Serik Sagitov: Statistical Inference course

Slides 11: t-tests

- t-distributions
- Exact confidence interval for μ
- Exact confidence interval for σ
- One sample t-test
- Two sample t-test

The risk to a quality test result comes from very small samples; not from a sample that's too large.

Exact confidence interval for the mean

In this special case, when a random sample (x_1, \ldots, x_n) is taken from a normal distribution $N(\mu, \sigma)$,

$$\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t_{n-1}$$

has the so-called t-distribution with n-1 degrees of freedom. This implies an exact $100(1-\alpha)\%$ confidence interval

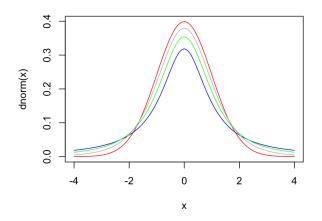
$$I_{\mu} = \bar{x} \pm t_{n-1}\left(\frac{\alpha}{2}\right) \cdot \frac{s}{\sqrt{n}}$$

For example,

 $t_{10}(0.025) = 2.23,$ $t_{20}(0.025) = 2.09,$ $t_{30}(0.025) = 2.04$

A t_k -distribution curve looks similar to N(0,1)-curve being symmetric around zero.

If $k \geq 3$, then the variance is $\frac{k}{k-2}$.



t-distribution curves with df = 1, 2, 5, ∞

Exact confidence interval for σ

If Z, Z_1, \ldots, Z_k are N(0,1) and independent, then

$$\frac{Z}{\sqrt{(Z_1^2 + \ldots + Z_k^2)/k}} \sim t_k.$$

Moreover, in the $N(\mu, \sigma)$ case we get access to an exact confidence interval formula for the variance thanks to the following result.

Exact distribution
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$$

Exact $100(1-\alpha)\%$ confidence interval

$$I_{\sigma} = \left(c(\frac{\alpha}{2})s, \ c(1-\frac{\alpha}{2})s\right)$$

where $c^2(p) = \frac{n-1}{\chi^2_{n-1}(p)}$. Examples of 95% confidence intervals

 $I_{\sigma} = (0.69s, 1.82s) \text{ for } n = 10,$ $I_{\sigma} = (0.74s, 1.55s) \text{ for } n = 16,$ $I_{\sigma} = (0.78s, 1.39s) \text{ for } n = 25,$ $I_{\sigma} = (0.85s, 1.22s) \text{ for } n = 60.$

For the normal model, $\operatorname{Var}(S^2) = \frac{2\sigma^4}{n-1}$, standard error for s^2 is $\sqrt{\frac{2}{n-1}}s^2$.

One sample t-test

We wish to test $H_0: \mu = \mu_0$ against either the two-sided or a one-sided alternative. One-sample t-test is used for small n, under the assumption that the population distribution is normal. The t-test statistic

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}, \qquad T \stackrel{H_0}{\sim} t_{n-1}.$$

Example: Smoking and platelet aggregation n = 11 paired observations (x_i, y_i) before and after smoking (25, 27); (25, 29); (27, 37); (28, 43); (30, 46); (44, 56); (52, 61); (53, 57); (53, 80); (60, 59); (67, 82)

Assuming that the population distribution for the differences $d_i = x_i - y_i$ is normal, we test

$$H_0: \mu_1 - \mu_2 = 0$$
 against $H_1: \mu_1 - \mu_2 \neq 0.$

using the one-sample t-test. The observed test statistic value

$$t_{\rm obs} = \frac{\bar{d}}{s_d/\sqrt{n}} = \frac{10.27}{2.40} = 4.28$$

gives two-sided p-value 2 * (1 - pt(4.28, 10)) = 0.0016.

Two independent random samples (x_1, \ldots, x_n) and (y_1, \ldots, y_m) from two populations. The key assumption for the two-sample t-test:

Two normal population distributions $X \sim N(\mu_1, \sigma)$, $Y \sim N(\mu_2, \sigma)$. In other words, there is a two level main factor plus noise $N(0, \sigma)$. The two levels of the main factor are quantified by μ_1 and μ_2 .

Define the pooled sample variance by

$$s_{\rm p}^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2 + \sum_{i=1}^m (y_i - \bar{y})^2}{n + m - 2}$$

Note that

$$s_{\rm p}^2 = \frac{n-1}{n+m-2} \cdot s_1^2 + \frac{m-1}{n+m-2} \cdot s_2^2$$

The pooled sample variance is an unbiased estimate of the variance σ^2 :

$$E(S_{p}^{2}) = \frac{n-1}{n+m-2}E(S_{1}^{2}) + \frac{m-1}{n+m-2}E(S_{2}^{2}) = \sigma^{2}.$$

Question. There are n + m terms in the numerator of s_p^2 but the denominator is n + m - 2. Why?

In the case of equal variances,

$$\operatorname{Var}(\bar{X} - \bar{Y}) = \operatorname{Var}(\bar{X}) + \operatorname{Var}(\bar{Y}) = \frac{\sigma^2}{n} + \frac{\sigma^2}{m} = \sigma^2 \frac{n+m}{nm},$$

which yields the following expression for the standard error

$$s_{\bar{x}-\bar{y}} = s_p \sqrt{\frac{n+m}{nm}}.$$

Exact distribution
$$\frac{(\bar{X}-\bar{Y})-(\mu_1-\mu_2)}{S_p} \cdot \sqrt{\frac{nm}{n+m}} \sim t_{n+m-2}$$

Exact confidence interval formula

$$I_{\mu_1-\mu_2} = \bar{x} - \bar{y} \pm t_{n+m-2}\left(\frac{\alpha}{2}\right) \cdot s_{\mathrm{p}} \cdot \sqrt{\frac{n+m}{nm}}.$$

Two sample t-test uses the test statistic $t = \frac{\bar{x} - \bar{y}}{s_{p}} \cdot \sqrt{\frac{nm}{n+m}}$ for testing H_0 : $\mu_1 = \mu_2$. The null distribution of the test statistic is

$$T \sim t_{n+m-2}$$

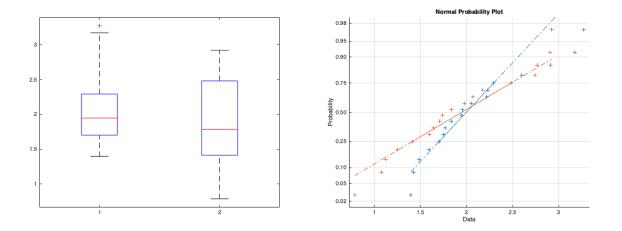
Example: iron retention

The data on percentage of iron retained by mice

Fe²⁺: n = 18, $\bar{x} = 9.63$, $s_1 = 6.69$, $s_{\bar{x}} = 1.58$ Fe³⁺: m = 18, $\bar{y} = 8.20$, $s_2 = 5.45$, $s_{\bar{y}} = 1.28$

has "iron form" as the main factor with two levels Fe^{2+} and Fe^{3+} . The boxplots and normal probability plots show that the distributions are not normal. After the log transformation the data look more like normally distributed

$$\bar{x}' = 2.09, \, s_1' = 0.659, \, s_{\bar{x}'} = 0.155, \ \bar{y}' = 1.90, \, s_2' = 0.574, \, s_{\bar{y}'} = 0.135.$$



For the log-transformed data we get $t_{obs} = 0.917$, df = 34, so that the two-sided p-value = 36.6%.