2x

)
, Cov(Êi, Êj) = −σ2 ·

∑
k(xk−xi)(xk−xj)

n(n−1)s2x
.

Test normality using normal QQ-plot for the standardised residuals

ẽi =
êi
si
, si = s

√
1−

∑
k(xk−xi)2

n(n−1)s2x
, i = 1, . . . , n,

where si are the estimated standard deviations of Êi. In some cases, the
non-linearity problem can fixed by a log-log transformation of the data.
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Coefficient of determination r2

Using yi − ȳ = ŷi − ȳ + êi, we obtain a decomposition

SST = SSR + SSE,

where
SST =

∑
i

(yi − ȳ)2 = (n− 1)s2
y

is the total sum of squares, and

SSR =
∑
i

(ŷi − ȳ)2 = (n− 1)b21s
2
x = (n− 1)r2s2

y

is the regression sum of squares. Combining these relations, we find that

r2 =
SSR

SST
= 1− SSE

SST
.

Coefficient of determination r2 is the proportion of variation in the
response variable explained by the variation of the predictor.

Observe that r2 has a more intuitive meaning than the sample
correlation coefficient r.
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Confidence intervals and hypothesis testing

The least squares estimators (b0, b1) are unbiased and consistent. Due to
the normality assumption we have the following exact distributions

B0 ∼ N(β0, σ0), σ2
0 =

σ2 ∑
x2i

n(n−1)s2x
, s2

b0 =
s2

∑
x2i

n(n−1)s2x
, B0−β0

SB0
∼ tn−2,

B1 ∼ N(β1, σ1), σ2
1 = σ2

(n−1)s2x
, s2

b1 = s2

(n−1)s2x
, B1−β1

SB1
∼ tn−2.

There is a weak correlation between the two estimators:

Cov(B0, B1) = − σ2x̄
(n−1)s2x

which is negative, if x̄ > 0, and positive, if x̄ < 0.

Exact 100(1− α)% confidence intervals Iβi = bi ± tn−2(α
2

) · sbi

For i = 0 or i = 1 and a given value β∗, one would like to the the null
hypothesis H0: βi = β∗. Use the test statistic

t =
bi − β∗

sbi
,

hving the exact null distribution T ∼ tn−2.
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Model utility test

Two important examples of hypothesis testing for the linear regression.

1. Model utility test is built around the null hypothesis

H0 : β1 = 0

stating that there is no relationship between the predictor variable x
and the response y. The corresponding test statistic, called t-value,

t =
b1
sb1

=
r
√
n− 2√

1− r2

has an exact tn−2 null distribution.

2. Zero-intercept test aims at

H0 : β0 = 0.

Compute its t-value
t = b0/sb0 ,

and find whether this value is significant, again using t-distribution
with df = n− 2.
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Intervals for individual observations

Given the earlier sample of size n consider a new value x of the predictor
variable. We wish to say something on the unobserved response value

Y = β0 + β1x+ ε.

Its expected value
µ = β0 + β1x

is estimated by
µ̂ = b0 + b1x.

The standard error of µ̂ is computed as the square root of

Var(µ̂) = σ2

n
+ σ2

n−1
· (x−x̄

sx
)2.

An exact 100(1− α)% confidence interval

Iµ = b0 + b1x± tn−2(α
2

) · s
√

1
n

+ 1
n−1

(x−x̄
sx

)2

Question. In what sense µ̂ is a random variable? Is it independent of ε
that defines the random variable Y ?
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Prediction interval

This Iµ should be compared to the prediction interval for Y

I = b0 + b1x± tn−2(α
2

) · s
√

1 + 1
n

+ 1
n−1

(x−x̄
sx

)2

obtained from

Var(Y − µ̂) = Var(µ+ ε− µ̂) = σ2 + Var(µ̂) = σ2(1 + 1
n

+ 1
n−1
· (x−x̄

sx
)2).

Prediction interval I
has wider limits than Iµ,
since it contains uncertainty
due to the noise component ε

The further x lies from x̄,
the wider are the intervals.
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