Serik Sagitov: Statistical Inference course

Slides 17: Multiple regression

- Design matrix
- Least squares estimates
- Matrix formulation of the simple linear regression
- t-values
- Quadratic regression
- Adjusted coefficient of determination
- Collinearity problem

Example
Trees: $n=31$
$x_{1}=$ diameter
$x_{2}=$ height
$y=$ volume

Linear model

height

$$
\begin{aligned}
& y_{1}=\beta_{0}+\beta_{1} x_{1,1}+\beta_{2} x_{1,2}+e_{1} \\
& \quad \ldots \\
& y_{n}=\beta_{0}+\beta_{1} x_{n, 1}+\beta_{2} x_{n, 2}+e_{n}
\end{aligned}
$$

where e_{1}, \ldots, e_{n} are independent realisations of the random noise

$$
\epsilon \sim \mathrm{N}(0, \sigma)
$$

Design matrix
With $p-1$ predictors, the corresponding data set consists of n vectors $\left(x_{i, 1}, \ldots, x_{i, p-1}, y_{i}\right)$ with $n>p$ and

$$
\begin{aligned}
y_{1} & =\beta_{0}+\beta_{1} x_{1,1}+\ldots+\beta_{p-1} x_{1, p-1}+e_{1} \\
& \ldots \\
y_{n} & =\beta_{0}+\beta_{1} x_{n, 1}+\ldots+\beta_{p-1} x_{n, p-1}+e_{n}
\end{aligned}
$$

It is very convenient to use the matrix notation

$$
\mathbf{y}=\mathbb{X} \boldsymbol{\beta}+\boldsymbol{e}
$$

where $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}, \boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{p-1}\right)^{T}, \boldsymbol{e}=\left(e_{1}, \ldots, e_{n}\right)^{T}$ are column vectors, and

$$
\mathbb{X}=\left(\begin{array}{cccc}
1 & x_{1,1} & \ldots & x_{1, p-1} \\
\ldots & \ldots & \ldots & \ldots \\
1 & x_{n, 1} & \ldots & x_{n, p-1}
\end{array}\right)
$$

is the so called design matrix assumed to have rank p.

The machinery developed for the simple linear regression model works well for the multiple regression. The least squares estimates

$$
\mathbf{b}=\left(b_{0}, \ldots, b_{p-1}\right)^{T}
$$

give the predicted responses $\hat{\mathbf{y}}=\mathbb{X} \mathbf{b}$ that minimise the sum of squares

$$
S(\mathbf{b})=\|\mathbf{y}-\hat{\mathbf{y}}\|^{2}=\left(y_{1}-\hat{y}_{1}\right)^{2}+\ldots+\left(y_{n}-\hat{y}_{n}\right)^{2}
$$

The LS estimates must satisfy the normal equations

$$
\mathbb{X}^{T} \mathbb{X} \mathbf{b}=\mathbb{X}^{T} \mathbf{y}
$$

Solving this system of linear equations we get

$$
\mathbf{b}=\mathbb{M}^{T} \mathbf{y}, \quad \mathbb{M}=\left(\mathbb{X}^{T} \mathbb{X}\right)^{-1}
$$

Question. What are the dimensions of the matrix \mathbb{M} ?

The case $p=2$
In particular, in the simple linear regression case with $p=2$, we have

$$
\mathbb{X}^{T}=\left(\begin{array}{ccc}
1 & \ldots & 1 \\
x_{1} & \ldots & x_{n}
\end{array}\right)
$$

as the transposed design matrix, so that

$$
\mathbb{X}^{T} \mathbb{X}=\left(\begin{array}{cc}
n & x_{1}+\ldots+x_{n} \\
x_{1}+\ldots+x_{n} & x_{1}^{2}+\ldots+x_{n}^{2}
\end{array}\right)=n\left(\begin{array}{cc}
1 & \bar{x} \\
\bar{x} & \overline{x^{2}}
\end{array}\right)
$$

Taking the inverse matrix

$$
\mathbb{M}=\left(\mathbb{X}^{T} \mathbb{X}\right)^{-1}=\frac{1}{n\left(\overline{x^{2}}-(\bar{x})^{2}\right)}\left(\begin{array}{cc}
\overline{x^{2}} & -\bar{x} \\
-\bar{x} & 1
\end{array}\right)
$$

we get LS estimates for the simple linear regression in the matrix form

$$
\mathbf{b}=\mathbb{M X}^{T} \mathbf{y}=\frac{1}{\overline{x^{2}}-(\bar{x})^{2}}\left(\begin{array}{cc}
\overline{x^{2}} & -\bar{x} \\
-\bar{x} & 1
\end{array}\right)\binom{\bar{y}}{\overline{x y}}
$$

The noise size estimation
With $\mathbf{b}=\mathbb{M X}^{T} \mathbf{y}$, the predicted responses are computed as

$$
\hat{\mathbf{y}}=\mathbb{X} \mathbf{b}=\mathbb{P} \mathbf{y}, \quad \mathbb{P}=\mathbb{X} \mathbb{M} \mathbb{X}^{T}
$$

Check that \mathbb{P} is a projection matrix such that $\mathbb{P}^{2}=\mathbb{P}$.
For the random vector \mathbf{B} behind the LS estimates \mathbf{b}, we find that

$$
\mathrm{E}(\mathbf{B})=\boldsymbol{\beta}
$$

Furthermore, the covariance matrix, the $p \times p$ matrix with elements $\operatorname{Cov}\left(B_{i}, B_{j}\right)$, is given by

$$
\mathrm{E}\left\{(\mathbf{B}-\boldsymbol{\beta})(\mathbf{B}-\boldsymbol{\beta})^{T}\right\}=\sigma^{2} \mathbb{M}
$$

The vector of residuals

$$
\hat{\boldsymbol{e}}=\mathbf{y}-\hat{\mathbf{y}}=(\mathbb{I}-\mathbb{P}) \mathbf{y}
$$

has a zero mean vector and a covariance matrix $\sigma^{2}(\mathbb{I}-\mathbb{P})$.

$$
s^{2}=\frac{S S_{\mathrm{E}}}{n-p}, \quad \text { where } S S_{\mathrm{E}}=S(\mathbf{b})=\|\hat{\boldsymbol{e}}\|^{2} \text { is an unbiased estimate of } \sigma^{2}
$$

Quadratic regression
The data in the following table were gathered for an environmental impact study that examined the relationship between the depth of a stream and the rate of its flow (Ryan et al 1976).

Depth x	.34	.29	.28	.42	.29	.41	.76	.73	.46	.40
Flow rate y	.64	.32	.73	1.33	.49	.92	7.35	5.89	1.98	1.12

A bowed shape of the plot of the residuals versus depth suggests that the relation between x and y is not linear. The multiple regression framework can by applied to the quadratic model

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

with $x_{1}=x$ and $x_{2}=x^{2}$.

Coefficient	Estimate	Standard Error	t value
β_{0}	1.68	1.06	1.52
β_{1}	-10.86	4.52	-2.40
β_{2}	23.54	4.27	5.51

The residuals show no sign of systematic misfit. The test statistic $t=5.51$ of the utility test of $H_{0}: \beta_{2}=0$ shows that the quadratic term in the model is statistically significant.

Define in terms of the diagonal elements $m_{j j}$ of matrix \mathbb{M}

$$
m_{j}=m_{j+1, j+1}, \quad j=0,1, \ldots, p-1
$$

Then the standard error of b_{j} is computed as

$$
s_{b_{j}}=s \sqrt{m_{j}}, \quad j=0,1, \ldots, p-1
$$

Exact sampling distributions $\frac{B_{j}-\beta_{j}}{S_{B_{j}}} \sim t_{n-p}, \quad j=0,1, \ldots, p-1$.
To check the underlying normality assumption inspect the normal probability plot for the standardised residuals $\frac{\hat{e}_{i}}{s \sqrt{1-p_{i i}}}$, where $p_{i i}$ are the diagonal elements of \mathbb{P}.

Exact $100(1-\alpha) \%$ confidence intervals $I_{\beta_{j}}=b_{j} \pm t_{n-p}\left(\frac{\alpha}{2}\right) \cdot s_{b_{j}}$
For a utility test of $H_{0}: \beta_{j}=0$, use the t -value

$$
b_{j} / s_{b_{j}}
$$

having t_{n-p}-distribution under $H_{0}: \beta_{j}=0$.

Adjusted coefficient of multiple determination
Coefficient of multiple determination can be computed similarly to the simple linear regression model as

$$
R^{2}=1-\frac{S S_{\mathrm{E}}}{S S_{\mathrm{T}}}
$$

where $S S_{\mathrm{T}}=(n-1) s_{y}^{2}$. The problem with R^{2} is that it increases even if irrelevant variables are added to the model.

To punish for irrelevant variables it is better to use the adjusted coefficient of multiple determination

$$
R_{a}^{2}=1-\frac{n-1}{n-p} \cdot \frac{S S_{\mathrm{E}}}{S S_{\mathrm{T}}}
$$

Observe that the adjustment factor $\frac{n-1}{n-p}$ gets larger for the larger number of predictors p in the model, and that

$$
1-R_{a}^{2}=\frac{s^{2}}{s_{y}^{2}}
$$

is the proportion of the noise variance of the total variance of responses.

Case study: catheter length
Doctors want predictions on heart catheter length depending on child's height and weight.

The data consist of $n=12$ observations for the distance to pulmonary artery coming from 12 operations performed earlier:

Height (in)	Weight (lb)	Length (cm)
42.8	40.0	37.0
63.5	93.5	49.5
37.5	35.5	34.5
39.5	30.0	36.0
45.5	52.0	43.0
38.5	17.0	28.0
43.0	38.5	37.0
22.5	8.5	20.0
37.0	33.0	33.5
23.5	9.5	30.5
33.0	21.0	38.5
58.0	79.0	47.0

We start with two simple linear regressions

$$
\text { H-model: } L=\beta_{0}+\beta_{1} H+\epsilon, \quad \text { W-model: } L=\beta_{0}+\beta_{1} W+\epsilon .
$$

The analysis of these two models is summarised as follows

Estimate	H -model	t value	W -model	t value
$b_{0}\left(s_{b_{0}}\right)$	$12.1(4.3)$	2.8	$25.6(2.0)$	12.8
$b_{1}\left(s_{b_{1}}\right)$	$0.60(0.10)$	6.0	$0.28(0.04)$	7.0
s	4.0		3.8	
r^{2}	0.78		0.80	

The plots of standardised residuals do not contradict the normality assumptions.

Question 1. How can we use the four t-values in the table?
Question 2. Which of the two simple linear regression models is more preferable?

These two simple regression models should be compared to the multiple regression model

$$
L=\beta_{0}+\beta_{1} H+\beta_{2} W+\epsilon
$$

which gives

$$
\begin{array}{lll}
b_{0}=21, & s_{b_{0}}=8.8, & b_{0} / s_{b_{0}}=2.39 \\
b_{1}=0.20, & s_{b_{1}}=0.36, & b_{1} / s_{b_{1}}=0.56, \\
b_{2}=0.19, & s_{b_{2}}=0.17, & b_{2} / s_{b_{2}}=1.12, \\
s=3.9, & R^{2}=0.81 &
\end{array}
$$

In contrast to the simple models, we can not reject neither $H_{1}: \beta_{1}=0$ nor $H_{2}: \beta_{2}=0$. This paradox is explained by different meaning of the slope parameters in the simple and multiple regression models.

In the multiple model β_{1} is the expected change in L when H increased by one unit and W held constant.

Question. Is this model better than H-model and W-model?

The values of R_{a}^{2} for three models show that the W-model is the best

H-model	W-model	(H, W)-model
0.76	0.78	0.77

Adding height variable to the weight does not improve the model, since the height and weight have a strong linear relationship.

The fitted plane has a well resolved slope along the line about which the (H, W) points fall and poorly resolved slopes along the H and W axes.

