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Slides 17: Multiple regression
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of determination
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Example

Trees: n = 31

x1 = diameter

x2 = height

y = volume

Linear model

y1 = β0 + β1x1,1 + β2x1,2 + e1,

. . .

yn = β0 + β1xn,1 + β2xn,2 + en,

where e1, . . . , en are independent realisations of the random noise

ε ∼ N(0, σ).
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Design matrix

With p− 1 predictors, the corresponding data set consists of n vectors
(xi,1, . . . , xi,p−1, yi) with n > p and

y1 = β0 + β1x1,1 + . . .+ βp−1x1,p−1 + e1,

. . .

yn = β0 + β1xn,1 + . . .+ βp−1xn,p−1 + en.

It is very convenient to use the matrix notation

y = Xβ + e,

where y = (y1, . . . , yn)T , β = (β0, . . . , βp−1)T , e = (e1, . . . , en)T are
column vectors, and

X =


1 x1,1 . . . x1,p−1

. . . . . . . . . . . .

1 xn,1 . . . xn,p−1


is the so called design matrix assumed to have rank p.
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Least squares estimates

The machinery developed for the simple linear regression model works
well for the multiple regression. The least squares estimates

b = (b0, . . . , bp−1)T

give the predicted responses ŷ = Xb that minimise the sum of squares

S(b) = ‖y − ŷ‖2 = (y1 − ŷ1)2 + . . .+ (yn − ŷn)2

The LS estimates must satisfy the normal equations

XTXb = XTy

Solving this system of linear equations we get

b = MXTy, M = (XTX)−1

Question. What are the dimensions of the matrix M?
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The case p = 2

In particular, in the simple linear regression case with p = 2, we have

XT =

 1 . . . 1

x1 . . . xn


as the transposed design matrix, so that

XTX =

 n x1 + . . .+ xn

x1 + . . .+ xn x21 + . . .+ x2n

 = n

 1 x̄

x̄ x2


Taking the inverse matrix

M = (XTX)−1 =
1

n(x2 − (x̄)2)

 x2 −x̄

−x̄ 1


we get LS estimates for the simple linear regression in the matrix form

b = MXTy =
1

x2 − (x̄)2

 x2 −x̄

−x̄ 1

 ȳ

xy


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The noise size estimation

With b = MXTy, the predicted responses are computed as

ŷ = Xb = Py, P = XMXT

Check that P is a projection matrix such that P2 = P.

For the random vector B behind the LS estimates b, we find that

E(B) = β.

Furthermore, the covariance matrix, the p× p matrix with elements
Cov(Bi, Bj), is given by

E{(B− β)(B− β)T } = σ2M.

The vector of residuals

ê = y− ŷ = (I− P)y

has a zero mean vector and a covariance matrix σ2(I− P).

s2 = SSE
n−p , where SSE = S(b) = ‖ê‖2 is an unbiased estimate of σ2
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Quadratic regression
The data in the following table were gathered for an environmental
impact study that examined the relationship between the depth of a
stream and the rate of its flow (Ryan et al 1976).

Depth x .34 .29 .28 .42 .29 .41 .76 .73 .46 .40

Flow rate y .64 .32 .73 1.33 .49 .92 7.35 5.89 1.98 1.12

A bowed shape of the plot of the residuals versus depth suggests that the
relation between x and y is not linear. The multiple regression
framework can by applied to the quadratic model

y = β0 + β1x+ β2x
2,

with x1 = x and x2 = x2.
Coefficient Estimate Standard Error t value

β0 1.68 1.06 1.52

β1 −10.86 4.52 −2.40

β2 23.54 4.27 5.51

The residuals show no sign of systematic misfit. The test statistic
t = 5.51 of the utility test of H0 : β2 = 0 shows that the quadratic term
in the model is statistically significant.
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t-values

Define in terms of the diagonal elements mjj of matrix M

mj = mj+1,j+1, j = 0, 1, . . . , p− 1

Then the standard error of bj is computed as

sbj = s
√
mj , j = 0, 1, . . . , p− 1.

Exact sampling distributions Bj−βj
SBj

∼ tn−p, j = 0, 1, . . . , p− 1.

To check the underlying normality assumption inspect the normal
probability plot for the standardised residuals êi

s
√

1−pii
, where pii are the

diagonal elements of P.

Exact 100(1− α)% confidence intervals Iβj = bj ± tn−p(α2 ) · sbj

For a utility test of H0 : βj = 0, use the t-value

bj/sbj

having tn−p-distribution under H0 : βj = 0.
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Adjusted coefficient of multiple determination

Coefficient of multiple determination can be computed similarly to the
simple linear regression model as

R2 = 1− SSE

SST
,

where SST = (n− 1)s2y. The problem with R2 is that it increases even if
irrelevant variables are added to the model.

To punish for irrelevant variables it is better to use the adjusted
coefficient of multiple determination

R2
a = 1− n−1

n−p ·
SSE
SST

Observe that the adjustment factor n−1
n−p gets larger for the larger

number of predictors p in the model, and that

1−R2
a =

s2

s2y

is the proportion of the noise variance of the total variance of responses.
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Case study: catheter length

Doctors want predictions on heart catheter length depending on child’s
height and weight.

The data consist of n = 12 observations for the distance to pulmonary
artery coming from 12 operations performed earlier:

Height (in) Weight (lb) Length (cm)

42.8 40.0 37.0

63.5 93.5 49.5

37.5 35.5 34.5

39.5 30.0 36.0

45.5 52.0 43.0

38.5 17.0 28.0

43.0 38.5 37.0

22.5 8.5 20.0

37.0 33.0 33.5

23.5 9.5 30.5

33.0 21.0 38.5

58.0 79.0 47.0
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Two simple linear regressions

We start with two simple linear regressions

H-model: L = β0 + β1H + ε, W-model: L = β0 + β1W + ε.

The analysis of these two models is summarised as follows

Estimate H-model t value W-model t value

b0(sb0) 12.1(4.3) 2.8 25.6(2.0) 12.8

b1(sb1) 0.60(0.10) 6.0 0.28(0.04) 7.0

s 4.0 3.8

r2 0.78 0.80

The plots of standardised residuals do not contradict the normality
assumptions.

Question 1. How can we use the four t-values in the table?

Question 2. Which of the two simple linear regression models is more
preferable?
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Multiple regression with p = 3

These two simple regression models should be compared to the multiple
regression model

L = β0 + β1H + β2W + ε,

which gives

b0 = 21, sb0 = 8.8, b0/sb0 = 2.39,

b1 = 0.20, sb1 = 0.36, b1/sb1 = 0.56,

b2 = 0.19, sb2 = 0.17, b2/sb2 = 1.12,

s = 3.9, R2 = 0.81

In contrast to the simple models, we can not reject neither H1 : β1 = 0

nor H2 : β2 = 0. This paradox is explained by different meaning of the
slope parameters in the simple and multiple regression models.

In the multiple model β1 is the expected change in L when H increased
by one unit and W held constant.

Question. Is this model better than H-model and W-model?
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Collinearity problem

The values of R2
a for three models show that the W-model is the best

H-model W-model (H,W)-model

0.76 0.78 0.77

Adding height variable to the weight does not improve the model, since
the height and weight have a strong linear relationship.
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The fitted plane has a well resolved slope along the line about which the
(H,W ) points fall and poorly resolved slopes along the H and W axes.
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