
Domain-Specific Languages
Effective Modeling, Automation,

and Reuse

With examples in Scala, ATL, Alloy, C#, F#, Groovy, Java, JavaScript,
Kotlin, OCL, Python, QVT, and Xtend

Including 185 exercises for effective teaching & learning

Andrzej Wąsowski and Thorsten Berger

13/01/2021, v. 0.11.0 (work-in-progress)

© 2020 Andrzej Wąsowski & Thorsten Berger
All rights reserved.

The photograph in Fig. 1.1 courtesy of Dundee Photographics at FreeDigitalPhotos.net. The
image of Charles Babbage on p. 3 is a public domain image, obtained thanks to Wikimedia
Foundation. The photo of Noam Chomsky on p. 103 is licensed as CC BY-SA 4.0 by Wikipedia
user Σ. The photograph of Edgar F. Codd from IBM Research Blog (https://www.ibm.com/
blogs/research/2020/06/sql-relational-model-50-years-later/). All other images and photographs
created by the authors.

FreeDigitalPhotos.net
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://en.wikipedia.org/wiki/User:%CE%A3
https://www.ibm.com/blogs/research/2020/06/sql-relational-model-50-years-later/
https://www.ibm.com/blogs/research/2020/06/sql-relational-model-50-years-later/

3

Language is sufficient to any thought.
Imperfect expression is the fault of limited writers,

not limited language.
(Francis-Noël Thomas and Mark Turner)

Contents

Preface i

1 Using Modeling Languages 1
1.1 Why Modeling? . 1

1.2 Model-Driven Software Engineering 3

1.3 Model-Driven Software Engineering in Industry 8

1.4 Scope and Structure of the Book 18

References . 20

2 Building Modeling Languages 25
2.1 The Need for Domain-Specific Languages 25

2.2 Domain-Specific Languages 27

2.3 What Is a Language Built Of? 30

2.4 Building a Language . 32

2.5 Testing Language Implementations 41

References . 46

3 Domain Analysis and Abstract Syntax 51
3.1 What is Meta-Modeling? 51

3.2 Domain Analysis for Meta-Modeling 52

3.3 Meta-Modeling with Class Diagrams 55

3.4 Guidelines for Meta-Modeling with Class Diagrams 60

3.5 Meta-Modeling with Algebraic Data Types 63

3.6 Language-Independent Meta-Modeling Guidelines 68

3.7 Case Study: Mind Maps 70

3.8 Quality Assurance and Testing for Meta-Models 72

3.9 The Meta-Modeling Hierarchy 76

3.10 A Sneak at XML . 83

References . 91

4 Concrete Syntax 93
4.1 Concrete and Abstract Syntax 93

4

Contents 5

4.2 Defining Concrete Syntax 95

4.3 How to Actually Write a Grammar in Practice? 105

4.4 Parsing and Tools . 112

4.5 Guidelines for Specifying Concrete Syntax 121

4.6 Quality Assurance and Testing for Grammars 136

4.7 Meta-hierarchy for Grammars 139

References . 150

5 Static Semantics 153
5.1 Why Static Semantics? 153

5.2 Static Semantics with First-Order Structural Constraints . . 158

5.3 Writing Constraints in GPLs 166

5.4 Specialized Constraint Languages for Modeling 174

5.5 Guidelines for Writing Constraints 186

5.6 Quality Assurance and Testing for Static Semantics 193

5.7 Static Semantics in the Language Conformance Hierarchy . 194

References . 206

6 Static Semantics with Type Systems 209
6.1 Abstract Syntax . 212

6.2 The Language of Types 212

6.3 Type Hierarchy . 216

6.4 Climbing the Type Hierarchy to Merge Compatible Types . 219

6.5 Type Checking Algorithm for Prpro Expressions 223

6.6 Type Checking Prpro Models 230

6.7 Quality Assurance and Testing Type Checkers 233

6.8 Types in the Language Conformance Hierarchy 236

References . 241

7 Design Patterns and Practices for Concrete Syntax 243
7.1 Placeholder . 243

8 Software Product Lines 245
8.1 The Need for Software Variants 245

8.2 Case Study: The Linux Kernel 250

8.3 Software Product Line Engineering 256

8.4 Software Product Lines in Practice 259

8.5 Variability Modeling . 260

8.6 The Process of Feature Modeling 266

8.7 Spectrum of Meta-Modeling 281

8.8 Case Study: A Fire Alarm System 283

6 Andrzej Wąsowski. Thorsten Berger

References . 291

A Class Modeling 301
A.1 Classes and Objects . 301

A.2 Generalization . 303

A.3 Simple Types . 304

A.4 Associations . 304

A.5 Containment (Part-Of) 306

A.6 Views on Class Models 306

B Using the Eclipse Modeling Framework 313
B.1 Installing Eclipse Modeling Tools 313

B.2 Create an EMF Project . 313

B.3 Create an Ecore Model (Meta-Model) 314

B.4 Create an Ecore Diagram for the Ecore Model 314

B.5 Class Modeling using the Ecore Diagram Editor 315

B.6 Edit Ecore Models Using a Textual Syntax 319

B.7 Create a Dynamic Instance 319

B.8 Generate Language Infrastructure 320

C Xtext in a Nutshell 323
C.1 Syntax Overview . 323

C.2 Creating DSLs with Xtext 326

Preface

This book has been jointly developed in a series of project-based courses on
Model-Driven Software Engineering (MDSE) and Domain-Specific Lan-
guages (DSLs) at the IT University of Copenhagen in Denmark, at Chalmers
University of Technology, and the University of Gothenburg in Sweden.

Acknowledgements

We thank Rolf-Helge Pfeiffer, Stefan Catalin Stanciulescu, Alexandru Florin
Iosif-Lazar, and Kasper Hansen for suggestions of improvement and for
corrections. Alexandru Florin Iosif-Lazar has written an early version of the
configurator project specification. Kasper Hansen has written the original
solution to the programming language primer exercise. We should also
credit the students who have suffered the courses (in excess of 300 now) for
being the main reason to create the material and for being the main testers
of it.

We thank Marek Furák, Francisco Martínez Lasaca, Abdulrashid Mas’ab
Mohammed, Christoffer Stougaard Pedersen, Robin Bellini Olsson, and
Cem Turan for contributing corrections. Special thanks go the the partici-
pants of the respective course at Chalmers: Oscar Jönsson, Robert Palm,
Jonatan Gustafsson, for spending time with us reporting feedback and
suggestions for improvement.

Anders Fischer Nielsen supported some .NET development. Karol Wą-
sowski implemented the first Kotlin example. Georg Hinkel has supported
us with using NFM.

Twitter discussions participants that led to identifying details in the book:
Jean Bezivin, Jeremy Gibbons, Vadim Zaytsev, Jurgen Vinju, Tijs van der
Storm, Erik Meijer, Miëtek Bak, typeswitch

i

ii Andrzej Wąsowski. Thorsten Berger

1 Using Modeling Languages

Everything is a model.
(Bézivin, 2005a)

1.1 Why Modeling?

Using models to design complex systems is common in many engineering
disciplines, including architecture (buildings), civil engineering (roads and
bridges), automotive engineering (cars), and avionics (airplanes). Models
have an ever-growing list of applications in these areas. Engineers build
them to assess system properties early or to steer construction, production,
and servicing processes. For one system, usually different kinds of models
have to be built, each of which providing a different perspective. For
instance, three-dimensional models are used when designing the chassis of
a car, while analog-circuit models describe its electrical system. Blueprint
models are used in production, while yet different ones, such as maintenance
and service models, are used later when servicing systems. All these
examples of models describe structural and functional properties of real-
world systems. However, models can also be used to describe and assess
rather intangible properties that are neither structural nor functional, such
as system reliability, power consumption, efficiency or production cost. We
say that models are purpose-specific and domain-specific: they are tailored
for a given purpose and carry the main characteristic aspects of the domain.
For example, telephone-network switching models are very different from
railway-track switching models.

Definition 1.1. A model is an abstraction of reality made with a given
purpose in mind.

The main purpose of using models is to combat complexity: complexity of
the problem, complexity of the solution design, and complexity of the sys-
tem implementation or production. The understanding of complex problems,
solutions, designs, and processes is possible thanks to abstraction (Selic,
2003). Abstraction is a simplification and elimination of information with
respect to a given purpose. A model does not contain all information, but
it preserves the information necessary to perform the intended application
of the model. We can say that “all models are wrong, but some are useful”
(Box and Draper, 1987). For instance, aesthetic information is typically not
necessary to assess performance.

Models can not only abstract (or hide) information, but they can also
approximate it. For instance, the Newtonian gravity model is sufficiently
precise for applications in mechanical engineering. It is also widely applied,
although we know that it is not precise. It is crucial that both abstraction and

1

2 Andrzej Wąsowski. Thorsten Berger

Figure 1.1: The electrical
scheme of Porsche Carrera

and the actual system. Note
the abstraction of information

approximation are not adverse to the purpose of a given model. Abstraction
should not hide relevant information, and approximation should only lead
to acceptably small errors.

Models are increasingly electronic thanks to a rapid growth of computing
technology. In fact, most of the engineering models are computer models
today, even if they describe physical artifacts, such as buildings or diesel
engines. Building computerized models is cheaper than building physical
models. Specifically, it allows animation, simulation, and computation of
non-structural and non-functional properties, such as weight and force of
gravity on various elements.

Even though, computerized models have overtaken other engineering
disciplines, models in software engineering are not as popular as elsewhere.
Yet, the use of models in software engineering is growing. Many software
engineers use purposeful abstractions of design and computation without
thinking of them as models. For instance, relational-database queries are
models, and so are HTML web-pages and their style sheets. Reactive
algorithms, or behavior of software in general, are often described using au-
tomata models. Efficiency of algorithms is approximated using asymptotic
complexity models. In this book, we shall look at multiple opportunities of
using models in computing and of introducing purposeful domain-specific
modeling languages (DSMLs, or DSLs for short) into the development of
software systems.

There is no doubt that software engineers face the very same complexity
problems that engineers in other disciplines have seen. In many ways, soft-
ware systems are just as complex—commonly even more complex—than
other achievements of engineering. Many commercial software systems
have more lines of code than the “Jumbo Jet” Boeing 747 has mechanical
parts. In fact, the Jumbo Jet has ‘only’ six million parts, half of them being
super-simple fasteners, many of them identical.1 In December 2014, the
Linux kernel had about 15 million lines of code. This complexity is (partly)
controlled using a configuration model and an automated build process
(Berger et al., 2013). The Open Office productivity package had reached
nine million lines of code in 2012.2 Microsoft Windows is reported to
have exceeded 50 million lines in 2003. “Therefore, it seems obvious that

1http://www.boeing.com/commercial/747family/pf/pf_facts.html, retrieved 2015/02/10
2http://www.openoffice.org/FAQs/build_faq.html, retrieved 2015/02/10

http://www.boeing.com/commercial/747family/pf/pf_facts.html
http://www.openoffice.org/FAQs/build_faq.html

Chapter 1. Using Modeling Languages 3

Model-Driven Engineering Prehistory
Charles Babbage (1791–1871) was an English mathematician, philosopher,
and mechanical engineer, credited with designing (not building) one of the
earliest examples of a mechanical computer, a difference engine or a machine
to automatically compute numeric tables of mathematical functions using
polynomial approximations (Babbage, 1822).

Interestingly, Babbage’s reasons to build the difference engine resembled the
motivation of most automation projects, including model-driven software engi-
neering. In the 19th century, mathematicians would calculate approximations
of irrational functions manually. The results of these calculations (many-page
long tables of numbers) would be then typeset by printers and printed on paper,
so that engineers can use them in calculations.

Babbage considered this process to be tedious and error prone—an ideal candidate for automation. His
machine would first calculate the values for the tables, but he did not stop there. He designed a printing
back-end, so no errors would be introduced in typesetting. He even considered what paint colour should
be used to minimize the number of errors. Today, when we search for opportunities to use MDSE, we
also consider software development activities that are tedious and error prone, often associated with
creating a lot of boilerplate code. We also want to use models and automation not only to derive early
designs, but all the way to build effectively functioning systems end-to-end.

The British government showed interest in Babbage’s project, believing that this could bring down the
cost of computing the numeric tables. This is also the same argument that modern project managers
use when considering the introduction of MDSE. Unfortunately, Babbage had not managed to realize
his detailed designs in practice, so he did not know whether the benefits were actual. For MDSE, we
fortunately know that there are substantial gains in quality and cost to be reaped. We briefly survey them
in Sect. 1.3.

Incidentally, the difference engine has been built twice in modern times, following the blueprints made
by Babbage. One can appreciate it in the Science Museum in London and in the Computer History
Museum in Mountain View, California.

software systems, which are often among the most complex engineering
systems, can benefit greatly from using models and modeling techniques”
(Selic, 2003), in order to combat the complexity.

1.2 Model-Driven Software Engineering

Software development is particularly suitable for the use of models. When
building a car, there is a notable abstraction gap between a model and a
real physical construction (recall Fig. 1.1). In computing, both models and
systems are virtual digital objects, so this gap is much smaller. In software
engineering, everything is in fact a model (Bézivin, 2005b). It is possible to
refine models into a system in a continuous and often automatic manner,
with much less effort than when designing cars or buildings. A computer
program—more precisely, its source code in a programming language—is
also a virtual object. The code is just yet another model that abstracts
many aspects of a physical computation, but perhaps preserves more details

4 Andrzej Wąsowski. Thorsten Berger

Figure 1.2: KNIME
facilitates data analytics and

AI development with a
graphical DSL.

than other models (enough to run the computation). This proximity of
models and programs allows to to make modeling the central paradigm in
development—the main idea of Model-Driven Software Engineering.

Definition 1.2. Model-Driven Software Engineering (MDSE) is a software-
engineering methodology that focuses on creating and exploiting models
to produce software. The focus is on models, modeling, and model anal-
ysis as opposed to programs and programming. MDSE relies heavily on
automation to produce code, to analyze system properties, and to support
development activities.3

Organizations engineering software can adopt MDSE by either relying
on off-the-shelf modeling techniques and languages that have been devel-
oped by others, or they can create their own languages and modeling
infrastructure, thanks to powerful MDSE tools and techniques, which
we will present in this book. As confirmed in surveys with industry
(Hutchinson et al., 2011; Liebel et al., 2014; Whittle, Hutchinson, and
Rouncefield, 2014), the most well-known off-the-shelf modeling language is
the Unified Modeling Language (UML) (Petre, 2013; Fowler, 2004; Object
Management Group, 2017), established and developed under the umbrella
of the Object Management Group (OMG). UML boasts over 13 different
languages (called diagram types), such as class diagrams or sequence
diagram, which organizations can use without having to design languages
and create language tooling, such as editors, to leverage MDSE. In many
cases, however, it is desirable to create languages that are specifically
tailored to an organization’s need, such as a language that customers can
use to configure a product, and so on. Let us now look into some off-the-
shelf languages to get a better intuition into the looks and feels of such
languages. Already in Chapter 2 we will start to design our first own
language.

Example 1. KNIME4 is an extensible platform for assembling data-analytics
pipelines. It is used by data scientists for developing data analyses, vi-
sualizations, classifications, preprocessors, and many more tasks in data
analytics—for instance, in pharmaceutical research, business intelligence, and
financial decision making. At KNIME’s core is a graphical DSL allowing non-

3Inspired by definitions of Selic (2003) and of Wikipedia editors (https://en.wikipedia.org/wiki/
Model-driven_engineering, retrieved 2017/01/06).

https://en.wikipedia.org/wiki/Model-driven_engineering
https://en.wikipedia.org/wiki/Model-driven_engineering

Chapter 1. Using Modeling Languages 5

Figure 1.3: Scratch
facilitates end-user
development with a graphical
DSL.

programmers to assemble the pipeline. Figure 1.2 depicts an example model,
where a multi-layer perceptron (MLP) and a predictor for classifying image
data is modeled. The figure nicely shows a typical pipeline, the nodes represent
data-processing functionality, and the edges the data-flow. Specifically, the
first node “Table Reader” obtains a dataset, which is then normalized in the
second node “Normalizer,” then partitioned into training set and test set (in
our example, into 1/3 and 2/3, specified in the node properties that are not
shown in the Figure), then fed into an “MLP Learner.” Thereafter, a “Predictor”
uses the learned neural network to do the actual classification of input (image)
data on the test data, which is then compared with the original, ground-truth
data in the node “Scorer,” which creates, for instance, a confusion matrix and
various statistics (e.g., recall, precision, F-measure). For an introduction in
data analytics and, specifically, machine learning, we recommend the book of
Rogers and Girolami (2016). In general, what this example illustrates is that
given a proper language, users can focus on the actual domain (data analytics)
without having to know the details of programming, such as knowing the exact
APIs, writing glue code, and scripting the pipeline that pushes the data through
the individual parts of the pipeline.

Example 2. Scratch5 is another end-user oriented modeling language. Unlike
KNIME, Scratch is an imperative language, composed of control blocks akin
to programming languages. Its semantics (not the syntax) is reminiscent of
control-flow graphs. The syntax is designed to meet the expectations of the
target user group, primary-school children. Scratch programs resemble jigsaw
puzzles (see Fig. 1.3). Using a domain-specific syntax that matches the user
expectations and the problem at hand well is one of the key success factors in
designing DSMLs. Scratch boasted over a million users in 2014. The models
are hosted on the Scratch website and are freely accessible to the public. While
Scratch is Turing-complete, it is still not a GPL, since the user is not supposed
to write general programs in it. It focused on game-like sprite programs that
children can write.

4https://www.knime.com
5http://scratch.mit.edu

https://www.knime.com
http://scratch.mit.edu

6 Andrzej Wąsowski. Thorsten Berger

Figure 1.4: An example
model in the Google Protocol

Buffers language

1 message Person {
2

3 enum PhType { MOBILE = 0; WORK = 1; }
4

5 message PhoneNo {
6 required string no = 1;
7 optional PhType type = 2 [default = MOBILE];
8 }
9

10 required string name = 1;
11 repeated PhoneNo phone = 2;
12 }

Figure 1.5: A simple data
model in Ruby on Rails,

using an internal DSL
embedded in Ruby syntax

1 class Client < ActiveRecord::Base
2 has_one :address
3 has_many :orders
4 has_and_belongs_to_many :roles
5 end

Example 3. Google Protocol Buffers is a data modeling language aimed at
flexible and efficient serialization and persistence of structured data across
multiple programming languages and platforms. An example is shown in
Fig. 1.4. Since the language was initially developed for passing messages
between different machines in a request/response protocol, it uses ‘message’
as a metaphor for a data structure. It can be classified as a kind of textual
language (syntax is expressed as a stream of characters), an interface definition
language and a structural modeling language, a competitor of, for instance,
XML. However, protocol buffers are small and clean, use very little bandwidth
for transmitting the data, and have a human readable syntax for their schema,
unlike XML. The example model describes a Person structure with the two
properties name and phone, where the latter is a message itself (a substructure)
of type PhoneNo. The data elements described by this model are assigned
ordinal numbers representing their placement in the serialization, which allows
reordering and renaming the fields without changing the message format.
The format also allows specifying optional elements with default values.
It is an important design criterion for the message serialization domain to
allow as much backwards compatibility as possible, when the message format
changes or its definition is refactored. Implementing a proper message format
serialization infrastructure with these properties is actually cumbersome, even
if it is needed in many software projects. Protocol buffers have a standalone
implementation for at least Python, Java, and C++. They demonstrate an
important motivation for DSLs and modeling: code reuse. The protocol
buffers libraries have been implemented once for all and are maintained in
only one place, saving a lot of effort duplication. Since they are used by
many, the libraries are of considerably higher quality than if they would be
reimplemented repetitively in different projects. In February 2014, there were
48,162 message types defined in 12,183 protocol buffers models across the
Google code tree.

Chapter 1. Using Modeling Languages 7

Example 4. Ruby is a dynamically typed, interpreted, and object-oriented
programming language. Due to its flexibility, it is often used to implement
DSLs. Ruby on Rails is the most well-known framework implemented in
Ruby. It is a web-application framework that gathers information from the
web server and the database and uses it to render web pages and interact
with the users. Like in most web frameworks, the key element of a Ruby on
Rails application is a data model expressed in an internal DSL. See Fig. 1.5
for an example. These models are used to scaffold the application using
powerful code generators, as well as to access the database while it is operated.
In Ruby on Rails we find examples of relational modeling, UI modeling,
use of specialized editors for domain-specific models, and modeling of user
interfaces.

Using MDSE, we can express software design using concepts that are
closer to the problem domain than to the implementation technology (Selic,
2003). We can stop talking about classes and loops, and instead consider
business entities, cash-flow processes, and customers. In extreme cases,
software can be tailored by domain experts or more technical users, when
the modeling language used is designed with end-users in mind. A good
example here are customizable enterprise systems, which are implemented
by software engineers who are highly skilled in software architectures and
programming, but customized by business-domain consultants who know
more about enterprise architectures and business processes. Also many
computer games allow end-user extensions through various “mod” packages
implemented as domain-specific programs (models). However, for most
systems the benefit is reachable more easily by raising the abstraction level
at which the developers work—like in the Google Protocol Buffers and
Rails examples.

Especially observe that in these two examples the models are mixed
with code. Using modeling in software development does not exclude
programming. Modeling is simply a more efficient way to program aspects
of the systems that are well understood. For this reason, in practice, MDSE
is often introduced into systems and domains that are already mature.

A common misunderstanding is that abstract models cannot be used
effectively in software production, as they contain little information, not
enough to generate systems from them. In all the above examples, automatic
infrastructures complete the abstract models with concrete information,
effectively turning them into programs. Once we add enough information
to models, they effectively become programs, loosing all the advantages
of modeling. This argument misses the fact that in MDSE there are two
sources of information—the models are just one of them. The other one
is the language definition (and then also the language implementation).
A good modeling language captures the commonality of the domain in
the language semantics and implementation, and let the aspects that vary
across uses of the framework to be specified in models. KNIME, Scratch,
and Protocol Buffers are extremely simple languages, yet one can derive

8 Andrzej Wąsowski. Thorsten Berger

Terminology of MDSE
The terminology established in the field of MDSE is relatively diverse. Beginners often struggle with the
many synonyms that are used for one concept, and also the different usages of terms. In this book, we
will use the terms MDSE (Model-Driven Software Engineering) and DSL (Domain-Specific Language).

MDSE is an umbrella term for the whole field of using models to engineer software. This engineering
does not only comprise the development of software assets—as referred to with MDSD (Model-Driven
Software Development), but also other activities in the lifecycle of a software, such as evolution and
quality assurance. MDE (Model-Driven Engineering) and MDD (Model-Driven Development) in
principle correspond to MDSE and MDSD, but are supersets. They are broader approaches, not restricted
to software, and comprise the engineering or development of further assets, such as hardware. MDA
(Model-Driven Architecture) is often used synonymously to all these MDSE-related terms. However,
it refers to a specific standard established by the Object Management Group (Object Management
Group, 2014) describing a software-design process starting with domain modeling in order to obtain
platform-specific models that can ultimately be executed (Frankel, 2003; Mellor, 2004).

Models in MDSE are defined in a language, which is often a DSL (Domain-Specific Language). A DSL,
as opposed to a GPL (General-Purpose Language, such as Java, C# or Scala), focuses on expressing
concepts in a specific domain. DSLs should be understandable by a domain expert; their strength is the
reduced expressiveness compared to GPLs. DSML (Domain-Specific Modeling Language) refers to
a subset of DSL—languages used specifically for domain-specific modeling. Further subsets of DSLs
are domain-specific markup languages (e.g., XHTML, MathML) and domain-specific programming
languages (e.g., Perl, shell-script languages). Although the majority of examples in this book concerns
DSMLs—since we use and develop languages to model software—we will use the term DSL, since we
also consider markup languages and will implement so-called internal DSLs, which are embedded into a
host GPL.

Finally, terms recently gaining popularity are Low-Code Platform and Non-Code Platforms. They
refer to a software-engineering method and a business model for rapid application development that
conceptually relies on MDSE. The focus is on leveraging external DSLs with graphical syntaxes in
software tools (the low-code or non-code platform) usable by end-users for generating the desired
applications (Richardson and Rymer, 2016; Hendriks, 2017).

complex systems out of their models. This is not unlike their programming
languages, which also abstract details of computation that are common to all
programs, in the compiler, in the execution platform, and in the hardware.

1.3 Model-Driven Software Engineering in Industry

The last decades have seen an increasing interest in modeling and MDSE
among industrial practitioners and researchers. As such, we can rely on a
large body of knowledge reporting about industrial adoption and practices
related to MDSE. These publications typically strive to explain the domains
and the circumstances in which MDSE is (successfully) applied, the usage
and role of models, as well as the perceived benefits and challenges—or
risks—encountered. It is probably a good idea if you read into some of
these experience reports, to get a better understanding on industrial software
engineering using MDSE with DSLs.

Chapter 1. Using Modeling Languages 9

The most notable works reporting on industrial adoption and practices
are probably the empirical studies of Hutchinson et al. (2011), Bone and
Cloutier (2010), Liebel et al. (2014), Forward and Lethbridge (2008), and
Torchiano et al. (2011), who survey or interview industrial practitioners
about their use of MDSE. For instance, Forward and Lethbridge (2008)
conduct a survey of 113 practitioners on attitudes towards modeling com-
pared to plain, code-oriented development. Hutchinson et al. (2011) attempt
to understand what impacts the benefits and attitudes towards MDSE by
surveying 250 individuals in diverse organizations to respond to a survey,
and interviewed in depth 22 professionals using MDSE in 17 different
companies. Such empirical studies are complemented by literature reviews,
such as Mohagheghi and Dehlen (2008) who identified 25 papers published
between 2002 and 2007 that report on industrial experiences. There are also
publications or presentations by well-known researchers who summarize
their experiences in working with industry. For instance, Selić (2017) in
a keynote talk from 2017 explains that over 70 papers exist that report on
experiences with MDSE. But, already in 1997 Deursen and Klint (1997),
based on industrial practice, discuss the role, benefits, risks, and how to
mitigate risks of MDSE in practice. Finally, for obtaining more qualitative
details, a large number of case studies and individual industrial experiences
is available, many of which we will refer to in the remainder of this section.

According to just one survey (Hutchinson et al., 2011), 83 % of the 250
respondents think that MDSE is beneficial, while only 5 % disagree. In the
following, we take a look at where MDSE is reportedly adopted, how mod-
els are used, and what the perceived or confirmed benefits and challenges
are—referring to the relevant empirical studies and experience reports.

Where is MDSE Used? MDSE is used especially in domains where
complex business logic co-exists with a lot of technical details that benefit
from abstraction, where software should be reused, or where software needs
to interact with hardware, whose characteristics (e.g., dependencies or
behavior) need to be modeled. Primarily, as shown by Bone and Cloutier
(2010) who surveyed N=128 practitioners, large and long-living software
projects are more prone to adopting MDSE than short-living ones, where
the additional effort would not always pay off. Interestingly, a survey by
Torchiano et al. (2011) (N=155) shows that the use of modeling correlates
positively with the company size: larger organizations model more. Never-
theless, there are reports that small companies also benefit from adopting
MDSE, too (Cuadrado, Cánovas Izquierdo, and Molina, 2014).

The literature review of Mohagheghi and Dehlen (2008) provides doc-
umented adoption of MDSE in the domains telecommunication (Weigert
and Weil, 2006; Staron, 2006; Baker, Loh, and Weil, 2005), business
applications and financial organizations (Deng et al., 2003), web appli-
cations (Brambilla, Ceri, et al., 2005), aerospace and defense (Jouenne
and Normand, 2005), as well as embedded (Trask et al., 2006) and safety-
critical systems (Safa, 2006). The survey of Bone and Cloutier (2010) adds

10 Andrzej Wąsowski. Thorsten Berger

automotive (Broy, 2006), IT, medical (Mashariki, Bronner, and Kazanzides,
2007), and space systems (Eisenmann, Miro, and Koning, 2009). Other sub-
stantial experience reports worth mentioning concern the domains railway
technology (MacDonald, Russell, and Atchison, 2005) and eGovernment
(Mellegård et al., 2016). Especially the latter, as well as a report about
Motorola Baker, Loh, and Weil (2005), provide rich and longitudinal data
of companies’ use of MDSE. Selić (2017) reports similar domains, adding
industrial automation (Staron, 2006) and office automation systems (Trčka
et al., 2011). Selic also lists large companies that have reportedly adopted
MDSE: Airbus, BAE Systems, Boeing, Lockheed-Martin, NASA-JPL,
Northrop-Grumman, Raytheon, SAAB, Thales, Audi, AVL, BMW, Bosch,
Carmeq, Continental, Daimler, Delphi, General Motors, Magneti Marelli,
Valeo, Volvo Cars6, Volkswagen, ABB, Deere & Co., FMC, Siemens,
Alcatel-Lucent, Ericsson, Motorola, Nortel, Siemens, UBS, and SAP.

In addition to all these industrial experience reports, we can find many
publications on commercial and non-commercial DSLs that have been
developed for various domains, especially those listed above. The existence
of these DSLs indicates that there is demand, and likely also actual usage
in (industrial) practice.

Robotics is generally seen as a field that highly benefits from MDSE
technologies, especially from models that abstract over the hardware and
many low-level movement control algorithms. Robotics software is also still
mostly developed in an ad hoc way (Garcia, Strueber, Brugali, Berger, et al.,
2020; Garcia, Pelliccione, et al., 2018), less systematic, and the respective
control software is often hardly reusable (Garcia, Strueber, Brugali, Fava,
et al., 2019). A notable survey on DSLs for robotics by Nordmann et
al. (2016) identified 41 publications that present a robotics DSL. Their
reference example is a kinematics DSL (Frigerio, Buchli, and Caldwell,
2011) developed to control robotic soccer players in a specific discipline
within the RoboCup competition.7 In fact, more robotics soccer DSLs
exist, such as CABSL (Röfer, 2018), which can be used to program the
behavior of specific soccer players (e.g., the goal keeper). Another example
are DSLs for controlling humanoid robots, such as DANCE, presented by
Huang and Hudak (2003). The notation is textual, but it was inspired by a
“domain-specific notation” called Labanotation invented in 1928 (sic!) by a
German dance artist and choreograph. An example choreography is shown
in Fig. 1.6.

With the advent of big data processing and machine-learning frameworks,
whose APIs can be difficult to understand and cumbersome to use, various
DSLs have been presented to ease utilizing this technology. The survey

6In fact, Volvo Cars recruiters are known to ask for applicants’ performance in the MDSE
courses.

7http://www.robocup.org

http://www.robocup.org

Chapter 1. Using Modeling Languages 11

Figure 1.6: A dance
choreography expressed in
the visual DSL Labanotation
(CC BY-SA 4.0, from
Wikimedia Commons,
author: Inigolv)

by Portugal, Alencar, and Cowan (2016) identifies seven DSLs, three of
which are developed by Google, Microsoft, and Yahoo! to cope with their
complex machine-learning and data-processing frameworks.

Finally, a classic survey by Deursen, Klint, and Visser (2000) gives
an annotated overview of practice, technology, and motivation for using
domain specific languages. Already in the year 2000, they listed over
thirty DSLs documented in the literature, many in wide-spread use. They
summarize implementation strategies, techniques, and architectures, as well
as (by now mostly of historical interest) available language workbenches,
which were starting to emerge at the time. A newer annotated bibliography
is maintained by Lämmel (2014) online.8

How are models used? Almost every programmer is using models in some
way or another, depending on what is exactly seen as a model (Bézivin,
2005b). In the context of MDSE, we use models mainly for automating
various engineering activities, beyond using models just for the purpose of
documentation. The literature survey by Mohagheghi and Dehlen (2008)
lists code generation, simulation, testing, and automatic test generation as
the main reported usages. If we want to more quantitatively understand for
what purpose models are actually used in industrial practice, only the survey
by Liebel et al. (2014) of 112 professional developers in the embedded
systems domain, provides hard empirical data. The following usages are
ordered by frequency as mentioned by their surveyed developers.

Code generation. Software or significant parts of it can be automatically
generated from models. Most importantly, this allows generating an easily
available basic infrastructure. In this book, we will experience it when
designing and implementing DSLs using MDSE methods. We will generate
implementations of models, (de)serializers of models, instance generators
for languages, tests, and editors for models, and well-formedness checkers
for models. This means that working with models is more effective than
working with code capturing similar information. The support mechanisms
of a programming language know little about the information you are edit-
ing. For instance, serializing complex data structures using programming-
language libraries usually does not work well; either it is not portable across
program runs, or across machines, or introduces unacceptable changes

8https://github.com/slebok/yabib

https://github.com/slebok/yabib

12 Andrzej Wąsowski. Thorsten Berger

to the data, or includes unnecessary runtime information. Similarly, a
Java or C# editor can provide relatively little feedback about errors in the
descriptions of business entities.

Code generation can also be used for actually executing the models. It
is quite common to execute models by generating code that exhibits the
actual semantics that the model should have. However, let us also note that
for executing models, in practice, interpretation is a very good (and very
often better) alternative to code generation. Interpretation is often easier to
implement and test, while maintaining the same benefits. In Chapter 2 we
will already write an interpreter for a language that controls a mobile robot.

Simulation. Early simulation of models is one of the most powerful
techniques used by hardware and embedded systems engineers. The
construction of an executable model allows simulating the behavior of the
system before it is actually constructed, and finding design mistakes early.
However, software can be executed very quickly if automatic generation is
used, so there is no acute need to simulate. Since software is virtual and
does not require physical production processes, it is available as soon as it is
designed. This is much different for systems mixing hardware and software,
where simulation of hardware models allows execution of software before
hardware is available. It also allows to explore environmental conditions
that are hard to reproduce in practice (for instance unsafe situations).

Furthermore, simulation makes sense for establishing properties of sys-
tems, when obtaining them directly from a running instance would be
expensive or slow. For instance, virtual simulation of network protocols
is much more efficient, than setting up a physical network infrastructure,
deploying the implementations and running tests. Simulation makes sense
for complex performance properties of many systems, as performance simu-
lations can often be run much faster than observing the system in real time.

Models provide useful oracles and visualizations for system monitoring
and debugging. Simulation can be used to mock components that are not
yet implemented and to mock users behavior. Alternatively, specifications
of system behavior (models) can be linked to a running system for runtime
monitoring. Errors would be flagged whenever the actual execution diverges
from the specification given in a model. When program state, or problematic
data, are visualized as models, debugging any potential divergence from
the specification becomes much easier.

A related activity to simulation is instance generation. Instances of data
models can be generated to serve as test data. Many design mistakes in data
models can be established quickly by analyzing examples of unexpected
instances of data, cases which should be disallowed.

Documentation and information. Models provide excellent documentation,
given their proximity to the domain. Often, they are self-documenting
(Deursen, Klint, and Visser, 2000) and can be directly used as documenta-
tion, or embedded into such, regardless whether models have a textual or
graphical syntax. Likewise, models foster conversations and coordination

Chapter 1. Using Modeling Languages 13

among different roles, including non-technical ones, such as domain or sales
experts. While developers can interact by talking about code, non-technical
rules are usually excluded from such, so using models can easy interactions.
However, documentation and information, even though, reported as the
third most frequent usage by Liebel et al. (2014), is never the prime usage
in MDSE, since we strive to use models for automation.9

Model checking and verification. System models can be verified, for
example, for safety properties. Since code generation is used, we are highly
confident that properties of the model are also properties of the final system.
Model checking and verification is predominantly used for established
modeling languages (such as MATLAB Simulink), since developing model
verification infrastructure is unfortunately quite expensive, and requires
advanced expertise. For this reason, verification tools rarely exist for project
specific languages. In the survey of Liebel et al. (2014), model checking
and verification is elicited in a more fine-grained way, comprising (most
frequent usage first): structural consistency checks, behavioral consistency
checks, timing analysis, formal verification, safety compliance checks, and
reliability analysis.

Test-case generation. If your models describe the possible behaviors of
your system, then you can use them to generate test cases. Consider,
for instance, finite state machine diagrams (one of our running examples,
which we will introduce in Example 6 in Sect. 3.2). Such models describe
the possible sequences of states that a system can execute. Given this
information, you can generate test cases, especially the input data for the
system, then run the system using this input data and observe that the output
adheres to the information in the model. Of course, there are techniques
to extract behavior from source code, but that is usually less accurate,
cumbersome, and the code could actually be incorrect. Importantly, test
cases derived from the code-under-test are much less likely to identify
bugs (they cannot find functional bugs, for instance). An explicitly and
independently created model is more trustworthy and therefore allows
creating test cases that test what the domain experts had in mind.

Traceability. Large organizations, especially in safety-critical domains,
need to establish traceability links between artifacts. Most often, such links
are necessary between requirements and code. Among others, traceability
information allows checking the completeness of the implementation with
respect to the requirements, to analyze the impact of (maintenance or evolu-
tion) changes to the system, or to trace bugs reports. Often, traceability is
prescribed by a safety standard in safety-critical domains such as aerospace
and automotive. Specific trace models, but also many other models, can be
used to record and exploit traceability information.

9Liebel et al. (2014) scoped their survey to so-called mode-based engineering (MBE), which
is a form of engineering that more loosely advocates the use of models. In MDSE instead,
models drive the development.

14 Andrzej Wąsowski. Thorsten Berger

Model-Based system integration. Finally, let us mention a use case that
was not directly listed by Liebel et al. (2014), but which is common as well:
using models for integrating systems. Specifically, if systems rely primarily
on models, then data exchange and integration of systems can be done via
models. This is particularly convenient, since models can be translated
to models in other languages by model transformations, which are small
programs implemented in languages specialized for model transformation.

What are the benefits of MDSE? Now that we know what MDSE is about
and how models are used, let us discuss what an organization can gain by
adopting MDSE. We order the benefits discussed in the literature by the
frequency in which they were reported in the survey by Liebel et al. (2014)
(N=112 professional developers in the embedded systems domain)—the
only study known to us that systematically elicits many different benefits
from practitioners.

Improved quality. The most frequently reported benefit according to Liebel
et al. (2014) is quality improvement. First, generated code is typically of
high quality. A substantial effort is put into the design of a code generator,
and any fix of a mistake there, immediately improves the quality of all the
generated code, reducing errors for all users. Second, simulation allows to
catch and fix errors early, and potentially exercises more system behavior
than could be done in later tests (e.g, by executing the software), essentially
finding more errors. Third, models improve the quality of requirements in
the sense that some requirements can be expressed within the model (Biffl,
Mordinyi, and Schatten, 2007), which allows finding errors in require-
ments, checking completeness of requirements, or enhancing the clarity
of requirements—as opposed to requirements solely expressed in natural
language. Improved quality was also found in a controlled experiment by
Kieburtz (2000), where the error reduction and productivity improvement
(explained shortly) was statistically significant.

Mohagheghi and Dehlen (2008) emphasize two case studies about Mo-
torola (Weigert and Weil, 2006; Baker, Loh, and Weil, 2005) and France
Telecom. In addition to finding errors early, their survey finds that fewer
code inspections were necessary in these cases. “For example, it is not
unusual to see a 30X—70X reduction in the time needed to correctly
fix a defect detected during system integration testing. This reduction is
attributed to the ability to add a model test that illustrates the problem, fix
the problem at the model level, test the fix by running a full regression test
suite on the model itself, regenerate the code from scratch, and run the same
regression test suite on the generated code.” (Baker, Loh, and Weil, 2005)

Improved reusability. Reuse of software means that you want to take a
piece of software you developed and modify it to fit another purpose or
context (Deursen, Klint, and Visser, 2000). For instance, you want to reuse
a software developed for a specific hardware (e.g., a robot) for another
hardware. The second most-frequently mentioned benefit according to

Chapter 1. Using Modeling Languages 15

(Liebel et al., 2014) is the improved reusability of software. The previously
mentioned Motorola case study also reports “reuse of designs and tests
between platforms or releases” (Weigert and Weil, 2006) as a prime benefit.
Instead of copying and modifying code, the idea is that the modifications
are represented in the models, so you account for changes, incorporate them
in the language, and then when you want to have a different system, you
modify the model (or instantiate a new one) and re-generate code or just run
the interpreter. It is just easier to specify models than to modify code (Selic,
2003), as well as models foster knowledge conservation and reuse (Deursen,
Klint, and Visser, 2000). Furthermore, since models typically abstract over
hardware, one can write different generators or interpreters for different
hardware platforms: more-driven software is more easily retargetable.
Many modeling languages have been defined to specifically foster use, by
allowing to describe the future modifications. They are often known as
variability modeling languages. We will return to them in Chapter 8 when
we talk about software product lines (Apel et al., 2013; Czarnecki and
Eisenecker, 2000; Czarnecki, Bednasch, et al., 2002), which are portfolios
of system variants in a specific domain.

Improved reliability. This third most frequently mentioned benefit (Liebel
et al., 2014) is a consequence of automation (Deursen, Klint, and Visser,
2000; Selic, 2003) and reuse of expert knowledge for generating code.
According to (Selic, 2003): “[...] modern optimizing compilers can out-
perform most practitioners when it comes to code efficiency. Furthermore,
they do it much more reliably.” That generated code is more reliable was
also clearly shown in the controlled experiment by Kieburtz et al. (1996).
Reliability was also a prime benefit observed in the Motorola case study
(Weigert and Weil, 2006), since: (i) insecure or unreliable coding practices
can be avoided, (ii) specific, more secure, coding policies and patterns can
be enforced, (iii), problems related to reliability can be detected early (in
the code generator implementation or in models), and (iv) separation of
concerns helps in assessing reliability.

Improved traceability. As stated above, models can be used for establishing
and exploiting traceability. However, already by using MDSE, traceability
is obtained as a kind of by-product (Winkler and Pilgrim, 2010). Especially
when transforming models into other models, model transformation engines
produce traces between the models automatically—in other words, they
create and maintain a trace model, which can be queried. Furthermore,
when many requirements can be expressed as part of the model, traceability
is naturally improved. Finally, models foster the comprehension of change
impacts when the system is changed (Deursen and Klint, 1997)—another
traceability-related improvement.

Improved maintainability. While maintainability was only the fourth most
frequently mentioned benefit by respondents of Liebel et al. (2014), many

16 Andrzej Wąsowski. Thorsten Berger

other works report maintainability and productivity increase as prime bene-
fits of MDSE (Deursen, Klint, and Visser, 2000; Selic, 2003; Deursen and
Klint, 1997; Kieburtz et al., 1996).

Various publications explain this benefit as follows (Forward and Leth-
bridge, 2008; Hutchinson et al., 2011; Deursen and Klint, 1997). First,
software defined in domain terms is easier to maintain. Models are easier
to understand than low-level code, and they can serve the role of docu-
mentation at times. It is easier to introduce new developers to tailor the
systems using an abstract DSL instead of changing the low-level code, since
most DSLs ensure that the changes stay within assumed design invariants.
Collaboration and coordination among developers is improved through
models (Forward and Lethbridge, 2008). MDSE allows easier modifications
(Forward and Lethbridge, 2008) and comprehension of change impacts.
Models and their languages more explicitly represent domain-specific
knowledge, which is also represented in a platform-independent manner
(Deursen and Klint, 1997). The latter also enhances system portability
(Hutchinson et al., 2011)—another benefit of MDSE that has already been
reported in 1988 by Herndon and Berzins, 1988.

Yet, it is actually interesting that the survey respondents (Liebel et
al., 2014) are a bit less convinced about maintainability than the other
benefits. An earlier survey of Forward and Lethbridge (2008) indicates
some ambivalence: respondents found changeability better, but bug fixing
was perceived as harder. We return to this when talking about risks of
MDSE below.

Improved productivity. The reasons for better productivity are mostly the
same as for improved maintainability: better understandability through
abstraction and domain-orientation (various roles, including domain experts
can understand the models) (Deursen, Klint, and Visser, 2000; Selic, 2003).
Systems can be created much faster, and sometimes they can even be
instantiated by non-technical domain experts who create the models and
then initiate code generation and automated deployment (Selic, 2003). Such
generated systems are also more usable and also likely to meet the original
requirements (Forward and Lethbridge, 2008).

Huge productivity gains are quoted by practitioners of MDSE in inter-
views (Hutchinson et al., 2011): at least two-, but even eight-fold! The
interviewees, however, explain that the increases are sometimes hidden
from the management to protect against budget cut-downs (sic!).

What are the risks of MDSE? MDSE is, of course, not a panacea for all
kinds of organizations, projects, and domains. All the benefits discussed
above are affected by various negative forces. Figure 1.7 visualizes ex-
amples of factors that influence various aspects of productivity (e.g., code
development time), maintainability, and portability according to Hutchinson
et al. (2011) (slightly revised and extended). The figure illustrates that

Chapter 1. Using Modeling Languages 17

automatic code
generation

model
design

less silly
mistakes

development of
model transformations

use of model-
based testing

test of model
transformations

model
validation

more creative
solutions

better overview
understanding

overuse of
modeling

distraction
through models

code
development

time

code
testing
time

ROI of
MDSE

p
ro
d
u
ct
iv
it
y

simply apply new
transformations

develop new
transformations

customize
transformations

platform
migration

time

p
o
rt
ab

ili
ty

m
ai
n
ta
in
ab

ili
ty

reduction of
repetitive coding

high-level
models

complexity of
MDSE tooling

maintenance at
model level

complexity of
generated code

generated
traceability links

evolution of
MDSE tooling

keeping models
consistent

shared
under-

standing

system
maintenance

time

self-docu-
menting code

separate plaform
and business concerns

legend

positively
influences

negatively
influences

Figure 1.7: Illustrative
influences of MDSE. Revised
and extended from
Hutchinson et al. (2011)

positive and negative influences, which are also related to each other, should
be taken into account when assessing MDSE. In practice, depending on the
domain and project context, certain aspects will outweigh others.

Motivated by these influences, Hutchinson et al. (2011) study the impact
of MDSE-related activities on productivity and maintainability. Even
though, the eight activities they investigate are somewhat random, and
it is not clear how representative they are, almost all activities except “use
of models for testing” and model simulation/executable” models are clearly
positively impacting maintainability and productivity. Furthermore, even
though, as pointed out above, the majority of respondents considered using
MDSE beneficial, a significant proportion (17–22 %) disagreed, which
suggests some challenge (or risks) in adopting MDSE. The following are
reported in the literature.

Return of investment. MDSE requires additional effort for engineering
systems (including maintenance), and the risk is that this effort is too high
and will not pay off when models are not useful enough (Torchiano et al.,
2011; Deursen, Klint, and Visser, 2000). Another challenge can be the costs
for education and training that are necessary for adopting MDSE (Liebel
et al., 2014; Deursen, Klint, and Visser, 2000).

Half-baked adoption. There is also a risk when the potential of MDSE is
not fully exploited, especially when models end up being solely used for
documentation, not exploiting their full potential (Selic, 2003). Documen-
tation too easily diverges from the reality.

Model and language quality. Selic (2003) sees low-quality models and
non-adequate abstraction levels as significant risks. There should be enough
emphasis on quality, since low-quality models can impact many different
products. Deursen, Klint, and Visser (2000) also sees balancing chal-
lenges with models, for instance, balancing between generality and domain-
specificity when developing DSLs. An important quality property for DSLs
is also that they are properly scoped—so neither include too many nor too

18 Andrzej Wąsowski. Thorsten Berger

few concepts of the domain. A badly scoped DSL is a risk for MDSE
(Deursen, Klint, and Visser, 2000). Finally, when code generation is used,
the efficiency of the generated code is a considered risk (Deursen, Klint,
and Visser, 2000), but as we point out above, generated code is often more
efficient.

Model consistency. Models need to be kept in sync with code and other
artifacts. A risk is that inconsistencies arise when consistency is not
continuously maintained (Forward and Lethbridge, 2008). To this end,
the authors request better facilities for traceability and partial updates or
co-evolution. Improved embedded modeling facilities (within code) could
also alleviate this risk.

Tooling. Quality of tools is definitely a problem, even though the situation
has improved significantly over the last decade. Hutchinson et al. (2011)
report over 50 tools used by the respondents, which suggests a lack of
maturity—definitive market leaders are yet to emerge. Tools are immature,
complaints about prices are common. Liebel et al. (2014) further emphasize
tool interoperability and tool usability.

Social and Economic Challenges. According to Selic (2012), complex
social and economic issues are the most important and difficult to solve chal-
lenges for MDSE: “based on long-term experience in industry, it is my opin-
ion that these non-technical issues are the more critical ones to overcome.”

Bug Fixing. Finally, that bug fixing in the context of MDSE can be more
challenging is reported in the study of Forward and Lethbridge (2008).
While changeability is better, bug fixing is perceived as more difficult in
MDSE. This challenge is confirmed by our own experience, especially
in courses where students are new to the subject. Experience helps, and
many problems are primarily adoption problems or fighting with some
idiosyncrasies of tools in the beginning.

The most important insight about bug fixing and all the other risks is,
however, that if software would have been developed without MDSE, the
effort and number of bugs would have been much higher. Consider alone all
the editors and model serialization or deserialization infrastructures we will
automatically generate. For developers it is almost impossible to achieve
the high-quality editors that MDSE tools will generate, or at least it would
be a much higher effort to engineer them from scratch. This will be a quite
abstract statement for you now, but after having used MDSE, we are very
sure that you will confirm this insight.

1.4 Scope and Structure of the Book

This book discusses methods and techniques for designing and implement-
ing DSLs. We cover domain analysis, design of the syntax and semantics,
as well as implementation of code generators and interpreters. Our primary
goal is to learn how to design high-quality languages at relatively little cost,
so that they can be used in much smaller projects, or with a much smaller

Chapter 1. Using Modeling Languages 19

MDSE and Agile Software Engineering
• agile processes en vogue
• however, programming still takes a lot of time
• incrementality
• automation for continuous testing, integration, and delivery (Fitzgerald and Stol, 2014)
• see also RE vs. agile (Kasauli et al., 2017)

user base than the examples above. We focus primarily on discussing
technology and implementation, as we deeply believe that automation is
key to the successful use of models in software projects.10

Further Reading
The idea of DSLs is usually tracked to the seminal paper of Landin (1966), although
the paper is concerned more with a family of related languages, where differences
are introduced by (possibly significant amounts of) syntactic sugar, rather than with
creating special purpose languages. Landin’s languages differ syntactically, but
share the same expressiveness. The suggestive title, and the fact that it argues for
need of diverse language syntaxes for various needs, is usually the reason why this
paper is considered as the first mention of DSLs.

One of the most referenced books on MDSE, that really helped establishing
MDSE as a field and made it known to practitioners, is the book by Stahl and Völter
(2005). It addresses a real need of the market, but also excels in presenting the
UML-based approach to DSLs. Using UML and stereotyping remains probably
the easiest way to create (especially graphical) languages, even today. In his newer
book, Voelter (2013) focuses on using and developing domain-specific languages.
This book is more comprehensive than ours, but we focus on presenting the material
in style and structure that is suitable for use in a university course, without assuming
an extensive training in compiler theory.

A somewhat more standard presentation of DSL design is given by Fowler and
Parsons (2011), who thoroughly and excellently discuss the patterns and guidelines
for implementing and using DSLs. However, they are less focused on obtaining the
implementation with the modern tools at low cost, so their implementation of DSLs
is not as much model-driven as presented in our book.

Brambilla, Cabot, and Wimmer (2012) present a very good overview of model-
driven development architectures, processes, and benefits. In our opinion, their book
is very suitable for experienced software developers who appreciate the software en-
gineering issues solved by MDSE, and who are trained in (programming-) language
design and implementation.

Combemale et al. (2016) have authored one of the more recent books on MDSE.
The book is devoted to learning language design for MDSE, n a concrete manner,
showing models and code, and discussing examples. It includes exercises and code
in a git repository, encouraging experimentation. The book gives a good coverage
of language workbenches and of external-DSL design. It also brings in some formal,
mathematical semantics to the reader to mitigate a bit the vagueness found in some
other MDSE literature.

10Note to reviewers: A reading guide will be inserted here, when the book is finalized.

20 Andrzej Wąsowski. Thorsten Berger

References
Apel, Sven et al. (2013). Feature-Oriented Software Product Lines. Springer.
Babbage, Charles (1822). Note on the application of machinery to the computation

of astronomical and mathematical tables.
Baker, Paul, Shiou Loh, and Frank Weil (2005). “Model-Driven engineering in a

large industrial context–motorola case study”. In: International Conference on
Model Driven Engineering Languages and Systems.

Berger, Thorsten et al. (2013). “A Study of Variability Models and Languages in
the Systems Software Domain”. In: IEEE Transactions on Software Engineering
39.12, pp. 1611–1640.

Bézivin, Jean (2005a). “On the unification power of models”. In: Software and
Systems Modeling 4.2, pp. 171–188. DOI: 10.1007/s10270-005-0079-0. URL:
https://doi.org/10.1007/s10270-005-0079-0.

– (2005b). “On the unification power of models”. In: Software and System Modeling
4.2, pp. 171–188.

Biffl, Stefan, Richard Mordinyi, and Alexander Schatten (2007). “A model-driven
architecture approach using explicit stakeholder quality requirement models for
building dependable information systems”. In: Proceedings of the 5th Interna-
tional Workshop on Software Quality. IEEE Computer Society, p. 6.

Bone, Mary and Robert Cloutier (2010). “The current state of model based systems
engineering: Results from the OMG sysml request for information 2009”. In:
Proceedings of the 8th conference on systems engineering research.

Box, George and Norman Draper (1987). Empirical Model-Building and Response
Surfaces. Wiley.

Brambilla, Marco, Jordi Cabot, and Manuel Wimmer (2012). Model-Driven Soft-
ware Engineering in Practice. Morgan & Claypool.

Brambilla, Marco, Stefano Ceri, et al. (2005). “Model-driven Design of Service-
enabled Web Applications”. In: Proceedings of the 2005 ACM SIGMOD Interna-
tional Conference on Management of Data. SIGMOD ’05. Baltimore, Maryland:
ACM, pp. 851–856. ISBN: 1-59593-060-4. DOI: 10.1145/1066157.1066265. URL:
http://doi.acm.org/10.1145/1066157.1066265.

Broy, Manfred (2006). “Challenges in Automotive Software Engineering”. In:
Proceedings of the 28th International Conference on Software Engineering.
ICSE ’06. Shanghai, China: ACM, pp. 33–42. ISBN: 1-59593-375-1. DOI: 10.
1145/1134285.1134292. URL: http://doi.acm.org/10.1145/1134285.1134292.

Combemale, Benoit et al. (2016). Engineering modeling languages: Turning domain
knowledge into tools. CRC Press.

Cuadrado, Jesús Sánchez, Javier Luis Cánovas Izquierdo, and Jesús García Molina
(Sept. 2014). “Applying Model-driven Engineering in Small Software Enter-
prises”. In: Sci. Comput. Program. 89.PB, pp. 176–198. ISSN: 0167-6423. DOI:
10.1016/j.scico.2013.04.007. URL: http://dx.doi.org/10.1016/j.scico.2013.04.007.

Czarnecki, Krzysztof, Thomas Bednasch, et al. (2002). “Generative Programming
for Embedded Software: An Industrial Experience Report”. In: GPCE. Ed. by
Don S. Batory, Charles Consel, and Walid Taha. Vol. 2487. Lecture Notes in
Computer Science. Springer, pp. 156–172. ISBN: 3-540-44284-7.

Czarnecki, Krzysztof and Ulrich Eisenecker (2000). Generative Programming.
Methods, Tools, and Applications. Addison-Wesley.

https://doi.org/10.1007/s10270-005-0079-0
https://doi.org/10.1007/s10270-005-0079-0
https://doi.org/10.1145/1066157.1066265
http://doi.acm.org/10.1145/1066157.1066265
https://doi.org/10.1145/1134285.1134292
https://doi.org/10.1145/1134285.1134292
http://doi.acm.org/10.1145/1134285.1134292
https://doi.org/10.1016/j.scico.2013.04.007
http://dx.doi.org/10.1016/j.scico.2013.04.007

Chapter 1. Using Modeling Languages 21

Deng, Gan et al. (2003). “Model driven development of inventory tracking system”.
In: Proceedings of the oopsla 2003 workshop on domain-specific modeling
languages.

Deursen, Arie van, Paul Klint, and Joost Visser (2000). “Domain-Specific Lan-
guages: An Annotated Bibliography”. In: SIGPLAN Notices 35.6, pp. 26–36.
DOI: 10.1145/352029.352035. URL: http://doi.acm.org/10.1145/352029.352035.

Deursen, Arie and Paul Klint (1997). Little Languages: Little Maintenance? Tech.
rep. Amsterdam, The Netherlands.

Eisenmann, Harald, Juan Miro, and Hans Peter Koning (2009). “MBSE for European
Space-Systems Development”. In: INSIGHT 12.4, pp. 47–53.

Fitzgerald, Brian and Klaas-Jan Stol (2014). “Continuous software engineering
and beyond: trends and challenges”. In: Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering, pp. 1–9.

Forward, Andrew and Timothy C. Lethbridge (2008). “Problems and Opportunities
for Model-centric Versus Code-centric Software Development: A Survey of
Software Professionals”. In: Proceedings of the 2008 International Workshop on
Models in Software Engineering. MiSE ’08.

Fowler, Martin (2004). Uml Distilled: A Brief Guide to the Standard Object Model-
ing Language. Addison-Wesley Professional.

Fowler, Martin and Rebecca Parsons (2011). Domain-Specific Languages. Addison-
Wesley.

Frankel, David S (2003). Model Driven Architecture: Applying MDA to Enterprise
Computing. John Wiley & Sons.

Frigerio, Marco, Jonas Buchli, and Darwin G Caldwell (2011). “A Domain Specific
Language for kinematic models and fast implementations of robot dynamics al-
gorithms”. In: Workshop on Domain-Specific Languages and models for Robotic
systems.

Garcia, Sergio, Patrizio Pelliccione, et al. (2018). “An Architecture for Decentral-
ized, Collaborative, and Autonomous Robots”. In: International Conference on
Software Architecture (ICSA).

Garcia, Sergio, Daniel Strueber, Davide Brugali, Thorsten Berger, et al. (2020).
“Robotics Software Engineering: A Perspective from the Service Robotics Do-
main”. In: 28th ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE).

Garcia, Sergio, Daniel Strueber, Davide Brugali, Alessandro Di Fava, et al. (2019).
“Variability Modeling of Service Robots: Experiences and Challenges”. In: 13th
International Workshop on Variability Modelling of Software-intensive Systems
(VaMoS).

Hendriks, Dre (2017). “The selection process of model based platforms”. MA thesis.
Radboud University Nijmegen.

Herndon Jr., R. M. and V. A. Berzins (June 1988). “The Realizable Benefits of a
Language Prototyping Language”. In: IEEE Trans. Softw. Eng. 14.6, pp. 803–809.
ISSN: 0098-5589. DOI: 10.1109/32.6159. URL: http://dx.doi.org/10.1109/32.6159.

Huang, Liwen and Paul Hudak (2003). Dance: A declarative language for the
control of humanoid robots. Tech. rep. Department of Computer Science, Yale
University New Haven, CT, USA.

https://doi.org/10.1145/352029.352035
http://doi.acm.org/10.1145/352029.352035
https://doi.org/10.1109/32.6159
http://dx.doi.org/10.1109/32.6159

22 Andrzej Wąsowski. Thorsten Berger

Hutchinson, John et al. (2011). “Empirical assessment of MDE in industry”. In:
ICSE. Ed. by Richard N. Taylor, Harald Gall, and Nenad Medvidovic. http :
//doi.acm.org/10.1145/1985793.1985858. ACM, pp. 471–480. ISBN: 978-1-4503-
0445-0.

Jouenne, Eric and Véronique Normand (2005). “UML Modeling Languages and
Applications”. In: ed. by Nuno Jardim Nunes et al. Berlin, Heidelberg: Springer-
Verlag. Chap. Tailoring IEEE 1471 for MDE Support, pp. 163–174. ISBN: 3-540-
25081-6. URL: http://dl.acm.org/citation.cfm?id=2206963.2206982.

Kasauli, R. et al. (2017). “Requirements Engineering Challenges in Large-Scale
Agile System Development”. In: 2017 IEEE 25th International Requirements
Engineering Conference (RE), pp. 352–361.

Kieburtz, Richard B. (2000). Defining and Implementing Closed, Domain-Specific
Languages.

Kieburtz, Richard B. et al. (1996). “A Software Engineering Experiment in Software
Component Generation”. In: ICSE. IEEE Computer Society, pp. 542–552.

Lämmel, Ralf (2014). Yet another annotated SLEBOK bibliography. URL: https:
//github.com/slebok/yabib.

Landin, Peter J. (1966). “The next 700 programming languages”. In: Communica-
tions of The ACM 9.3, pp. 157–166.

Liebel, Grischa et al. (2014). “Assessing the state-of-practice of model-based en-
gineering in the embedded systems domain”. In: International Conference on
Model Driven Engineering Languages and Systems (MODELS).

MacDonald, Anthony, Danny Russell, and Brenton Atchison (2005). “Model-driven
development within a legacy system: an industry experience report”. In: Software
Engineering Conference, 2005. Proceedings. 2005 Australian. IEEE, pp. 14–22.

Mashariki, Amen Ra, LeeRoy Bronner, and Peter Kazanzides (2007). “Designing
and Developing Medical Device Software Systems Using the Model Driven
Architecture (MDA)”. In: Proceedings of the 2007 Joint Workshop on High
Confidence Medical Devices, Software, and Systems and Medical Device Plug-
and-Play Interoperability. HCMDSS-MDPNP ’07.

Mellegård, Niklas et al. (2016). “Impact of introducing domain-specific modelling
in software maintenance: an industrial case study”. In: IEEE Transactions on
Software Engineering 42.3, pp. 245–260.

Mellor, Stephen J (2004). MDA distilled: principles of model-driven architecture.
Addison-Wesley Professional.

Mohagheghi, Parastoo and Vegard Dehlen (2008). “Where Is the Proof? - A Review
of Experiences from Applying MDE in Industry”. In: Proceedings of the 4th Eu-
ropean Conference on Model Driven Architecture: Foundations and Applications.
ECMDA-FA ’08.

Nordmann, Arne et al. (2016). “A Survey on Domain-Specific Modeling and Lan-
guages in Robotics”. In: Journal of Software Engineering in Robotics (JOSER)
7.1, pp. 75–99.

Object Management Group (2014). MDA Guide revision 2.0. http://www.omg.org/cgi-
bin/doc?ormsc/14-06-01.

– (2017). Unified Modeling Language Specification 2.5.1. https://www.omg.org/
spec/UML.

Petre, Marian (2013). “UML in practice”. In: Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press, pp. 722–731.

http://doi.acm.org/10.1145/1985793.1985858
http://doi.acm.org/10.1145/1985793.1985858
http://dl.acm.org/citation.cfm?id=2206963.2206982
https://github.com/slebok/yabib
https://github.com/slebok/yabib
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/spec/UML
https://www.omg.org/spec/UML

Chapter 1. Using Modeling Languages 23

Portugal, Ivens, Paulo S. C. Alencar, and Donald D. Cowan (2016). “A Survey
on Domain-Specific Languages for Machine Learning in Big Data”. In: CoRR
abs/1602.07637. arXiv: 1602.07637. URL: http://arxiv.org/abs/1602.07637.

Richardson, Clay and John R Rymer (2016). “Vendor landscape: The fractured,
fertile terrain of low-code application platforms”. In: FORRESTER, Janeiro. URL:
https://informationsecurity.report/Resources/Whitepapers/0eb07c59-b01c-4399-
9022-dfc297487060_Forrester%20Vendor%20Landscape%20The%20Fractured,
%20Fertile%20Terrain.pdf.

Röfer, Thomas (2018). “RoboCup 2017: Robot World Cup XXI. Lecture Notes in
Artificial Intelligence”. In: Springer. Chap. CABSL – C-based agent behavior
specification language.

Rogers, Simon and Mark Girolami (2016). A First Course in Machine Learning,
Second Edition. 2nd. Chapman & Hall/CRC.

Safa, Laurent (2006). “The practice of deploying DSM, report from a Japanese
appliance maker trenches”. In: Proceedings of the 6th OOPSLA Workshop on
Domain Specific Modeling (DSM’06).

Selic, Bran (2003). “The Pragmatics of Model-Driven Development”. In: IEEE
Software 20.5. http://csdl.computer.org/comp/mags/so/2003/05/s5019abs.htm,
pp. 19–25.

– (Oct. 2012). “What will it take? A view on adoption of model-based methods in
practice”. In: Software & Systems Modeling 11.4, pp. 513–526.

Selić, Bran (2017). Model-Based Software Engineering in Industry: Revolution,
Evolution, or Smoke? http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
347.4206&rep=rep1&type=pdf.

Stahl, Thomas and Markus Völter (2005). Model-Driven Software Development.
Wiley.

Staron, Miroslaw (2006). “Adopting Model Driven Software Development in Indus-
try: A Case Study at Two Companies”. In: Proceedings of the 9th International
Conference on Model Driven Engineering Languages and Systems. MoDELS’06.

Torchiano, Marco et al. (2011). “Preliminary Findings from a Survey on the MD
State of the Practice”. In: International Symposium on Empirical Software
Engineering and Measurement (ESEM).

Trask, Bruce et al. (2006). “Using Model-driven Engineering to Complement
Software Product Line Engineering in Developing Software Defined Radio
Components and Applications”. In: Companion to the 21st ACM SIGPLAN Sym-
posium on Object-oriented Programming Systems, Languages, and Applications.
OOPSLA ’06. Portland, Oregon, USA: ACM, pp. 846–853. ISBN: 1-59593-491-
X. DOI: 10.1145/1176617.1176733. URL: http://doi.acm.org/10.1145/1176617.
1176733.

Trčka, Nikola et al. (2011). “Integrated model-driven design-space exploration for
embedded systems”. In: Embedded Computer Systems (SAMOS), 2011 Interna-
tional Conference on. IEEE, pp. 339–346.

Voelter, Markus (2013). DSL Engineering. Designing, implementing and using
domain specific languages. URL: http://www.dslbook.org/.

Weigert, Thomas and Frank Weil (2006). “Practical experiences in using model-
driven engineering to develop trustworthy computing systems”. In: Sensor
Networks, Ubiquitous, and Trustworthy Computing, 2006. IEEE International
Conference on. Vol. 1. IEEE, 8–pp.

https://arxiv.org/abs/1602.07637
http://arxiv.org/abs/1602.07637
https://informationsecurity.report/Resources/Whitepapers/0eb07c59-b01c-4399-9022-dfc297487060_Forrester%20Vendor%20Landscape%20The%20Fractured,%20Fertile%20Terrain.pdf
https://informationsecurity.report/Resources/Whitepapers/0eb07c59-b01c-4399-9022-dfc297487060_Forrester%20Vendor%20Landscape%20The%20Fractured,%20Fertile%20Terrain.pdf
https://informationsecurity.report/Resources/Whitepapers/0eb07c59-b01c-4399-9022-dfc297487060_Forrester%20Vendor%20Landscape%20The%20Fractured,%20Fertile%20Terrain.pdf
http://csdl.computer.org/comp/mags/so/2003/05/s5019abs.htm
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.347.4206&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.347.4206&rep=rep1&type=pdf
https://doi.org/10.1145/1176617.1176733
http://doi.acm.org/10.1145/1176617.1176733
http://doi.acm.org/10.1145/1176617.1176733
http://www.dslbook.org/

24 Andrzej Wąsowski. Thorsten Berger

Whittle, Jon, John Hutchinson, and Mark Rouncefield (2014). “The state of practice
in model-driven engineering”. In: IEEE software 31.3, pp. 79–85.

Winkler, Stefan and Jens von Pilgrim (2010). “A survey of traceability in require-
ments engineering and model-driven development”. In: Software & Systems
Modeling 9.4, pp. 529–565.

2 Building Modeling Languages

Our intention is to automate the development of software applications in
a given domain, by using models to describe essential characteristics of
an application and using code generation or interpretation to produce the
application automatically. In order to make this approach work, we will
need a language whose models are suitable to describe systems in this
domain. Before creating models (i.e., language instances) and executing
or otherwise using them, we need to design the notation in which these
models are expressed. Such a language is called a DSL (a domain-specific
language), as you recall from Chapter 1. The task of creating the language
is performed by a language designer.

The remainder of this book is about creating DSLs, which incorporate
domain-specific concepts. While many of the technologies presented in this
book can also be used for realizing GPLs (general-purpose languages), we
focus on the specifics of DSLs (e.g., their limited expressiveness) and side-
step all the advanced concepts that one needs for realizing compiled or in-
terpreted GPLs, such as advanced type systems, optimization, or generation
of machine code. For such topics, we refer to literature on compilers and
programming languages (Aho et al., 2006; Mogensen, 2011; Sestoft, 2012).

In this chapter, we will first motivate the need for building DSLs and then
discuss their different parts, which you as a language developer need to
realize. We describe the various variants of these parts, their characteristics,
and the respective technologies for realizing the parts. As such, this chapter
serves as an overview of the topics covered in great detail later.

2.1 The Need for Domain-Specific Languages

General-purpose programming languages include language constructs that
are useful for creating algorithms or structuring software systems. As such,
they are not tailored towards a particular domain,1 but contain general
computation-related concepts, such as loops or conditionals. To tackle an
increasing complexity of software, programming languages have continu-
ously evolved and over time become more and more abstract.

Let us take a look at the history of concepts in programming languages.
The very first programming languages—machine languages—only con-
tained instructions that the machine’s processor could execute directly, such

1On a philosophical stance, one could actually call programming languages as being specific to
the domain of computation or algorithm development, but we avoid taking a position here.

25

26 Andrzej Wąsowski. Thorsten Berger

as counting, reading registers, or doing some basic input/output operations.
These instructions were stored as numbers in binary form, in the memory
of computers. Any control flow (jumps) in these languages used concrete
memory addresses (so also numbers) to indicate program locations.

In order to address the challenge of writing (slightly) more advanced
programs, the assembly languages were designed (Booth and Britten, 1947).
Also known as assemblers (a homonym with the name of compilers for the
assembly languages), they contained concepts such as jumps and limited
arithmetic expressions. Numeric instruction codes have been replaced by
human readable mnemonic names and named labels for jumps had been
added over time. The introduction of an assembly language had dramatically
raised the level of abstraction in programs, hiding the complex low-level
aspects of the machine language. For the first time, a compiler had to be
used to transform the assembly code into machine executable binary code.

The next generation of languages were touted high-level programming
languages. Fortran (Backus, Beeber, et al., 1957) was the first one. Algol
60 (Backus, Bauer, et al., 1963) followed shortly after. Both were imperative
languages, introducing concepts such as loops, conditionals and recursion.
LISP (McCarthy, 1960), introduced around the same time, was the first
functional language based on Church’s lambda calculus with the concept
function (function value) as the main building block of a LISP program.
Finally, COBOL-1961 (1961) introduced concepts well-suited for business
programming, including macros and hierarchical data structures. All high-
level languages had as a goal moving the computation away from low-level
aspects of how a machine operates, and expressing it in abstract terms, not
necessarily directly represented in the hardware.

The next well-recognized evolution leap in programming languages was
the introduction of object-oriented programming. Simula 67 (Dahl and
Nygaard, 1967) extended Algol 60 with strong modularization concepts:
objects and classes, specialization and generalization of data types, aggre-
gation of related data, and encapsulation of related behavior. Among the
most popular object-oriented languages were C++, Java, and C#—one of
which you are probably familiar with. Nowadays, we observe an increasing
incorporation of functional-programming concepts, such as anonymous
functions (also known as lambdas) and closures into object-oriented lan-
guages, as can be seen with Java 8. Right now, Scala is likely the language
combining most of the object-oriented and functional features. We use Scala
a lot in the remainder of this book (as many programming styles can be
realized in Scala, this allows us to avoid switching languages all the time).

In retrospect, the history of programming-languages is a history of
abstractions. The later languages enrich the abstraction capabilities of
their predecessors, even though the predecessors were already Turing-
complete. This means that for a long time in the history of programming the
expressiveness has been much less important than abstraction capabilities.

Chapter 2. Building Modeling Languages 27

2.2 Domain-Specific Languages

Recently, language designers find it increasingly difficult to develop better
general-purpose abstractions on top of the existing general-purpose pro-
gramming languages. One practical way to further raise the abstraction level
is to introduce domain-specific languages. The idea is to introduce domain-
specific concepts directly to the language, as first-class components. Instead
of trying to find a general-purpose abstraction, one can design abstractions
that extract the essential aspects of the domain and hide the inessential
ones. Such a language can no longer be used for any applications, but only
for those in the problem domain. However, the abstraction level for the
programs (models) in the problem domain raises. Hudak (1996) touts DSLs
as the ultimate abstraction.

Good examples of successful languages that abstract away substantial
amounts of details, yet put a lot of power into hands of their users, are
HTML and SQL. Both hide the complex algorithms needed to execute them.
HTML hides the layout algorithms. SQL abstracts away query execution
mechanism. Both expose high-level domain-specific concepts, for instance,
document elements (HTML) and data relationships (SQL). Let us explicitly
define what DSLs are:

Definition 2.1. A domain-specific language (DSL) is a computer program-
ming or modeling language of limited expressiveness focused on a particu-
lar domain (or a particular aspect of a particular domain).2

Today’s engineers can use modern tools, so-called language workbenches
(Erdweg et al., 2013), to create languages for much smaller domains than
SQL and HTML. Language workbenches allow to build DSLs and their
infrastructure cost-effectively. So, the next leap in the history of program-
ming languages is in hands of software architects responsible for particular
projects. Perhaps in your hands. For the first time, it is feasible to create
compilers solely to increase quality and efficiency of individual software
projects and products.

The key advantage of DSLs is also their key limitation—they can only be
used in a specific domain, in a specific context, or for a specific activity. The
elements within a DSL need to pertain to a domain to be coherent enough
and understandable for the DSL users. Otherwise, it would be too difficult to
use the language. In fact, limiting the language elements in DSL to a domain
is one of the core strengths of DSLs, which eases their use and makes them
appealing to both domain experts, end-users knowledgeable in the domain,
and of course developers. A typical definition of domain is as follows.

Definition 2.2. A domain is an area of knowledge scoped to maximize
the satisfaction of the requirements of its stakeholders, including a set of

2After Fowler and Parsons (2011)

28 Andrzej Wąsowski. Thorsten Berger

concepts and terminology understood by practitioners in that area, and
including knowledge of how to build software systems (or parts of software
systems) in that area.3

That a DSL is limited to a domain also means that one needs to design and
implement a new language to benefit from it in a new project area. This
is an inherent tension: a language used to lower the cost for a particular
development problem incurs an additional development cost for language
engineering. Two forces act in favor of reducing this cost: distribution of
cost across multiple projects, and advances in language technology.

Distribution of cost across multiple projects. MDSE with DSLs is a cost-
effective improvement to a development process and architecture if the
language and its infrastructure can be reused across multiple projects in the
same domain. For instance, a consultancy that customizes ERP systems will
benefit from a DSL in which said customizations can be expressed fast and
maintained efficiently. A DSL for coordinating several autonomous robots
will benefit the developers if they can reuse the same language in several
similar robotics projects. MDSE will be beneficial within a single project,
if concise domain-specific models can replace complex boilerplate code in
multiple locations in code, which is the case of use of embedded SQL or
LINQ for database access. In these examples, the cost of language devel-
opment is carried only once, while the benefits are reaped multiple times.

Advances in software tools. Advances in software tools make language
design a relatively accessible skill. They also allow the language design to
be performed in a time-efficient manner, without dominating the cost of the
primary development tasks. Any organization deciding to develop a DSL
needs access to language designers. Traditionally, this was not a skill easily
available in software-development houses. Language designers and imple-
menters were rare, and they found jobs in compiler companies. However,
thanks to the emergence of well-integrated language workbenches, imple-
menting DSLs became much easier: it can be done quickly. It no longer
requires specialized compiler knowledge. It can nowadays be undertaken
by most software developers who have completed a software-engineering
or computer-science education (or completed reading this book).

A language workbench is a tool that facilitates rapid engineering of DSLs.
Language workbenches follow an architecture known as the meta-modeling
hierarchy or bootstrapping. We explain this idea throughout the book,
starting with Sect. 3.9.

Definition 2.3. A language workbench is a tool for creating and using
(domain-specific) languages.

Today, language workbenches are a rather mature technology, that has
existed already since 1980 (Erdweg et al., 2013). Xtext, a modern tool for
development textual DSLs, is discussed in detail in Chapter 4, where we talk

3After Czarnecki and Eisenecker (2000)

Chapter 2. Building Modeling Languages 29

Figure 2.1: A
service-definition model
created in a graphical DSL
designed in the language
workbench Sirius (image
from the Sirius gallery).

about designing concrete textual syntax. A popular tool for development
of graphical DSLs is Sirius (Viyović, Mirjam Maksimović, and Perisić,
2014; Vujović, Mirjana Maksimović, and Perišić, 2014). The gallery of
languages developed in Sirius4 lists several interesting languages, including
a service-definition notation, pertaining to the systems-engineering tool
Capella, whose model is shown in Fig. 2.1. Even the standard graphical
editor for Ecore models in Eclipse, discussed in Appendix B and used to
create many figures in this book, is built using Sirius. We discuss Sirius
in detail in ??, devoted to languages with graphical syntax. We list the
historical tools for both textual and visual languages in the Further Reading
section, in the end of this chapter.

A third category of language workbenches, in addition to those for textual
and for graphical languages above, are so-called projectional language
workbenches. While they are conceptually similar to the workbenches for
graphical languages, they support both textual and graphical syntax in an
integrated way. The focus is slightly more on textual syntax than on the
graphical ones, but using another technology, not a usual text editor, but a so-
called projectional editor. As opposed to a regular text editor combined with
a separate parser—the most common technology for realizing and using
textual languages—a projectional editor does not need a parser. Instead,
users directly work on a model or program. The abstract model is rendered
into a textual notation which creates an illusion of a text editor (very much
like WYSIWYG editors for HTML or for word processing documents do).
The user’s editing operations directly change the nodes of the underlying
representation, without any parsing involved. This technology allows for

4https://www.eclipse.org/sirius/gallery.html

https://www.eclipse.org/sirius/gallery.html

30 Andrzej Wąsowski. Thorsten Berger

Instance of a DSL: Model, Code, Program, or Mogram?
We build domain-specific languages to write models and programs in these languages. So our main
purpose is to work with instances of the languages. Interestingly, there is no single English noun that
describes the different kinds of instances, and the word “instance” itself seems rather abstract and cryptic.
The instances are typically called “models,” but are often also referred to as “programs” or “code,” even
if these words do not really mean the same. In our context, it is essentially equivalent to talk about
models, code or programs. After all, as stated in Sect. 1.2, almost everything in software engineering is a
model.

Kleppe (2009) tried to introduce a neologism mogram to describe the things that can be written in a
language, emphasizing the commonalities between models, programs, and code. In her view, the most
important part of a language is the definition of the abstract syntax (the meta-model), which is a first-class
citizens in the context of MDSE. The actual name used for the instances is less important. Sadly, the
word “mogram” has not caught on in the community. Voelter (2013) explicitly points out that he does not
distinguish between model, code, and program; if he uses model and program in the same sentence, then
model refers to the more abstract representation. So, abstraction is his main characteristic of a model, in
line with Def. 1.1. Consequently, we also use the terms model, program, and code synonymously in this
book.

rendering of graphical notations and providing both textual and graphical
notations within a single language, even within a single document. We
discuss projectional languages and projectional editing in ??.

2.3 What Is a Language Built Of?

Before we proceed to describe the overall process of building a language,
let us consider what is it that we have to build; what is a language? Or
more precisely: how language design and implementation can be split into
smaller tasks? Indeed, most often we organize a language implementation in
a chain of processors, in a so called pipeline architecture. The components
are coarsely divided into two large groups, corresponding to the main parts
of any language: the syntax and the semantics:

Definition 2.4. The Syntax of a language is the definition of the princi-
ples and processes by which sentences are constructed in a particular
language (Chomsky, 1957).

The above definition, originally proposed for natural languages (the lan-
guages spoken by humans), applies very well to programming and modeling
languages. So, syntax defines roughly what programs we can write in a
language. The semantics, on the other hand, is concerned with the meaning
of the programs and models written in a given language:

Definition 2.5. The semantics are the (study of) meanings of a language
(Merriam-Webster).

Similarly to syntax, the term “semantics” is applied to natural languages
spoken by people. Logicians introduced it to formal languages, to talk
about the meaning of terms in formal logics. The inspiration from logics

Chapter 2. Building Modeling Languages 31

1 -> RandomWalk {
2 on clap -> ShutDown
3

4 -> MovingForward {
5 move forward at speed 10
6 on obstacle -> Avoid
7 }
8

9 Avoid {
10 move backward for 1 s
11 turn by random (-180,180)
12 } -> MovingForward
13

14 ShutDown { return to base }
15 }

Figure 2.2: An example of a
control model in the robot
language, describing a robot
performing a random walk
while avoiding obstacles

led the early theoretical computer scientists to adopt the distinction between
the syntax and semantics in the definition of programming languages—the
distinction that carried over to modern language implementation patterns.

Example 5. Let us explore the concepts of syntax and semantics using an
example. Consider a simple language for controlling mobile robots, with the
uninspiring name robot. It is loosely inspired by the architectural principle
of reactive control, a specific way of controlling the behavior of robots.a An
example model can be found in Fig. 2.2. There are two key aspects that
organize models in this hypothetical language: modes of operation and flows
between modes (continuations). We have four modes in the example model:
RandomWalk, MovingForward, Avoid, and ShutDown. The modes can be nested.
The latter three modes are nested in the first mode (RandomWalk).

Each mode, besides other modes, can contain actions and reactions. Actions
resemble regular programming language commands—they are immediately
executed as the mode is activated, in the order from top to bottom. The
actions in the example are: move, turn, and return to base. Reactions,
introduced using the keyword on, are not executed immediately, but registered
and suspended. Each reaction is triggered by an event (the two events in the
example are: obstacle and clap) and then switches the mode to a new mode.

Reactions are only active if their mode is active. Reactions are registered on-
the-fly when a mode is activated, but are only handled after all actions are com-
pleted (non-preemptively). For instance, if the robot is in the MovingForward
mode and encounters an obstacle, the active mode becomes Avoid.

A mode can also have a continuation mode, a successor. These are indicated
using the arrow symbol (->). The same symbol is also placed before the initial
mode, in the context of its containing mode (see MovingForward). There must
be exactly one initial mode at each level of nesting.

The -> symbol after the mode block indicates the successor mode (for
instance, after Avoid the control moves to MovingForward). If a mode has a
successor mode, then the control continues to the successor immediately after
all actions have been executed. If a mode has no successor mode, the control
stays in place, and awaits for any possible reaction triggers. Only reactions
can now switch the active mode. In this simple language, it is impossible to

32 Andrzej Wąsowski. Thorsten Berger

Figure 2.3: Two example
educational robots that are

possible execution platforms
for the robot control

language used in Fig. 2.2:
Thymio (left), Lego

Mindstorms NXT (right)

define multiple direct successor modes. If control needs to flow to various
modes as a result of execution, this can only be done by registering reactions
that have different targets.

The syntax of a model (or a program) is what you can directly see and read.
For instance, when looking at Fig. 2.2, you see the syntax of our example
model.5 The syntax is described with phrases of the following kind:

• Each mode, besides other modes, can contain actions and reactions.
• There must be exactly one initial mode at each level of nesting.

The semantics of a model define what the model means: how the robot shall
behave according to the model. Semantics are defined over all models that are
instances of a given language, but the specification of these semantics is only
implemented once for the language, which determines the semantics of all
models. For the example model in Fig. 2.2, the semantics is that of a random
walk. Semantics also regulate detailed aspects of behavior, for instance,
whether modes are pre-emptive or not. If you would specify in the semantics
that modes are pre-emptive, this would mean that modes could be switched
whenever a suitable reaction is triggered, leading to a new active mode, even
when a computation was active in another mode. A non-pre-emptive semantics
would not allow changing modes while actions are being executed. Statements
like the following describe the semantics of our robot language:

• Reactions are only active if their mode is active.
• If a mode has a successor mode, then the control continues to the successor

immediately after all actions have been executed.

The robot language is implemented in the book supplementary material in
the project mdsebook.robot. We should now consider how the syntax and
semantics of this language are implemented.

2.4 Building a Language

How do we get the robot control language presented in Fig. 2.2 to execute on
a piece of real hardware, for instance on one of the robots shown in Fig. 2.3?

aSee also Chapter 14, especially Section 14.3, in the book of Matarić (2007)
5We will shortly distinguish between two kinds of syntax, the abstract and the concrete syntax,
and you will observe that many different concrete syntax can exist for a language.

Chapter 2. Building Modeling Languages 33

Mode → ’->’? Id ’{’
(

Action | Reaction | Mode
)∗ ’}’(

’->’ Id
)
?

Reaction → ’on’ Event ’->’ Id

Action →
(

AcDock | AcMove | AcTurn
)(

’for’ AExpr ’s’ | ’at’ ’speed’ AExpr
)
?

AcDock → ’return’ ’to’ ’base’

AcTurn → ’turn’
(
’right’ | ’left’

)
?
(
’by’ AExpr

)
?

AcMove → ’move’
(
’forward’ | ’backward’

)
AExpr → MinusMultExpr | PlusMultExpr

PlusMultExpr → ’+’? MultExpr
(
(’+’ | ’-’) MultExpr

)∗
MinusMultExpr → ’-’ MultExpr

(
(’+’ | ’-’) MultExpr

)∗
MultExpr → Atomic

(
(’*’ | ’/’) Atomic

)∗
Atomic → RndI | INT | ’(’ AExpr ’)’

RndI → ’random’
(

’(’ AExpr ’,’ AExpr ’)’
)
?

Event → ’obstacle’ | ’clap’

Figure 2.4: A context-free
grammar defining the syntax
of the mobile robot control
language

In this book, we demonstrate the patterns, methods, and technologies for
designing and implementing components of a language infrastructure. An
entire language implementation is split into five coarse aspects:

• Concrete Syntax: How does a language look to users? What do the users
write or draw?

• Abstract Syntax: How are the models or programs of the language repre-
sented in the memory of a computer? What do the language designers
use to implement the language?

• Static Semantics: What models or programs written in the language are
legal? What models are erroneous (e.g. do not make sense)?

• Dynamic Semantics: An interpreter, a code generator, or a visualizer that
gives computational meaning to the language.

• Design Environment: The tools for creating models and programs in the
language (an IDE).

In the remaining parts of this chapter we demonstrate these key components
using our example language. For each of the five aspects we discuss a
definition, an example, a way to specify or implement it, and what tools are
available to support it.

Concrete syntax. The concrete syntax of the language is the user interface
of the language. This is what language users write or otherwise create. For
textual languages, the concrete syntax is what is created in text editors and
saved as files of characters. Figure 2.2 presents the random walk model in
concrete syntax.

34 Andrzej Wąsowski. Thorsten Berger

: AcDock : CstI

value: EInt = -180

: CstI

value: EInt = 180

: RndI

value: EInt = 1

: AcTurn

duration: EBoolean = false

: CstI

value: EInt = 1

: AcMove

forward: EBoolean = false

: Reaction

trigger: Event = EV_OBSTACLE

: CstI

value: EInt = 10

: AcMove

forward: EBoolean = true

: Reaction

trigger: Event = EV_CLAP

:Mode

name: EString = "ShutDown"
initial: EBoolean = false

:Mode

name: EString = "Avoid"
initial: EBoolean = false

:Mode

name: EString = "MovingForward"
initial: EBoolean = true

:Mode

name: EString = "RandomWalk"
initial: EBoolean = true

actions

continuation

m a xmin

 angle
actions

durationactions

target

reactions

actions speed

modes

target

reactions modes

modes

Figure 2.5: The abstract syntax of the random walk model. The bold lines indicate the tree structure

Specification. Any reader who has not studied language implementation
surely appreciates how non-obvious it might be to build tools that work with
concrete syntax. Automatically extracting structure and meaning from a flat
sequence of characters in a file requires a non-trivial analysis. Fortunately,
by now, this problem is extremely well understood, especially for simple
languages like most DSLs are.

The concrete syntax for textual programming and modeling languages is
typically defined using context-free grammars. An example of a concrete-
syntax definition for the robot control language is shown in Fig. 2.4. You
can see there that a mode is written by starting with an optional arrow
symbol, followed by an identifier of the mode, further followed by a list of
actions, reactions, and modes enclosed in braces, and possibly followed by
an identifier of the continuation mode. Such specification is sufficient to
automatically generate a parser, which will extract the core structure of the
model from a text file and present it to computer tools as a data structure.
We will explain more about grammars in Chapter 4.
Tools. Context-free grammars are interpreted by automatic tools, so-called
parser generators. A parser generator can automatically synthesize a
parser—a front-end for your language tool that builds data structures out
of textual input. A parser generated from a context-free grammar detects
syntax violation errors, such as unmatched braces, missing keywords, lack
of punctuation, etc. For our robot control language it will, for instance,
enforce that there has to be exactly one top-level mode (in which all the
other modes shall be nested).

Abstract syntax. The abstract syntax is a representation of a model or pro-
gram inside computer memory. This is the representation seen by software
processing the language—a compiler, a code generator, an interpreter or
an analyzer. The representation as a string of characters is unwieldy, as
it does not capture the structure of the model/program well. Instead, the
abstract syntax is represented as a tree of objects with cross references—an
abstract syntax tree, AST for short. An example of an abstract syntax for

Chapter 2. Building Modeling Languages 35

the model of random walking robot (Fig. 2.2) is shown in Fig. 2.5 using the
syntax of UML instance specifications. Each box represents an in-memory
object capturing an element of the original model. The tree is rooted in
a node representing a mode of the random walk. Follow the bold lines
to see the tree structure clearly. The root mode contains three sub-modes,
which further contain the actions and reactions. The reader will appreciate
an approximate correspondence of nesting in this diagram with syntactic
nesting in Fig. 2.2.

Specification. Since abstract syntax trees are data structures, they are
defined using types, as all other data structures in programs. Presently,
two ways of specification of abstract syntax are commonly accepted: class
diagrams (so, class types in object-oriented programming languages) and
algebraic data types (in functional programming languages). The types
defining the abstract syntax are often referred to as a domain model or a
meta-model. We shall discuss both ways of meta-modeling in Chapter 3.

Tools. In the implementation of DSLs, the abstract syntax is a pivotal
structure: most language processing tools (parsers, importers, validators,
converters, code generators, interpreters, visualizers, etc.) either produce
or consume instances of abstract syntax. This means that a good definition
of an abstract syntax will allow you to separately develop and test various
tool chain components, facilitating the parallelization of work, and its
distribution among team members.

Static semantics. The syntax of a language does define, which models in
the language are correct. Still, just like for spoken languages, the syntactic
correctness does not guarantee that a model makes sense. Consider the
following English sentence:

A context-free professor conjugates a well-typed glass of higher-
order students.

For most English speakers, the sentence will not appear correct, barring
some poetic or psychedelic interpretations. This is despite that it follows
all basic grammar rules. The problem is that it violates commonly agreed
ways to link words in a meaningful manner.

A similar problem arises for computer languages, where not all syn-
tactically correct programs make sense. The static semantics eliminates
many incorrect models and programs. It is concerned with aspects such
as resolving name accesses (whether referred-to elements exist), ensuring
that expressions are correctly typed (whether added elements are numbers),
and so on. In our mobile robot control language, we may require that there
is at most one reaction rule for each event in a mode, so that reactions do
not compete with each other, or that any complex mode (mode with nested
sub-modes) has an initial sub-mode. The model of a randomly moving
robot of Fig. 2.2 satisfies both these rules, but the robot model in the top
part of Fig. 2.6 violates both.

36 Andrzej Wąsowski. Thorsten Berger

Figure 2.6: An incorrect
model of a random walk

robot controller, violating the
static semantics rules in the

bottom of the figure
(presented in Scala).

-> RandomWalkBroken {
on clap -> ShutDown
on clap -> Avoid

MovingForward {
move forward at speed 10
on obstacle -> Avoid

}

Avoid {
move backward for 1 s
turn by random (-180,180)

} -> MovingForward

ShutDown { return to base }
}

Constraint:
All reactions in the same mode should have distinct trigger events.

inv[Mode] { self =>
val triggers = self.getReactions map { _.getTrigger }
triggers.toSet.size == triggers.size }

Constraint:
A mode either has no sub-modes or it has an initial sub-mode.

inv[Mode] { self =>
(!self.getModes.isEmpty) implies

(self.getModes.exists {_.isInitial}) }

Specification. Static semantic checks do depend much more on the idiosyn-
crasies of the designed language. Yet, typically, static semantics is specified
by means of implementing a name analysis, type checking, and possibly a
number of validity constraints. Definitions of static semantics are much less
standardized than definitions of syntax, although many theories and frame-
works exist. An example constraint for the mobile robot control language
is shown in the bottom of Fig. 2.6. Much more complex and sophisticated
static checks can be considered, although most language designers would
limit themselves to properties that can be checked efficiently, to ensure a
good usability of the language tools. We shall discuss definitions of static
semantics extensively in Chapter 5.

Tools. Some aspects of static semantics can be handled by modern language
workbenches. For instance, the Xtext framework has generic support for
name analysis. If the static semantics is written in a specialized domain-
specific language, then it can be automatically processed by tools for
enforcing it. Examples of such tools include XSemantics (Bettini, 2013b),
JetBrain’s Meta-Programming System,6 NaBL27 a part of the Spoofax
workbench (Kats and Visser, 2010), PLT Redex in the Scheme community

6https://confluence.jetbrains.com/display/MPSD33/Typesystem
7http://www.metaborg.org/en/latest/source/langdev/meta/lang/nabl2/index.html

https://confluence.jetbrains.com/display/MPSD33/Typesystem
http://www.metaborg.org/en/latest/source/langdev/meta/lang/nabl2/index.html

Chapter 2. Building Modeling Languages 37

(Felleisen, Findler, and Flatt, 2009). The Object Constraint Language (OCL)
(Object Management Group, 2010) provides a standardized formalism, with
several available implementations for specifying first-order constraints, with
transitive closure. It was largely created to give static semantics to languages
(UML in the first place). Still, it is fairly popular to rely on manual imple-
mentations of the static semantics in GPLs, unlike for syntax parsing, where
manual implementations have gone out of habit long ago. This is especially
so, that proliferation of functional programming constructs in main stream
programming languages, has made writing predicate concise and easy.

Dynamic semantics. Dynamic semantics defines the meaning of models in
your language. This is typically done either by interpreting (e.g., executing,
visualizing or calculating) the models, or by translating to other languages,
for which the meaning is already known. Typically, the meaning can be
defined in multiple ways for the same language. Indeed, we can talk of
multiple meanings or interpretations for a single language. For our mobile
robot control language, we can define the meaning by translating the models
to a language executable on the target robot,8 or by interpreting the models
directly on a robot controller running a suitable robotics framework. One
can also define the dynamic semantics abstractly, using some mathematical
formalism. For the robot control language, a suitable meaning would be a
set of execution traces (listing modes, actions and events). A possible exe-
cution trace is: RandomWalk, MovingForward, move forward at speed 10,
obstacle, Avoid, move backward for 1 s, turn by 30, MovingForward,
move forward at speed 10, clap, ShutDown, return to base. The (infi-
nite) set of all such execution traces would define the language formally
(and very abstractly).

Figure 2.7 shows a small fragment of an interpreter for our language,
implemented using Scala on top of the Robot Operating System (ROS).9

We do not expect you to study how this is implemented, especially since
large parts are omitted. We remark, though, the semantic gap between
Figure 2.7 (robot program interpreter) and 2.2 (robot program). In the
implementation of the interpreter, we notice concepts such as locks (line
3), threads (line 9), listeners and callbacks (lines 12–13), and exception
handling (lines 16–17). All these concepts are necessary to implement the
desired behavior in the ROS framework, however, they are not present in
our small robot language. This illustrates the nature and need for domain-
specific languages very clearly: a complex interpreter hides a large gap
between the low-level language implementation and the input specification,
or between the problem space and the solution space. This gap is beneficial
for the users of the language, who no longer have to worry about convoluted
implementation concepts.

8For example, Aseba script on a Thymio robot (https://www.thymio.org/en:asebalanguage-1-1),
or URScript on a Universal Robot’s arm (Universal Robots, 2015).

9See http://www.ros.org

https://www.thymio.org/en:asebalanguage-1-1
http://www.ros.org

38 Andrzej Wąsowski. Thorsten Berger

Figure 2.7: The core part of
the interpreter for the mobile

robot control language
(dynamic semantics)

1 class Interpreter(root: Mode) extends NodeMain {
2

3 var lock: Lock = new ReentrantLock
4

5 override def getDefaultNodeName(): GraphName =
6 GraphName.of("mdsebook/robot/scala/interpreter")
7

8 override def onStart(cn: ConnectedNode): Unit = {
9 Thread sleep 1000

10 var state = State(new mdsebook.robot.scala.Thymio(cn),
11 Map[Event, Reaction](), root)
12 var listener = new MessageListener[LaserScan] {
13 override def onNewMessage(msg: LaserScan): Unit =
14 // obstacle event
15 if (msg.getIntensities.sum > 0.09 && lock.tryLock)
16 try state = state.processEvent (EV_OBSTACLE)
17 finally lock.unlock
18 }
19

20 if (lock.tryLock) try {
21 state.thymio.getProximityTopic addMessageListener listener
22 state = state.activate
23 } finally lock.unlock
24 }
25 // ...
26 }

The second, somewhat incidental, function of dynamic semantics is to
further detect errors in models and programs, introducing any “last minute”
validity checks at runtime—those that are necessary, but could not have
been performed statically. The static semantics can only guarantee well-
formedness of models and programs to a limited extent. It is well agreed
between language experts that every non-trivial question about a program
is undecidable.10 For a programming language, a simple example of a
property that is difficult to guarantee statically is the lack of divisions by
zero, or whether a program throws an exception or not. For modeling
languages, an undecidable property might, for instance, be whether there
exists an instance of a class diagram satisfying all the diagram constraints
and all the constraints that are part of the static semantics.

Incidentally, our mobile robot control language is so simple that, as-
suming the termination of all the actions, all interesting properties will
be decidable—our models are always finite state. This is quite often the
case for DSLs, and yet another reason to introduce and use DSLs—that
is, the possibility to run more precise and effective semantic checks on the
domain-specific models.

Specification. Dynamic semantics are usually implemented either by
building an interpreter or a translator (a code generator). The differences,

10This is formally grounded in the Rice’s theorem, see Hopcroft, Motwani, and Ullman (2001)
and Rice (1953).

Chapter 2. Building Modeling Languages 39

advantages, and disadvantages of various strategies will be discussed in
Chapter ??. For our mobile robot control language we have built the
interpreter, whose code is available in the book code repository.

Admittedly, we misuse the adjective dynamic when referring to dynamic
semantics of DSLs. We follow the terminology developed by the compiler
community here. The compiler developers implement programming lan-
guages. Their languages describe computation, also referred to as behavior
or dynamics. For many DSLs, the semantics will not be dynamic at all,
in the sense that they might not be executable. For instance, DSLs for
modeling structures (class diagrams), modeling configurations (feature
models, see Sect. 8.5.2) or for styling visualizations (CSS) are not dynamic
or directly operational. In the end, a CSS style mostly describes how
things “look” now how things “behave.” In such cases, we basically mean
the dynamic semantics to be the implementation of the back-end of the
language processing tools, for instance a code generator for class diagrams,
a renderer for CSS, and an interactive configurator for feature models.

Tools. Some of the same tools that can be used to specify static semantics
can also allow to define dynamic semantics by means of defining operational
reduction rules in a specialized DSL (see ??). The reduction rules define
an evolution of the system by specifying how an expression specifying a
system’s state evolves over time through rewriting, somewhat analogously
to how re-writing can be used to calculate (evolve) a mathematical expres-
sion. Specialized transformation languages are well suited for this purpose.
However, it is still most common to implement the dynamic semantics
directly in a general-purpose programming language. Especially modern
functional programming languages such as Haskell, F#, and Scala lend
themselves very well for this task. Many of these languages stem from
the experience of building the language ML (later known as Standard ML
or SML), which was, in fact, developed with meta-programming as its
primary use case. The first use and purpose of ML was the implementation
of the theorem proving system LCF (Gordon, Milner, and Wadsworth,
1979), where syntax trees of formulae had to be manipulated in proof rules
implemented in ML. This is a very similar task to writing interpreters and
other language processing tools. We will discuss the implementations of
language back-ends in various languages in ??, ??, and ??.

Design environment. A modern programmer appreciates the availability
of support tools for the languages used, including rich editing environments
with syntax highlighting, error highlighting, code completion, and name
resolution. Furthermore, an integration with test infrastructure, for instance,
eases working with the language. A screenshot of a generated editor for the
mobile robot control language is presented in Fig. 2.8 (produced using the
Xtext framework11 described in Sect. 4.4).

11http://www.eclipse.org/Xtext/

http://www.eclipse.org/Xtext/

40 Andrzej Wąsowski. Thorsten Berger

Figure 2.8: A feature-rich
editor generated by Xtext for

our mobile robot control
language

Specification. The tools used to generate modern development environ-
ments depend largely on the specification of syntax and static semantics.
Sometimes, additional configuration is required. The editor shown in
Fig. 2.8 has been generated solely based on the Xtext grammar specification
language, so based on the specifications described above for concrete syntax,
abstract syntax, and static semantics. Specifying more custom tools (testers,
analyzers, debuggers) is usually not so simple and requires a direct imple-
mentation, using similar patterns and tools as for interpreters and generators.

Tools. Language workbenches integrate all language implementation com-
ponents discussed above, and typically add an ability to generate or other-
wise create a working integrated development environment (IDE) (Erdweg
et al., 2013). A language workbench would normally include a parser
generator for handling concrete syntax, along with some facilities for
specifying static and dynamic semantics. The workbenches generate editors
that combine all the language definition components to provide semantically
aware editing (the editor can resolve names, complete references, parse,
build AST, check for validity, and possibly also execute the model). Some
language workbenches can automatically create web-based editors, which
you can deploy as part of web applications.

Chapter 2. Building Modeling Languages 41

Language
Component

Purpose Specification Examples Example Tools

Concrete
syntax
Chapter 4

Writing and reading interface for the
language: language users write and read
programs in concrete syntax.

Regular expressions and
context-free grammars.

Parser generators and parsers.

Abstract
syntax
Chapter 3

An in-memory representation of models
and programs as structures in a
programming language; A pivotal structure
used by front-end and back-end of the
language infrastructure. This is what the
language designer uses to implement the
language.

Algebraic data types or
meta-models.

Produced by parsers,
consumed by transformations.
Visualized as diagrams or
trees for debugging in IDEs.

Static
semantics
Chapter 5

Defining valid/invalid models; enforcing
well-typedness/constraints impossible/hard
to express with grammars and
meta-models/ADTs.

First-order constraints,
inductive type-system rules,
scoping rules.

Advanced frameworks exist,
but still mostly implemented
manually in practice.

Dynamic
semantics
????

Define meaning of programs and models;
realize the actual purpose of the models.

Code generator or interpreter
implemented in a
transformation language or in a
high level functional language.

Advanced frameworks exist,
but still most languages are
implemented manually in
practice.

Design
environment
Chapter 4
and ??

Supporting users in creating
domain-specific models. The modern editor
for your specialized language.

Uses specifications for the
other components.

Language workbenches
generate high quality
comfortable editors.

Table 2.1: Overview of language infrastructure components.

An interesting recent addition to this technologies is the Language Server
Protocol (LSP)12 that allows generic support of rich IDE functionality in any
editor and language for which this protocol is implemented. This means that
the cost of creating a rich editing experience is dropping dramatically. Once
you use a language workbench that can automatically create an LSP server
for your language, you obtain a rich experience in any programmer editor
implementing an LSP client (which presently includes all major editors).

We have now briefly surveyed all major components of a language im-
plementation. Table 2.1 summarizes briefly the above developments. In
the first column, we list the language design components discussed above,
along with references to chapters that discuss them in detail. For each
language component we state the purpose, the way to specify/implement it,
and the tools that work with this component.

2.5 Testing Language Implementations

Testing is by far the most popular and (so far) the most effective way to
assure the quality of software components. As we advocate moving regular
software projects to the MDSE paradigm, we have to admit that testing is
also important for implementations of DSLs. Large parts of the logics of

12https://langserver.org/

https://langserver.org/

42 Andrzej Wąsowski. Thorsten Berger

our projects will be embedded in language definitions, and in interpreters
and generators. Yet, testing implementations of languages is a bit more
complex than testing programs.

Consider the implementation of our robot control language. To test
whether the concrete syntax is sufficiently well specified, we need a good
collection of models of robots that should parse (i.e., our generated parser
recognizes them successfully), and also a collection of models of robots that
contain syntactic errors and should not parse. These are so-called positive
and negative test cases. Similarly, for the static semantics, we need to
gather cases of models that should and should not produce static checking
errors. Test cases for syntax and for static semantics are usually created at
design time, or ahead of design time, and are later extended with regression
test cases, as problems are discovered during development and usage of
the language. For instance, the robot model in Fig. 2.2 could be used as
a positive test case for both syntax and static semantics. The robot model
in Fig. 2.6 could be used as a negative test case for static semantics, and a
positive test case for the concrete syntax (parsing).

It is considerably harder to test the implementations of the dynamic
semantics. Of course, for manual testing, we can create diverse robot
models, run the interpreter for each of them, and scrutinize the robot
behavior whether it is consistent with the corresponding model. This
can be improved slightly, by replacing the physical robot with a simulator
and using the, so called, model-in-the-loop (MIL) testing. But how can
we test the dynamic semantics automatically? Without automatic tests, we
can forget about test-driven development and continuous integration. This
would lead to a drop of quality in our project, while our goal is exactly
the opposite. One possibility is to create an execution harness for the
interpreters of models. Our test cases are then becoming triples: a model of
a robot, a sequence of inputs, and a sequence of expected actions.

In the remainder of this book, we will be discussing testing patterns in
detail for each of the language aspects in the corresponding chapter. We
will also define a suitable notion of test cases, discuss what its mean that a
test passes or fails (oracles), elaborate on possible stop criteria for testing
(for instance, notions of coverage), as well as describe testing architectures
and patterns for language implementations.

Further Reading
The basic programming language construction concepts, such as abstract and
concrete syntax, parsing, grammars, and left-recursion, are explained in classical
compiler text books. If you forgot them, it might be worth keeping one of the
standard compiler construction texts (Aho et al., 2006; Mogensen, 2011) as a
reference when reading this book.

Fowler and Parsons (2011) give a good, if somewhat traditional, coverage of
design issues and implementation techniques for domain-specific languages. They
also include a good initial introduction to internal DSLs, with a very interesting col-
lection of implementation patterns using various mechanisms of the host language.

Chapter 2. Building Modeling Languages 43

There is also a book about Microsoft DSL Tools (S. Cook et al., 2007), but the
tool does not seem to be maintained anymore. The MetaEdit+ tool from MetaCase
has an associated book that shows a good set of examples and principles to follow,
especially for graphical DSLs (S. Kelly and Tolvanen, 2008).

Bettini (2013a) gives a very pragmatic, even hands-on, course on development of
textual DSLs with the Xtext framework. Since this is the same framework as used in
this book, Bettini’s volume is a very convenient companion. While we focus more
on general aspects of language design, and present the methods as far as possible
in a tool-independent manner, Bettini explains directly how to work with Xtext.

The idea of language workbenches is usually tracked to an online article by
Martin Fowler.13 They are advocated in detail in the recent book of Voelter (2013),
and if you are interested in a good overview on the different features that modern
workbenches provide, take a look at a survey paper by Erdweg et al. (2013). As
already mentioned, this last paper admits that the technology, under various disguises
and various levels of maturity, existed already since the 1980s. Most workbenches
were originally designed to facilitate creation of general purpose programming
languages, and were adopted over time for designing DSLs. Early workbenches for
textual language included: SEM (Teichroew, HERSHEY, et al., 1980), MetaPlex
(Chen and Nunamaker, 1989), Metaview (Sorenson, Tremblay, and McAllister,
1988), Centaur (Borras et al., 1988), QuickSpec (Ltd., 1989), MetaEdit (Smolander
et al., 1991), Centaur (Borras et al., 1988), ASF+SDF Meta-Environment (Klint,
1993), Gem-Mex/Montages (Anlauff, Kutter, and Pierantonio, 1999), LRC (Kuiper
and Saraiva, 1998), and Lisa (Mernik et al., 2002). In recent times, this development
has not stopped. Contemporary workbenches for textual languages are JastAdd
(Söderberg and Hedin, 2011), Rascal (Klint, Van Der Storm, and Vinju, 2009),
Spoofax (Kats and Visser, 2010), Melange (Degueule et al., 2015), and Xtext
(Eysholdt and Behrens, 2010; Bettini, 2013a), just to name a few.

Regarding language workbenches for graphical syntax, besides Sirius mentioned
above, the more well-known ones include MetaEdit+ (Steven Kelly, Lyytinen, and
Rossi, 1996) and several open-source tools building upon the Eclipse Modeling
Framework (EMF): the Graphical Modeling Framework (GMF) and Graphiti, which
are both part of Eclipse’s Graphical Modeling Project.14. Other, less known work-
benches for graphical languages are DOME (Center, 1999) and GME (Ledeczi et al.,
2001).

Projectional editing is not a new idea either. The concept, also called structured or
syntax-directed editing, goes back to the 1980s, with tools such as the Incremental
Programming Environment (Medina-Mora and Feiler, 1981), GANDALF (Notkin,
1985), and the Synthesizer Generator (Reps and Teitelbaum, 1984). Projectional
editing became popular with the Intentional Programming paradigm, which puts
language composition at the core of software engineering (Simonyi, 1995; Czarnecki
and Eisenecker, 2000). Today, Jetbrains Meta Programming System (MPS)15

and Intentional’s Domain Workbench (Simonyi, Christerson, and Clifford, 2006;
Christerson and Kolk, 2009) are the most comprehensive projectional language
workbenches.

13https://martinfowler.com/articles/languageWorkbench.html
14https://www.eclipse.org/modeling/gmp
15http://www.jetbrains.com/mps/

https://martinfowler.com/articles/languageWorkbench.html
https://www.eclipse.org/modeling/gmp
http://www.jetbrains.com/mps/

44 Andrzej Wąsowski. Thorsten Berger

Schauss et al. (2017) illustrate many technologies for construction of DSLs.
The paper is accompanied by a code repository16 containing examples of DSL
implementations created with several workbenches (including Eclipse Modeling
Framework, Java/ANTLR, Rascal, JetBrains MPS, and Spoofax), as well as several
embedded DSLs (Scala, Rascal, and Racket).

In this chapter, we have sketched an implementation of a very simple external
DSL for robot control (a so-called external DSL—implemented as a standalone
language). Peterson, Hudak, and Elliott (1999) demonstrate an internal DSL (so, an
API-like language), embedded in Haskell for a similar purpose, yet using an entirely
different implementation pattern. The distinction between internal and external
DSLs will be made clearer in later chapters of the book.

Robotics is not an accidental choice for our example. Given the complexity of
robotics systems, and a range of well-defined tasks and activities in robotics, DSLs
are often a natural choice to formalize designs. Not surprisingly, DSL proposals
proliferate in this space. Already low-level robotics frameworks (such as ROS) use
many DSLs for describing packages, interfaces, builds, deployments, hardware,
scene, etc. Many more DSLs are build at higher level of abstraction, aiming for
more complex aspects of robots such as reasoning, planning, kinematics, and system
architecture. See Nordmann et al. (2016) and its accompanying website17 for a
recent list of more than hundred papers describing robotics DSLs.

Exercises
Exercise 2.1. a) Revisit the Example 5 on page 31. Using two different colors,
highlight all sentences (or sentence fragments) specifying syntax (respectively
semantics) of the robot language. Observe that in informal language descriptions
syntax and semantics is often mixed.

b) Find a short informal description (or a fragment of description) of a com-
puter language relevant for you. Select an interesting fragment, and repeat the
highlighting exercise on this fragment.

Exercise 2.2. Identify an educational platform for robotics of your choice.18 A
typical educational platform will offer several APIs in GPLs and some DSLs
at various levels of sophistication, to cater for users programming the robots at
different stages of education. Pick two of these interfaces (either APIs and/or
DSLs) from whatever is available, and analyze them. Study tutorials briefly,
and read through some code examples. When discussing the properties of the
interfaces, try to contrast the two choices you made.

Attempt to answer the following questions for DSLs (if any): a) Who is the
target user? b) What use cases are supported by the language? c) What is the
expressiveness of the language? Is it in any way limited? Are any robotics-specific
tasks easier in this language than in general purpose programming languages?
Are there any general programming tasks that are difficult to perform in this DSL?

Answer the following questions for selected APIs in GPLs (if any): d) Who are
the expected target users for this API? For what use cases? e) Are there any API
elements that are not directly pertinent to robotics tasks? Would it be possible to
eliminate any of them using a DSL? f) Does using the API involve a lot of boiler

16https://softlang.github.io/metalib/
17http://corlab.github.io/dslzoo/

https://softlang.github.io/metalib/
http://corlab.github.io/dslzoo/

Chapter 2. Building Modeling Languages 45

plate code? Is creation of this code likely possible to automate? g) Your opinion:
Is the API a suitable target to use implementing an interpreter for a DSL, or is it
a good target for code generation? If there are several APIs available, perhaps
consider which one would be the easiest to use as a back-end for the DSL.

Exercise 2.3. For the robotics framework studied in Exercise 2.2 investigate what
testing and quality assurance support is provided by the vendor, or the framework’s
open source ecosystem.

Exercise 2.4. Chef19 is a deployment and configuration management language.
It has started as an internal DSL implemented in Ruby and has grown out into
a proper external DSL. Discuss the language based on what you learned about
models and DSLs in this chapter, specifically: What is the domain described
by models in this language? What information is present, what is abstracted
away, hidden? What is the style of the syntax of this language? What tasks
are automated thanks to Chef? From where does the Chef infrastructure take
information to execute simplistic models? Browsing through the slides of a
Webinar on Chef20 should suffice for this discussion.

Chef itself is of no particular importance for the rest of this book. You can
replace Chef with any other DSL, or you can try the same question on other
DSLs. For example, if you are interested in robotics, visit the Robotics DSL Zoo21

(Nordmann et al., 2016), pick up one of the languages that attracts your attention,
and execute the above discussion for this language.

Note that this is an open exercise with no perfect answer. It is meant to help
you explore the concepts.

Exercise 2.5. Imagine a hypothetical configuration application, where a number
of parameters need to be configured, to satisfy an input model. The configurator
is equipped with a plugin mechanism, so that it can load .jar files containing more
sophisticated calculations that are made available in the model constraints.

The configuration tool can report various error messages for an input model.
For each of them decide which part of the DSL implementation is reporting the
error. Be ready to justify your answers briefly. Some possible answers include
the interpreter, the type system, regression tests, the code generator, constraints,
parser, etc...

a) Could not find the external dependency ’FunctionalCalculations.jar’.
No
such file or directory.

b) line 213: Expected keyword ’parameter’ instead of EOL
c) Parameter group ’Engines’ depends on itself
d) line 196: Expected an Integer value instead of String

18Without endorsing any particular vendor, let us name a few that are available as of 2018:
Thymio, Lego Mindstorms NXT, Sphero, ArcBotics Sparki, and EdBot. We recommend to
browse the web for newer offerings at the time of reading.

19https://learn.chef.io/
20http://www.slideshare.net/chef-software/overview-of-chef-fundamentals-webinar-series-part-1
21http://corlab.github.io/dslzoo/index.html

https://learn.chef.io/
http://www.slideshare.net/chef-software/overview-of-chef-fundamentals-webinar-series-part-1
http://corlab.github.io/dslzoo/index.html

46 Andrzej Wąsowski. Thorsten Berger

e) The enumeration type ’color’ should have distinct values. Value
’pink’ is repeated in lines 400 and 404.

Exercise 2.6. Discuss informally what testing (quality assurance) process would
you carry out to ensure that the grammar presented in Fig. 2.4 captures the right
models in the robot control language—admits the models of interest as legal, and
rules out the models that are syntactically incorrect.

Exercise 2.7. Informally discuss the selection of test cases for the two constraints
in Fig. 2.6. How many and what test cases you would select for each of the
constraints? If you have a system where there is many other constraints, and you
are time limited in testing, what would be the most important test-cases?

References
Aho, Alfred V. et al. (2006). Compilers: Principles, Techniques, and Tools. Edition

2. Prentice Hall.
Anlauff, Matthias, Philipp W Kutter, and Alfonso Pierantonio (1999). “Tool sup-

port for language design and prototyping with Montages”. In: International
Conference on Compiler Construction. Springer, pp. 296–300.

Backus, J. W., F. L. Bauer, et al. (Jan. 1963). “Revised Report on the Algorithm
Language ALGOL 60”. In: Commun. ACM 6.1. Ed. by P. Naur, pp. 1–17. ISSN:
0001-0782. DOI: 10.1145/366193.366201. URL: http://doi.acm.org/10.1145/
366193.366201.

Backus, J. W., R. J. Beeber, et al. (1957). “The FORTRAN Automatic Coding
System”. In: Papers Presented at the February 26-28, 1957, Western Joint
Computer Conference: Techniques for Reliability. IRE-AIEE-ACM ’57 (Western).
Los Angeles, California: ACM, pp. 188–198. DOI: 10.1145/1455567.1455599.
URL: http://doi.acm.org/10.1145/1455567.1455599.

Bettini, Lorenzo (2013a). Implementing Domain-Specific Languages with Xtext and
Xtend. Packt.

– (2013b). “Implementing Java-like languages in Xtext with Xsemantics”. In:
Proceedings of the 28th Annual ACM Symposium on Applied Computing. ACM,
pp. 1559–1564.

Booth, A.D. and K.H.V. Britten (1947). Coding for the ARC.
Borras, Patrick et al. (1988). “Centaur: the system”. In: ACM Sigplan Notices 24.2,

pp. 14–24.
Center, Honeywell Technology (1999). DOME guide.
Chen, Minder and Jay F Nunamaker (1989). “Metaplex: An integrated environment

for organization and information system development”. In: International Confer-
ence on Information Systems: Proceedings of the tenth international conference
on Information Systems: Boston, Massachusetts, United States. Vol. 1989.

Chomsky, Noam (1957). Syntactic Structures. Mouton & Co.
Christerson, Magnus and Henk Kolk (2009). Domain Expert DSLs. talk at QCon

London 2009, available at http://www.infoq.com/presentations/DSL-Magnus-
Christerson-Henk-Kolk.

COBOL-1961 (1961). Report to Conference on Data Systems Languages. Tech. rep.
US Dept. of Defense.

Cook, Steve et al. (2007). Domain-Specific Development with Visual Studio DSL
Tools. Addison-Wesley.

https://doi.org/10.1145/366193.366201
http://doi.acm.org/10.1145/366193.366201
http://doi.acm.org/10.1145/366193.366201
https://doi.org/10.1145/1455567.1455599
http://doi.acm.org/10.1145/1455567.1455599
http://www.infoq.com/presentations/DSL-Magnus-Christerson-Henk-Kolk
http://www.infoq.com/presentations/DSL-Magnus-Christerson-Henk-Kolk

Chapter 2. Building Modeling Languages 47

Czarnecki, Krzysztof and Ulrich W. Eisenecker (2000). Generative Programming:
Methods, Tools, and Applications. Boston, MA: Addison-Wesley.

Dahl, Ole-Johan and Kristen Nygaard (1967). “Class and subclass declarations”. In:
IFIP TC2 Conference on Simulation Programming Languages.

Degueule, Thomas et al. (2015). “Melange: A Meta-language for Modular and
Reusable Development of DSLs”. In: Proceedings of the 2015 ACM SIGPLAN
International Conference on Software Language Engineering. SLE 2015. Pitts-
burgh, PA, USA: ACM, pp. 25–36. ISBN: 978-1-4503-3686-4. DOI: 10.1145/
2814251.2814252. URL: http://melange-lang.org.

Erdweg, Sebastian et al. (2013). “The State of the Art in Language Workbenches”.
In: SLE.

Eysholdt, Moritz and Heiko Behrens (2010). “Xtext: implement your language
faster than the quick and dirty way”. In: Proceedings of the ACM international
conference companion on Object oriented programming systems languages and
applications companion, pp. 307–309.

Felleisen, Matthias, Robert Bruce Findler, and Matthew Flatt (2009). Semantics
Engineering with PLT Redex. The MIT Press.

Fowler, Martin and Rebecca Parsons (2011). Domain-Specific Languages. Addison-
Wesley.

Gordon, Michael J. C., Robin Milner, and Christopher P. Wadsworth (1979). Ed-
inburgh LCF. Vol. 78. Lecture Notes in Computer Science. Springer. ISBN:
3-540-09724-4. DOI: 10.1007/3-540-09724-4. URL: https://doi.org/10.1007/3-540-
09724-4.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman (2001). Introduction to
Automata Theory, Languages, and Computation. Addison-Wesley.

Hudak, Paul (1996). “Building Domain-Specific Embedded Languages”. In: ACM
Comput. Surv. 28.4es, p. 196. DOI: 10.1145/242224.242477. URL: http://doi.acm.
org/10.1145/242224.242477.

Kats, Lennart C. L. and Eelco Visser (2010). “The Spoofax language workbench”. In:
Companion to the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, SPLASH/OOPSLA 2010,
October 17-21, 2010, Reno/Tahoe, Nevada, USA. Ed. by William R. Cook,
Siobhán Clarke, and Martin C. Rinard. ACM, pp. 237–238. ISBN: 978-1-4503-
0240-1. DOI: 10.1145/1869542.1869592. URL: http: / /doi .acm.org/10.1145/
1869542.1869592.

Kelly, S. and J. P. Tolvanen (2008). Domain-Specific Modeling: Enabling Full Code
Generation. Wiley. ISBN: 9780470249253. URL: https://books.google.dk/books?
id=GFFtRFkuU%5C_AC.

Kelly, Steven, Kalle Lyytinen, and Matti Rossi (1996). “Metaedit+ a fully config-
urable multi-user and multi-tool case and came environment”. In: International
Conference on Advanced Information Systems Engineering. Springer, pp. 1–21.

Kleppe, Anneke G. (2009). Software language engineering: creating domain-
specific languages using metamodels. Addison-Wesley.

Klint, Paul (1993). “A meta-environment for generating programming environ-
ments”. In: ACM Transactions on Software Engineering and Methodology (TOSEM)
2.2, pp. 176–201.

https://doi.org/10.1145/2814251.2814252
https://doi.org/10.1145/2814251.2814252
http://melange-lang.org
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1145/242224.242477
http://doi.acm.org/10.1145/242224.242477
http://doi.acm.org/10.1145/242224.242477
https://doi.org/10.1145/1869542.1869592
http://doi.acm.org/10.1145/1869542.1869592
http://doi.acm.org/10.1145/1869542.1869592
https://books.google.dk/books?id=GFFtRFkuU%5C_AC
https://books.google.dk/books?id=GFFtRFkuU%5C_AC

48 Andrzej Wąsowski. Thorsten Berger

Klint, Paul, Tijs Van Der Storm, and Jurgen Vinju (2009). “Rascal: A domain specific
language for source code analysis and manipulation”. In: 2009 Ninth IEEE
International Working Conference on Source Code Analysis and Manipulation.
IEEE, pp. 168–177.

Kuiper, Matthijs and João Saraiva (1998). “Lrc—a generator for incremental
language-oriented tools”. In: International Conference on Compiler Construction.
Springer, pp. 298–301.

Ledeczi, Akos et al. (2001). “The generic modeling environment”. In: Workshop on
Intelligent Signal Processing, Budapest, Hungary. Vol. 17, p. 1.

Ltd., Meta Systems (1989). Quickspec reference guide.
Matarić, Maja J (2007). The Robotics Primer. MIT Press.
McCarthy, John (Apr. 1960). “Recursive Functions of Symbolic Expressions and

Their Computation by Machine, Part I”. In: Commun. ACM 3.4, pp. 184–195.
ISSN: 0001-0782. DOI: 10.1145/367177.367199. URL: http://doi.acm.org/10.1145/
367177.367199.

Medina-Mora, Raul and Peter H. Feiler (Sept. 1981). “An Incremental Programming
Environment”. In: IEEE Trans. Softw. Eng. 7.5, pp. 472–482. ISSN: 0098-5589.

Mernik, Marjan et al. (2002). “LISA: An interactive environment for programming
language development”. In: International Conference on Compiler Construction.
Springer, pp. 1–4.

Mogensen, Torben Ægidius (2011). Introduction to Compiler Design. Undergraduate
Topics in Computer Science. Springer, pp. I–XXI, 1–204. ISBN: 978-0-85729-
828-7, 978-0-85729-829-4.

Nordmann, Arne et al. (2016). “A Survey on Domain-Specific Modeling and Lan-
guages in Robotics”. In: Journal of Software Engineering in Robotics (JOSER)
7.1, pp. 75–99.

Notkin, David (May 1985). “The GANDALF Project”. In: J. Syst. Softw. 5.2, pp. 91–
105. ISSN: 0164-1212.

Object Management Group (2010). OCL Specification version 2.2. http://www.omg.
org/spec/OCL/2.2/.

Peterson, John, Paul Hudak, and Conal Elliott (1999). “Lambda in Motion: Control-
ling Robots with Haskell”. In: Practical Aspects of Declarative Languages, First
International Workshop, PADL ’99, San Antonio, Texas, USA, January 18-19,
1999, Proceedings. Ed. by Gopal Gupta. Vol. 1551. Lecture Notes in Computer
Science. Springer, pp. 91–105. ISBN: 3-540-65527-1. DOI: 10.1007/3-540-49201-
1_7. URL: https://doi.org/10.1007/3-540-49201-1_7.

Reps, Thomas and Tim Teitelbaum (1984). “The synthesizer generator”. In: ACM
Sigplan Notices 19.5, pp. 42–48.

Rice, H. G. (1953). “Classes of Recursively Enumerable Sets and Their Decision
Problems”. In: Transactions of the American Mathematical Society 74.2, pp. 358–
366. ISSN: 00029947. URL: http://www.jstor.org/stable/1990888.

Schauss, Simon et al. (2017). “A Chrestomathy of DSL Implementations”. In: 10th
International Conference on Software Language Engineering (SLE).

Sestoft, Peter (2012). Programming language concepts. Springer Science & Busi-
ness Media.

Simonyi, Charles (1995). “The Death of Computer Languages, the Birth of Inten-
tional Programming”. In: Proc. NATO Science Committee Conference.

Simonyi, Charles, Magnus Christerson, and Shane Clifford (2006). “Intentional
Software”. In: Proceedings of OOPSLA.

https://doi.org/10.1145/367177.367199
http://doi.acm.org/10.1145/367177.367199
http://doi.acm.org/10.1145/367177.367199
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/OCL/2.2/
https://doi.org/10.1007/3-540-49201-1_7
https://doi.org/10.1007/3-540-49201-1_7
https://doi.org/10.1007/3-540-49201-1_7
http://www.jstor.org/stable/1990888

Chapter 2. Building Modeling Languages 49

Smolander, Kari et al. (1991). “MetaEdit—a flexible graphical environment for
methodology modelling”. In: International Conference on Advanced Information
Systems Engineering. Springer, pp. 168–193.

Söderberg, Emma and Görel Hedin (2011). “Building semantic editors using
JastAdd: tool demonstration”. In: Proceedings of the Eleventh Workshop on
Language Descriptions, Tools and Applications, pp. 1–6.

Sorenson, Paul G, J-P Tremblay, and Andrew J McAllister (1988). “The Metaview
system for many specification environments”. In: IEEE software 5.2, pp. 30–38.

Teichroew, Daniel, EA III HERSHEY, et al. (1980). “Application of the entity-
relationship approach to information processing systems modeling”. In:

Universal Robots (Jan. 2015). The URScript Programming Language. Version 3.1.
Viyović, Vladimir, Mirjam Maksimović, and Branko Perisić (2014). “Sirius: A rapid

development of DSM graphical editor”. In: IEEE 18th International Conference
on Intelligent Engineering Systems INES 2014. IEEE, pp. 233–238.

Voelter, Markus (2013). DSL Engineering. Designing, implementing and using
domain specific languages. URL: http://www.dslbook.org/.

Vujović, Vladimir, Mirjana Maksimović, and Branko Perišić (2014). “Comparative
analysis of DSM graphical editor frameworks: Graphiti vs. Sirius”. In: Proceed-
ings of the 23rd International Electrotechnical and Computer Science Conference
(ERK’14).

http://www.dslbook.org/

50 Andrzej Wąsowski. Thorsten Berger

3 Domain Analysis and Abstract Syntax

I wish to approach truth as closely as possible,
and therefore I abstract everything until I arrive

at the fundamental quality of objects.
Piet Mondrian

You want to design a DSL to boost software development, evolution or
customization in some domain. In the first step, you need to clarify what
are the key relevant aspects of this domain, in a process known as domain
analysis and meta-modeling. During the analysis, we identify the relevant
concepts and relationships between them. During meta-modeling, we
formalize this knowledge in a model, and iteratively refine it until the model
precisely describes the abstract syntax of the DSL. It will define which
models or programs we shall be able to write in your language.

We now discuss these steps in detail. The chapter includes design and
analysis guidelines for meta-models, discusses them on a running example
(a DSL of finite state machines), touches upon several meta-modeling
languages (meta-meta-models) with a focus on class diagrams, and then
explains how instances (called models) of meta-models look like. Finally,
we explain how models, meta-models, and meta-meta-models relate in the
theoretical framework known as the meta-modeling hierarchy.

3.1 What is Meta-Modeling?
Let us define the prime outcome of domain analysis and meta-modeling:

Definition 3.1. A meta-model is a model that precisely defines the parts
and rules needed to create valid models in a DSL (Ernst, 2002).

The parts refer to the domain concepts captured in the language, while the
rules are any kind of constraints that prescribe the construction of valid
models (i.e., instances) from those parts. Note that when we say valid
models, we refer to their abstract syntax, which is independent from the
actual notation (concrete syntax) of the language. While mappings need to
be defined between the abstract syntax and any of the concrete syntaxes, a
meta-model only determines the abstract syntax of a model. Whether the
concrete syntax of a model is correct has to be assured by other means, such
as a grammar for a textual DSL (Chapter 4).

Definition 3.2. Abstract syntax is a representation of a program (model) in
computer memory as a data structure, usually a tree or an instance of an
object-oriented meta-model.

We say that meta-modeling is the practice of modeling other modeling
languages, and a meta-model is a model of a modeling language. The
prefix “meta” comes from Greek, and today it means “self-referential.”
Meta-modeling is self-referential in the sense that it models modeling.

51

52 Andrzej Wąsowski. Thorsten Berger

In order to practice meta-modeling, we need a meta-modeling language,
often called a meta-meta-model. A meta-modeling language is a model-
ing language containing concepts that allow to conveniently describe the
abstract syntax of other languages. Class diagrams are probably the most
common meta-modeling language. Especially in the context of MDSE we
need expressive and precise meta-modeling languages, so that we can gen-
erate the infrastructure for DSLs automatically. However, other languages
can also be used, such as feature models Kang et al., 1990, which are also
precise, but less expressive than class diagrams (see Chapter 8). Other
popular languages used for meta-modeling are XML Schema and other
schema languages, as well as the types of most programming languages, in
particular algebraic data types in functional languages.

In this book, we work with two meta-modeling notations: class modeling
and algebraic data types, as key representatives of two language design
traditions. Ecore from the Eclipse Modeling Framework (EMF, see the
box on page 57) is a class-modeling language popular in meta-modeling
in the object-oriented programming community. It is less expressive and
simpler than UML class diagrams. Many open-source tools exists around
EMF, which we can use to manipulate models and to implement languages.
Algebraic data types (or simply ADTs, data types) are typically used to
express the abstract syntax of languages by functional programmers. Most
functional programming languages, enjoy good support for processing
language representations easily and efficiently.

Meta-modeling is a relatively powerful tool that is not only used for
modeling languages, as is our focus in this book, but it is also used for
domain modeling and for model interchange between different tools (Gitzel
and Hildenbrand, 2005). For domain-specific modeling see the box on
page 53. For model interchange, meta-models are essentially the exchange
formats for models. The most prominent standards are the XML Metadata
Interchange format XMI (Group, 2015), which is defined by the OMG as
part of MOF (see the box on page 57).

3.2 Domain Analysis for Meta-Modeling

DSLs tend to be designed for reasonably mature and understood domains,
to capitalize on the insights and experiences accumulated during years
of engineering practice. Most often, a non-model driven system, or even
several ones, already exist in the area. Either you, your team, your customer,
or other experts shall be able to describe the key requirements for the
new language. Similarly, existing examples of concepts of interest (cases,
drawings, informal models, data entries, API usages) and documentation of
prior practice are useful inputs to domain analysis and meta-modeling.

We demonstrate the domain analysis with an example familiar to any
computer science undergraduate: finite state machines. The example is
specifically selected so that we can sidestep the issues of missing knowledge
about the domain and settle the basic terminology on familiar grounds.

Chapter 3. Domain Analysis and Abstract Syntax 53

Domain Models and Meta-Models
You are probably familiar with domain modeling—an activity often included in the early stages of
software design in general, for example using UML diagrams. Domain modeling is a close relative of
meta-modeling: The reasoning and abstractions used in creating both kinds of models are similar. Yet,
they differ in the primary purpose, the level of formality, and precision.

A domain model describes relevant concepts and their relationships in a particular domain. A domain
model is typically created early in a software project. Sometimes, domain models are reverse-engineered
when a project already exists and developers or domain experts want to create an overview of the relevant
concepts, for instance before introducing any changes. Many project teams express domain models using
class diagrams, but other languages, such as mind-maps, feature models (cf. Sect. 8.5.2), state diagrams
or informal drawings, are also used. The main purpose of a domain model is to facilitate understanding
and communication among persons involved in a project, including users, domain experts, developers,
and architects.

A meta-model represents a domain as a language. A meta-model tends to be more formal than a domain
model; it aims at precisely describing the possible instances (models or programs) of the language.
A meta-model models a language. The emphasis on precision allows: (i) building MDSE tooling to
generate language infrastructure, such as comfortable editors (with code-completion, error markers,
and syntax highlighting), serializers, and deserializers, (ii) automatically checking that the language
instances conform to the meta-model, and (iii) implementing the semantics (e.g., an interpreter or a
code-generator) of the meta-model. Only secondarily, meta-models are also a unit of communication.
Since both domain models and meta-models describe domain concepts, some overlap and similarity
between them appears.

Example 6. Design a language for describing sets of parallel finite-state ma-
chines. Computer science students will use this language to specify examples
and exercises. They need to execute the models in order to interactively explore
behaviors (for educational purposes). Each state machine has a name and a
number of named states. One state of each machine is singled out as an initial
state. Transitions connect pairs of states: a source and a target state. Each
transition is labeled by an input action and, optionally, by an output action.

This description is the input to our hypothetical domain analysis. In reality,
it would have been extracted by interviewing stakeholders and studying
available documents. Table 3.1 organizes the example description by the
five questions discussed below. Study the table before proceeding.

Key questions and activities. During the domain analysis you should ask
yourself and the subject matter experts the following five questions:

Q1: Purpose. What is the purpose of the language? What are the use cases?
Concrete operational examples effectively guide the language design. Ask
your users and experts what use cases are important and how they are
realized today. Ask to prototype entirely new scenarios, ask how they
imagine work with use cases not seen in existing systems or processes.

54 Andrzej Wąsowski. Thorsten Berger

You will use the collected use cases, to design a language that is as small
as possible, narrowed down to a minimum set of concepts. Resist the urge
of adding things that are “nice to have.” Focusing on the required use cases
lowers the development and adoption costs without hampering usability.

Q2: Stakeholders. Who are the key stakeholders and the intended users
of the language?
A language for software developers or system administrators poses different
requirements than a language for an electrical engineer or a fire-alarm
installation consultant. Without considering the users, it is practically
impossible to set the right level of abstraction. Bring the user personas in
focus, to build the language on the terms and ideas that they are familiar
with. Understand what are their organizational roles, and what background
expertise they have (Wile, 2004). Later, this will also help you to select a
suitable concrete syntax.

Q3: Concepts. What are the key domain concepts that users care about?
Enumerate the concepts of importance, including physical, structural, log-
ical, abstract, concrete, operational, and temporal concepts. This includes
anything that is necessary to be described in order to build an unambiguous
model for your use case. Do not limit yourself to static concepts that
represent physical objects in the domain, such as an “engine” or an “engine
controller.” It is equally important to also capture more transient concepts
representing activities (e.g., a “fuel-injection policy”) and temporal prop-
erties (e.g., “rotation frequency” or a “weekly assignment rotation”). Many
people have a natural tendency to focus on the static concepts and will
forget to tell you about the transient ones, unless asked specifically.
A common mistake is to include concepts and relations that belong to
the technical context of the DSL, but not in the syntax of the language.
For example, the interpreter for state machines in Example 6 is not a part
of our language, but an associated tool. Therefore it does not belong to
our meta-model. The meta-model only includes concepts that must be
describable in the DSL, and not parts of the architecture, such as what tools
and processes we will run. These are still listed in the use cases, though
(Q1). The interpreter is important in the example, as we have to ensure that
the models capture all the information needed for execution. However, the
interpreter itself will not be modeled in the state machines and is not among
the listed concepts in Table 3.1.

Q4: Relations. How are domain concepts related, and what are their
relevant properties?
Relations and properties organize and restrict your meta-model. For in-
stance, “every engine needs an engine controller, but only certain controllers
are suitable for hybrid engines.” The relations might not be static: “A
student is enrolled at the university until she graduates.” The relations may

Chapter 3. Domain Analysis and Abstract Syntax 55

also relate transient concepts: “fuel injection policy” is applied to an engine
while in force, and not otherwise. Customarily, properties (or attributes) are
relations to very simple concepts such as age or color, which do not require
further elaboration.
Relations often emerge already in discussion of concepts (Q3). Do not try to
artificially separate the discussion of concepts from the discussion of their
relations in early design stages. Many relations can be seen as concepts and
vice-versa, so it is not useful to draw the distinctions sharply at this stage.

Q5: Examples. What examples of language instances are available or can
be prototyped?
Using examples is a key technique, when eliciting requirements from
domain experts. You shall collect existing examples, ask subject matter
experts to sketch new ones, and build some yourself to seek confirmation
of your understanding.
Perhaps, your customer is already using a notation or conventions express-
ing the subject of the DSL. In such case, an important objective for the DSL
may be to formalize the existing notations, so that tools can be build and
the automation of MDSE can be unleashed. Sometimes, you can define the
language solely based on the existing notations and conventions.
Alternatively, the new language may be build to raise the level of abstraction
of existing notations. For instance, a complicated and rich language (a GPL)
can be replaced by a simpler intuitive and task-oriented language. Then, it
is still valuable to understand existing notations by collecting examples, but
it is necessary to build small examples of the new abstract language with
the users in order to judge how well they are suited for the actual purpose.

These questions should not be answered in a sequential, waterfall-like
process. We recommend to perform the domain analysis iteratively (in-
deed, the entire DSL design-and-implementation process shall be iterative).
Collect as little information as seems necessary, then build some examples
and return to the subject matter experts for verification. Only collect new
information if unable to support the use cases.

Exercise 3.1. In a group, pick a domain of interest, and perform the domain
analysis following the above questions. If you do not know what to choose,
consider modeling a format of a boarding pass for a flight, a course front page for
a course management system such as Moodle, layout of furniture in a classroom,
light scenarios for a classroom, or a deployment architecture of a simple web-
based system. One person, with an idea how the language for the chosen domain
should work, takes the role of a domain expert. The others play the language
engineers. Build a table similar to Table 3.1.

3.3 Meta-Modeling with Class Diagrams
How can we turn the knowledge collected in a domain analysis into a
meta-model? We have to encode it in a formal language well suited for

56 Andrzej Wąsowski. Thorsten Berger

Q1: Purpose To build examples of students exercises; To interact with examples using an interpreter, an
interpreter will be needed.

Q2: Users Computer science students learning automata theory (probably knowing the basics of a
programming language); A professor, who can provide the examples and will ask the
students to use the tool.

Q3: Concepts Finite state machines, several in parallel; States; Transitions;

Q4: Relations Properties: states may be initial or end states, states and machines have names, transitions
have input action labels, transitions have optional output labels; Relations: machines own
states, transitions connect source and target states.

Q5: Examples The professor whose students are supposed to use the tool provided us with the following
example of a model in concrete graphical syntax:

S0 S1

login? / credentialsOK!

sendEmail? / sentOK!

sendEmail? /
sendErr!

login?
/ authErr!

Table 3.1: Knowledge collected in a hypothetical domain analysis process for the state-machine example

meta-modeling. Once we have a formal meta-model, we will implement
our DSL using MDSE. For the state-machine example (Example 6), we
will use MDSE not only for generating code from state machines, but also
when designing and implementing the state-machine language itself. This
has an additional advantage, that you, the designer of the DSL, use the
same paradigm as the users of your DSL. This makes you a more empathic
designer, able to understand users’ requirements better.

In this section, we use a minimalistic subset of class diagrams called
Ecore to build meta-models (see the side box “Ecore, MOF, and Meta-
Modeling”). If you lack experience with class diagrams, please study
Appendix A before reading further.
Object-oriented analysis and design. When meta-modeling with class dia-
grams, we follow the principles of object-oriented analysis and design. We
name classes after concepts and use associations to represent relations. Con-
tainment associations represent part-of relations, most other relations are
specified as regular associations with suitable role names. Generalization
(also known as inheritance) captures kind-of relations between concepts.

Example 7. Figure 3.1 shows the meta-model of finite-state machines. Com-
pare it with Table 3.1 when reading. In the figure, we have classes representing
finite state machines, states, and transitions. The Model class allows to have a
single object as a handle to several state machines in a model.

A containment association states (black diamond) captures the part-of
relation between a state machine and a state. Even though transitions can be
thought of as relations, we model them as first-class objects. This is because

Chapter 3. Domain Analysis and Abstract Syntax 57

Ecore, MOF, and Meta-Modeling
Meta Object Facility (MOF) is a simple class-modeling language standardized by the Object Management
Group (OMG). MOF was created as the meta-modeling language to be used in writing the UML standard.
It is used by OMG to define the meta-models of the UML sub-languages. MOF is a minimalistic
class-modeling language that is relatively easy to learn and implement. MOF includes packages,
classes, attributes, simple types, containment, operations, multiple inheritance, interfaces, and binary
unidirectional associations (references). It excludes advanced constructs of UML Class Diagrams,
for example n-ary associations and association classes. You can inspect the freely accessible MOF
specification at http://www.omg.org/spec/MOF to get an idea what a formal modeling-language standard
looks like.

Ecore (https://www.eclipse.org/modeling/emf/) is the Java implementation of the MOF specification by the
Eclipse Modeling project. Ecore is used for meta-modeling in the Eclipse Modeling Framework (EMF).
Meta-models in Ecore are compatible with EMF’s rich tool ecosystem, which can be used to implement
your DSL. Like MOF, Ecore is used for meta-modeling, so exactly with the same purpose the MOF
designers had in mind: to build language models. In fact, when we specify DSLs, such as state machine
languages and configuration languages in Ecore, we follow the same method that UML designers used
to specify the abstract syntax for all UML diagrams, including the state machine diagrams.

we need to store properties (the input and output labels)—associations cannot
carry attributes in Ecore. The source and target references represent the
connection relations between a transition and its incident states. In order to
ensure that the entire instance is a tree (a single partonomy, see below) we
made the source relation a containment (black diamond again).

The transition objects are contained in the source state—this makes exe-
cution of machines easier; containment references are navigable. This is an
example when implementation considerations pollute the meta-model—a prag-
matic compromise that allows using the same model for domain analysis and
for implementation. Such compromises are often made for simple languages.

We decided to make initial a relation between a state machine and one of its
states. Alternatively, we could have modeled the initial state as a Boolean prop-
erty of one of the states. What we did requires a constraint that the initial state
of a machine is actually one of its own states (so the initial relation is a subset of
the states relation). The alternative modeling requires a constraint that exactly
one state in each state machine has the initial property set to true, and all others
are set to false. We discuss how to add constraints to meta-models in Chapter 5.

We use a convention, instead of an explicit meta-model element, that
any state without an outgoing transition is an end state. Not declaring this
property in the meta-model makes it more concise, but users of our meta-
model (developers implementing transformations) need to be aware of this
convention, which is not necessarily obvious, especially since graphical state
machine notations often have a dedicated symbol for end states.

Since state machines and states both have the property name, we extract it to
an abstract class NamedElement. This is a common pattern in object-oriented

http://www.omg.org/spec/MOF
https://www.eclipse.org/modeling/emf/

58 Andrzej Wąsowski. Thorsten Berger

Figure 3.1: A meta-model
for the language of finite

state machines using class
diagrams as the

meta-modeling language.
Compare with Fig. 5.10.

Transition

input : EString
output : EString

NamedElement

name : EString

Model FiniteStateMachine

State

root element

[1..1] target

[0..*] machines

[1..1] initial

[0..*] leavingTransitions [1..1] source

[1..1] machine

[1..*] states

source: fsm/model/fsm.ecore

Figure 3.2: An example
CSS file for Exercise 3.2

1 p {
2 background-color: black;
3 color: blue;
4 }
5

6 div { background-color: red; }

meta-models. It allows to use a single visualization code to label objects that
are named. For example, the EMF framework itself interprets this property
specially, displaying names as object identifiers in editors.

As shown in the above example, domain analysis is transferred to meta-
models naturally, like in most other examples of object-oriented design.
Most formal meta-models, and especially those based on class diagrams
like our example, capture the answers to the third and fourth question of
our simple domain-analysis scheme from Sect. 3.2 (concepts and relations),
but they are heavily influenced by the collected examples and use cases (we
come back to this in Sect. 3.8).

Exercise 3.2. Figure 3.2 presents an example domain-specific model in the CSS
(Cascading Style Sheets) language. Assume that a CSS model consists only of top-
level style specifications for elements of type p (paragraph) and div (document
subtree). These can be repeated arbitrary many times, and mixed in any way.
Each specification can contain an arbitrary number of attributes in any order, but
there are only two kinds of attributes: background-color or color. Each of these
properties must have a color assigned selected from the list: black, white and red.
If you know any other aspects of CSS ignore them for now, to simplify the task.
Design an Ecore meta-model (or a set of suitable Scala types) for representing
this subset of CSS. Name the root class of the CSS meta-model.

Exercise 3.3. Refactor the meta-model presented in Fig. 3.1 so that ’initial’ is
a Boolean property of a State, instead being a (non-Boolean) property of the
FiniteStateMachine.

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm/model/fsm.ecore

Chapter 3. Domain Analysis and Abstract Syntax 59

target

sourcesource

target

source

target

target

source

initial

: Transition

input="sendEmail?"
output="sendErr!"

: Transition

input="sendEmail?"
output="sentOK!"

: Transition

input="login?"
output="credentialsOK!"

: Transition

input="login?"
output="authErr!"

: State

name="S1"

: State

name="S0"

machines

: Model

name="simple"

: FiniteStateMachine

name="simple FSM"

states

leavingTransitions

leavingTransitions

leavingTransitions

leavingTransitions

states

Figure 3.3: An instance (in abstract syntax) of the finite-state machines language defined by the meta-model in Fig. 3.1

Instances of meta-models. Meta-models define all possible models and
therefore all possible instances of a language in abstract syntax, disregard-
ing the particular textual or graphical notation. These instances become
in-memory objects in tools such as the language editor, serializer, and
deserializer. They are also processed by model transformations.

Instances quickly become large and their visualization is difficult, imprac-
tical, or impossible. Furthermore, in the context of MDSE and DSLs, we
typically do not need to show instances in a generic notation—we use con-
crete syntax of the DSL instead. However, for learning and understanding,
it does make sense to take a look at an instance to develop an intuition of
how instances and meta-models relate. Figure 3.3 shows a simple instance
in abstract syntax of our language for finite-state machines. It corresponds
to the instance shown in concrete syntax in Table 3.1. We use a UML
instance specification diagram to visualize this example.1 It is instructive
to compare the concrete state machine in Table 3.1 with this figure, and
with the meta-model of Fig. 3.1. The concrete syntax of the example has
two states, and the object diagram has two State objects (S0 and S1), while
the meta-model had a single State class. Similarly we have four transitions
(arrows) in the concrete syntax, each represented by an object, an instance,
of the Transition class of the meta-model.

Exercise 3.4. Draw the instance representing the example of Fig. 3.2 as UML
instance specification (object diagram) of the meta-model designed in the Exer-
cise 3.2.

1Appendix A talks about instance specifications. An “object diagram” was a diagram type
available in older versions of UML, before UML 2.0. Objects are now called instance
specifications and integrated into class diagrams. The notation remained the same, however.

60 Andrzej Wąsowski. Thorsten Berger

Figure 3.4: The partonomy
of the meta-model of Fig. 3.1

Transition

input : EString
output : EString

Model

FiniteStateMachine

State

[0..*] machines

[0..*] leavingTransitions
[1..1] source

[1..1] machine

[1..*] states

3.4 Guidelines for Meta-Modeling with Class Diagrams

In general, all design patterns and analysis methods known from class
modeling apply to meta-modeling. However, the meta-modeling use case
has its few specific requirements that lead to some specific design recom-
mendations and patterns. Let us discuss these now.
Create a single partonomy. A partonomy is the decomposition of a class
diagram along the part-of relationships. Meta-models should have a single
partonomy, so in each instance every object should be contained (perhaps
indirectly) in the containment hierarchy of a single root element. Basically,
there should be a single connected syntax tree.

The partonomy of the diagram in Fig. 3.1 is shown in Fig. 3.4. A
partonomy view of a diagram shows the decomposition of structures: a
sub-diagram showing the classes and their containment relationships. In
our example, the decomposition is a very simple nesting (transitions are
nested in states, states are nested in finite state machines, and machines
are nested in models). In general, a partonomy takes the form of a forest.
In meta-modeling, we introduce a class as the top-level node, usually
representing the model or the document, that owns all the forest’s trees.
This way, we arrive at a single tree structure. This structure is then easily
manipulated in programs, where it can be passed around and accessed using
a single root object. It is important that all classes are transitively contained
by the top-level class. Otherwise, the class could not be instantiated;
more precisely, it could, but would not be contained by another object and
therefore immediately deleted by the garbage collector of the underlying
programming language (e.g., Java).

Exercise 3.5. Draw the partonomy view of the meta-model created in Exercise 3.2.

Avoid interfaces and methods. It is a bad smell if you see interfaces or
methods in your meta-model. Inexperienced modelers often confuse abstract
classes and interfaces, presumably due to the relative interchangeability
of these in programming. Abstract classes represent abstract concepts

Chapter 3. Domain Analysis and Abstract Syntax 61

and properties in the meta-models and are related to concrete concepts
using a kind-of relation (generalization); For instance, the abstract class
NamedElement in our example. In contrast, interfaces, as opposed to
abstract classes, are meant to represent the APIs of objects with which you
or others are interacting.

Methods (operations) rarely appear in meta-model classes. The MDSE
tools that process the instances and meta-models only take the structure,
qualities, and relations into account, not the methods. At runtime, the
in-memory objects instantiating the meta-model classes tend to be passive.
Any operations on them are usually implemented outside the generated
classes, in the interpretation and transformation modules. For these reasons,
you shall normally not place methods and interfaces into class diagrams
that are meta-models—not least to avoid becoming confused about the role
of meta-models in the MDSE process.

Yet, a few exceptions to this rule exist. Methods can become handy if
you want to create derived attributes (properties that are computed based on
other properties and relations). In this case, you can put a respective method
into a class in the meta-model. Beyond derived properties, sometimes it is
too much overhead to separate simple behavior. Then, it might be useful
to implement convenience operations directly in the generated classes. For
instance, the state-transition logic for our finite state machine example could
be implemented as additional methods in the generated class State.

Exercise 3.6. Write a Java (or Scala) function isInitial that should be a member
of the State class (Fig. 3.1). The function should return true if and only if the this
object is representing an initial state. Not that isInitial is a derived property.

Adding convenience methods in the meta-model and in the generated
code can be entirely avoided when you are using a sufficiently expressive
programming language. For example, extension methods (C#, or Xtend)
can be used to provide these methods outside the generated code. In Scala,
implicits are used to add extension methods, following the pimp my library
pattern—especially for Java libraries, such as the code generated by EMF.
In AspectJ or Kermeta, aspect weaving can be used to achieve similar
effect. In all these cases, we get an architectural advantage of keeping
all hand-written code in separate compilation units from generated code.
This simplifies incremental builds, error-reporting, rerunning test-cases, and
reduces the risk of manually modifying generated code, which introduces a
slippery slope of abandoning all benefits of MDSE in long term.

Finally, the well established Model-View-Controller pattern Krasner,
Pope, et al., 1988 calls for separating operations (and visualization) on
the model from the model itself. This pattern is commonly followed, and
encouraged in MDSE. When no operations are put into the model, the
chances of violating this pattern are much lower.

Verify the taxonomy. The taxonomy of a meta-model is the way concepts are
classified, and how classes are organized in a hierarchy. In object-oriented

62 Andrzej Wąsowski. Thorsten Berger

meta-modeling the taxonomy is naturally given by the generalization (in-
heritance) hierarchy of classes. A taxonomy view can be produced from
your diagram by removing associations and only retaining generalization
relation and classes. Unlike for partonomies, quite often, there is no single
taxonomy in a meta-model, but several disconnected ones.

Exercise 3.7. Draw the taxonomy view of the diagram in Fig. 3.1. Recall that the
partonomy view of this diagram is shown in Fig. 3.4.

In the case of finite state machines, the taxonomy view is somewhat sim-
plistic. The only generalizations in the diagram involve the abstract class
NamedElement that might not be recognizable for domain experts. In
general, however, the taxonomy view will show a useful decomposition of
the concept space that is dual to the partonomy decomposition. It is useful
to verify the taxonomy of the meta-model with domain experts.

For instance, if we model embedded-system components, we may see
generalizations between less and more advanced versions of a component.
We may also see abstract classes (and generalizations involving them) rep-
resenting component categories. Such a taxonomy should appear familiar
to domain experts and may be verified by them. Incidentally, the ability
to express concept taxonomies is one the key advantage of class diagrams
over relational schemas for domain modeling. Entity-Relationship (E/R)
diagrams feature only relations (associations) between concepts, without
any way to express generalization first class.

Reify relations when necessary. If relations between concepts have prop-
erties, you can reify them as classes. Even if you use a simple modeling
language such as Ecore, which does not use association classes, you can
represent relations as classes, not associations. We have seen this pattern at
work in the state machine example, where the transition could alternatively
be modeled as a successor relation between states. Turning an association
into a class and two relations for each of the original endpoints, allows
us to place the attributes on the class, which was not possible for Ecore
associations.

Exercise 3.8. Redesign the state machine meta-model to use an association (refer-
ence) instead of a class for transitions. While doing this, simply ignore the input
and output labels—drop them from the meta-model.

Avoid redundancies. It is a bad smell if multiple classes have the same
property. If multiple concepts share a property (name, size, speed, etc.), then
it is very likely that in your implementation of the framework you would
like to perform common operations on them (e.g., printing, measuring,
moving). This will be easier to do in a reusable way if you extract the
common properties to abstract classes, like we did with the name property
and the abstract class NamedElement.

Use singular for class names. It is usually a bad smell if a class name
is in plural. Recall that you describe the main concepts in your domain

Chapter 3. Domain Analysis and Abstract Syntax 63

Opposing Forces in Meta-Modeling
A DSL meta-model is a technical artifact that responds to opposing forces. As a pivotal artifact in a
project, it needs to both capture key aspects of the input domain and to provide types for instantiation
and manipulation used in the implementation. For example, its instances should be easy to construct
using a parser (Chapter 4) and easy to navigate to required elements in interpreters and code generators.
This means that compromises are often made.

Fowler and Parsons (2011) often find it helpful to consider how the instances are supposed to be used
by the software framework, when designing the meta-model. So they take both the domain (end-user)
perspective and the implementer perspective into account. Often the most elegant model from domain
perspective, is not the most convenient from the implementation perspective. If the gap between the
problem space requirements and the solution space needs are too large, it is not unusual to work with
two meta-models: one that is close to the domain (a so called Platform Independent Model) and one that
is closer to solution (the so called Platform Specific Model). In such case we can use a model-to-model
transformation (Chapter ??) to translate between the problem space model and the solution space model.

and their relationships, including how many instances of which concept
are in a relationship with how many other concepts. To precisely express
this, each class should represent one concept, and a concept is typically
expressed in singular (e.g., Person or Customer), only very rarely in plural
(e.g., Statistics, CustomerServices).

3.5 Meta-Modeling with Algebraic Data Types

From the programming language point of view, meta-models are just defini-
tions of classes and properties. They are types basically. We have shown
how to use Ecore to express meta-models, but most modern programming
languages have sufficient facilities to express similar information directly,
without using Ecore. Thus you have a choice between using a dedicated
modeling framework or modeling directly with types. In this section, we
present the functional programming style of abstract syntax definitions—a
popular meta-modeling alternative among language designers.

Example 8. Recall the meta-model of finite state machines of Fig. 3.1. Fig-
ure 3.5 shows how the corresponding Scala case classes, an algebraic data type,
look. Read the figure and compare it against the class diagram, before pro-
ceeding. Below, we comment on the six types defined therein: NamedElement,
ModelElement, Model, StateName, Transition, and FiniteStateMachine.

NamedElement is a Scala trait (similar to a Java interface, but it can also
carry attributes). Like in the Ecore meta-model, we will require that all
named elements have a string property name. Since traits support multiple
inheritance, this modeling corresponds directly to the use of the abstract class
NamedElement in Fig. 3.1, where NamedElement was also used in multiple
inheritance of Ecore.

We could use a getter-and-setter pattern to define the name property—this
is, in fact, what EMF does when generating code from our Ecore meta-model.

64 Andrzej Wąsowski. Thorsten Berger

Figure 3.5: Another
modeling of the finite state

machine language, using
Scala (cf. Figure 3.1)

1 trait NamedElement { val name: String }
2

3 sealed trait ModelElement
4

5 case class Model (
6 name: String,
7 machines: List[FiniteStateMachine]
8) extends NamedElement with ModelElement
9

10 type StateName = String
11

12 case class FiniteStateMachine (
13 name: String,
14 states: List[StateName],
15 transitions: Map[StateName, List[Transition]],
16 initial: StateName
17) extends NamedElement with ModelElement
18

19 case class Transition (
20 target: StateName,
21 input: String,
22 output: String = ""
23) extends ModelElement

source: fsm.scala/src/main/scala/mdsebook/fsm/scala/adt/Pure.scala

However, since we are in the pure functional programming setting here, public
access to values is much less of an issue than in classical object-oriented
programing. Since properties cannot be modified, invariants are not easy to
break. For this reason, publicly accessible read-only fields, without a getter
and setter, are common in functional programming. Violation of access is
less of an issue there, as pure code, without side effects, cannot break data
invariants, even if accessing values directly. In turn, we gain conciseness and
simplicity of the definition—less coding and less maintenance. Still, it might
be sometimes valuable to hide properties behind access methods in functional
programs—to prevent external code from developing dependencies on internal
representations. This is relatively rarely used in language engineering, as it is
anyways hard to evolve language syntax implementation without changing the
abstract API, so the external code depending on the API would break anyways
when the language evolves.

Returning to the figure, ModelElement is an abstract type that we use to
designate all program classes that are part of the meta-model. It corresponds
roughly to the EObject type defined by Ecore, which is a super type for all
instance objects at runtime (it is defined in the Ecore library and used in the
code generated from the meta-model). With use of the ModelElement type
we can later write generic code that processes any kinds of instance objects,
while still being type safe. As you notice, there is slightly more work to do in
bare-bones Scala than in Ecore—EObject was defined once-for-all in Ecore,
here we do the work in the meta-model.

The ModelElement trait is sealed in this example, which limits the possible
implementations to the three types defined below in the same file (Model,
FiniteStateMachine, and Transition). We seal this trait to emphasize that

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/mdsebook/fsm/scala/adt/Pure.scala

Chapter 3. Domain Analysis and Abstract Syntax 65

the listing in Fig. 3.5 contains the complete meta-model definition—no further
extensions will be done in other files. It also allows the type checker to warn
the programmer, whenever a type-based pattern matching expression neglects
one of the three cases. The three classes correspond directly to the concepts of
model, state machine, and transition in the Ecore meta-model.

An attentive reader has already noticed that we lack a class definition for
State in this example. For simplicity, we represent states directly by their
names (character strings). We introduce a type alias StateName purely for
readability. While modeling states as a class was entirely possible in Scala,
we decided to choose another route to illustrate an alternative pattern, creating
a meta-model where the transition relation (the transitions property in
FiniteStateMachine) is a single first class data structure, not distributed by
different containing states. Such representation of transitions, as a single
relation is a common functional modeling style for automata-like languages.
Modeling as a relation (a set of arrows) is also a typical way to represent cyclic
structures (which finite automata are)—otherwise there is no way to construct
cyclic instances in a purely functional manner in strict languages like Scala.
Observe, that a key decision was to lift the transition representation from the
state level to the machine level, as a structure over states, not part of the states.
The fact that we used a map is somewhat secondary, we could have used an
association list, or other structures.

Algebraic data types. In Scala, we implement algebraic data types (ADTs)
using sealed traits and case classes. An ADT comprises a number of type
cases (a union, a sum of cases), where each case combines a tuple of several
attributes (selected from a Cartesian product of types). The name algebraic
stems from this combination of two operators to generate the type extension:
the union and the product. ADTs in other functional languages are also
known as data types, union types, discriminated unions, tagged types, etc.

Why do we choose to model abstract syntax trees (and so, meta-models)
with ADTs? First, the combination of products and sums allows to represent
trees of diverse shapes. The branching degree of a tree node is defined
by the arity of the cases class representing this type of node. This makes
ADTs extremely practical for specifying abstract syntax trees, which are
trees of irregular arity. Second, ADTs combine very well with pattern
matching expressions (switches over types) that allow to concisely write
language processing algorithms, especially in interpreters and transforma-
tions. Figure 3.6 sketches a skeleton of a type-safe, statically checked code
that generically processes any kinds of model elements in our example.

1 me match {
2 case Model(name,machines) =>
3 ... // code executed if me is an instance of Model
4 case FiniteStateMachine(name,states,transitions,initial) =>
5 ... // code executed if me is a FiniteStateMachine
6 case Transition (target,input,output) =>
7 ... // code executed for transitions
8 }

Figure 3.6: A Scala pattern
matching expression for the
types of Fig. 3.5

66 Andrzej Wąsowski. Thorsten Berger

Figure 3.7: The instances of
Fig. 3.3 recoded as an

instance value for types in
Fig. 3.5

1 val transitions = Map (
2 "S0" -> List (
3 Transition(input="login?",output="credentialsOK!",target="S1"),
4 Transition(input="login?",output="authErr!", target="S0")),
5 "S1" -> List (
6 Transition(input="sendEmail?", output="sentOK!", target="S0"),
7 Transition(input="sendEmail?", output="sendErr!",target="S1"))
8)
9 val machine = FiniteStateMachine (

10 name="simple FSM",
11 states=List("S0","S1"),
12 transitions=transitions,
13 initial="S0"
14)
15 val model = Model("simple", List(machine))

Algebraic data types in functional languages without inheritance (such as
Haskell or Standard ML) can typically capture only the partonomy view
of a meta-model. The taxonomy needs to be worked around in code, using
the available reuse mechanisms (type classes, functors, etc.). In languages
that combine algebraic data types and classes (such as Scala and F#), most
of the meta-modeling forgoes in the same way as in Ecore: we map the
taxonomy to the inheritance hierarchy, and the partonomy to the nesting of
type properties. Unfortunately other relations (that are not guaranteed to be
acyclic) are impossible to represent directly in an immutable ADT. The ADT
constructors can only build trees—to close a cycle we either need to use
a side effect (an assignment) to redirect a reference, or we have to resort to
indirect modeling. A classical solution is to use name-based references. In
the example, elements names (strings of characters) are used as identifiers,
and we replaced references to objects with references to their names.2

Since we are now using name-based references, we also need a dictionary
that maps names to objects. We have two such dictionaries in our model:
one is the list of state names and the other is the map from state names to the
outgoing transition lists. Typically the dictionaries need to be computed sep-
arately, after parsing is completed. It is clearly an advantage of Ecore and of
language workbenches such as Xtext that they perform this work for you, re-
linking all the references in the object graph after parsing and type checking.

Exercise 3.9. Design a Scala algebraic data type representing the same informa-
tion as the meta-model of CSS created in Exercise 3.2.

Ecore instances are serialized to XMI files. We do not have such a generic
facility for regular values of programming languages (although some lan-
guages offer marshalling libraries to JSON, YAML, XML, or custom binary
formats). If you need a text representation that requires no additional

2Hint: Use strings of characters as element identifiers for languages that have a single name
space and small models (human created). In such cases, strings are sufficiently efficient and
tend to be the simplest way to implement references, as most often you only need to make
cyclic references to elements that already have names. The added bonus is that instances are
easy to read and reasonable to write for humans, for instance during testing and debugging.

Chapter 3. Domain Analysis and Abstract Syntax 67

infrastructure, the easiest way to create and save instances of an ADT meta-
model is writing constructor expressions directly in Scala. Figure 3.7 shows
the instance of the finite state machine language originally presented in
Fig. 3.3 written as an instance of Scala types of Fig. 3.5. This is probably
the easiest way to store and reuse instances in testing. If you need to use
other modeling tools that rely on the XMI Format, you would have to
implement a suitable transformation first.

To simplify the construction of instances as constructor expressions,
we often implement default parameter values (see Transition.output in
Fig. 3.5, not exploited in Fig. 3.7), alternative constructors, and factory
methods. Language elements tend to have a lot of optional properties. Pro-
viding all of them explicitly at instantiation, quickly becomes burdensome.

Exercise 3.10. Write down the scala value representing the abstract syntax of
the example CSS instance in Fig. 3.2. Use types and constructors defined when
solving Exercise 3.9.

ADTs vs Ecore. So what should I choose: a modeling DSL from a lan-
guage workbench like Ecore or just standard ADTs from my programming
language? One advantage of Ecore, and other language development
frameworks, is that many tools will integrate with their representations,
even from other programming languages than Java. If you need any Ecore
(or XMI) dependent technology, we recommend using Ecore for modeling.
At the same time, it should be noted that modeling and processing abstract
syntax of languages was one of the key motivations for creating modern
functional programming languages. In fact, the ML language, a predecessor
of Standard ML, OCaml, F#, and Scala, has been originally created to build
a proof assistant in which logical statements had to be easily represented
and transformed using inference rules (so this was a language engineering
project!). Ever since, functional programming languages were popular
with language researchers and nowadays also with the industry developing
languages. This means that much competing infrastructure exists in the
ecosystem of functional programming languages.

Ecore meta-models tend to have a better representation of constraints
than ADTs. In most languages, ADTs do not provide modeling facilities
for capturing cardinality constraints, or bidirectional associations (so as-
sociations that can be navigated from both ends, unlike regular references
in programming languages that are unidirectional). This is why you will
be reimplementing some of these facilities manually, often by writing
additional static checking code. On the other hand, functional programming
languages offer fairly concise programming style, well suited for language
processing, that comes very useful in later language development stages.
The good news is, that this style, with some friction due to imperative nature
of its APIs, can be also used with Ecore. Programming languages like Scala,
Xtend, and recently also Java, allow to use functional programming with
Ecore generated types.

68 Andrzej Wąsowski. Thorsten Berger

Using a programming language in domain analysis tends to quickly bring
us into fairly low-level technical discussions (as seen to an extent in the
FSM example). While this is not immediately a problem for experienced
language engineers, if you are new to language design, you might find
this design stage unduly daunting when using ADTs. Regardless, which
technology you use, you can follow the domain analysis process outlined
earlier in this chapter. This book allows you to explore, compare, and
reflect about both worlds, hopefully leading you to a much more informed
choice. Even if you only use one of these technologies in any given project,
knowing how languages are designed and implemented across technological
spaces, should make you a better language engineer.

3.6 Language-Independent Meta-Modeling Guidelines

To further demystify the process of meta-modeling, we present modeling
advice collected from teaching experience and published research works.
The guidelines below apply regardless of whether you use object-oriented
syntax modeling or algebraic data types.

Let the meta-model describe the problem, not the software tool solving it.
The similarity of meta-modeling with the design of object-oriented APIs
tends to confuse inexperienced language designers. It is key to understand
that meta-modeling is not programming of your tool infrastructure, and the
concepts in the meta-model are not the components of your tools! When we
use class modeling for creating meta-models, a class primarily represents
a domain concept, and not an implementation concept. The model you are
building is the model of the language, not an architectural diagram of your
tool, as often seen in introductory object-oriented modeling courses. So,
while we have states and transitions in our example, we do not include the
parser, the interpreter, a code generator, or a type checker in the meta-model.
These are not part of the language, but of the surrounding infrastructure.

Avoid scope creep. Design what is absolutely necessary and avoid natural
tendencies to over-design (Wile, 2004). Regardless what meta-modeling
language you use, the meta-model should have as few concepts as necessary,
and no more. You can get there by questioning everything that is defined
in the language; specifically, question why each construct is needed, and
why already now, in the current release of the language. In fact, Wile
(2004) suggest to focus on about 80% of the needs, and to provide a way
to escape outside the DSL, or to extend it programatically in the underlying
system, for the rest of the complex cases. Once the language is created, the
infrastructure is implemented and used, it is expensive to revert decisions.
A smaller language is not only cheaper to maintain and evolve, but also
faster to learn. Releasing in small increments, allows to run tests with users
earlier and thus lowers risks.

Use abstraction wisely. Abstraction is nice, and you should always think
what level of abstraction and detail is sufficient or necessary. Consider for

Chapter 3. Domain Analysis and Abstract Syntax 69

Grammar-First or Model-First?
Some authors suggest that the language design should start with the concrete syntax and should use
meta-models (or other abstract-syntax definitions) as secondary implementation artifacts (Paige, Kolovos,
and Polack, 2013; Krahn, Rumpe, and Völkel, 2010). In this book, we advocate designing a domain
model first, before developing concrete syntaxes. We believe that the meta-model is a central, pivotal
artifact in several ways. First, constructing the meta-model is an instrument for performing domain
analysis and problem understanding. Thus it is key for system design. Second, designing the meta-model
helps you to avoid the trap of jumping to solutions too quickly, staying longer on the problem, and
avoiding being driven early in design by ad hoc concrete syntax ideas. Third, different elements of
your tool chain will communicate using the instances of the meta-model. These different parts need
to be able to query and manipulate the instances efficiently and effectively. Automatically generated
meta-models are usually far from natural and far from elegant. If you use them, you need to program
against convoluted types and APIs, and as a result your back-end tools are becoming complex.

instance our FSM language; let us assume that we want to model time in a
state machine, expressing execution time. You can decide between having
the time in seconds versus just using fast/slow. The latter might be sufficient
for some applications, such as a coffee machine that has a fast and a slow
brewing mode. You could also simplify the language, i.e., abstract it, by
having less labels on the transitions. Drop the inputs when you notice that
the language is just used for specifying behavior in terms of actions and
does not need to react to input.

Strive for simplicity. A language must be simple (Kelly and Pohjonen,
2009; Karsai et al., 2009). Implementing a complex language will use a
lot of resources. Keep the number of concepts as small as possible and
avoid redundancy (i.e., the language’s ability to express the same things
in many ways). Also accept that your language will be incomplete. It is
dangerous to create a language that covers all possible general cases. It is
more important to create a language that covers cases appearing in practice
and then plan for language evolution.

Prepare the language to grow. Making the language simple is only safe if
you take some protective measures against trivialization. First, be ready to
grow the language iteratively in the future (Bentley, 1986). Few languages
never need to be evolved. DSLs are like libraries and need continuous grow.
Second, consider making the language open—equip it with some escape
mechanism, so that users who outgrow the language, have a possibility
to circumvent its limitations (Bentley, 1986). This can be done at various
phases of the language design. In domain analysis this may require con-
sidering an escape construct to call lower-level code. Alternatives, include
implementing the language as an internal DSL (see ??), or providing an
API to hook into your interpreter or code generator.

Avoid designing programming constructs. It is usually a bad sign if your
language becomes dominated by typical programming constructs such as
loops, branching, functions, and classes. You are almost never designing

70 Andrzej Wąsowski. Thorsten Berger

Figure 3.8: An example
mind-map, hand-drawn on

paper

Figure 3.9: A mind-map
model shown in concrete

syntax (created by the
program XMind)

a programming language (Wile, 2004). This is often a sign that your
abstraction is not close enough to the domain. It is better to stick to the
problem domain as close as possible (Kelly and Pohjonen, 2009; Stahl and
Völter, 2005). However, if your language is meant to describe large complex
systems, consider adding modularity constructs to it. Large models need to
be broken into smaller pieces (Karsai et al., 2009).

It is better to use the problem domain as inspiration, rather than the
solution space (Kelly and Pohjonen, 2009). This applies even if an imple-
mentation exists, such as in re-engineering scenarios where models and
code generators are introduced into an existing system. Of course, one
should be realistic and still design a language that can be realized on top of
an existing framework. Solution space constraints should not dominate the
design, however.

3.7 Case Study: Mind Maps

We shall now purse a larger example to illustrate the domain modeling
and analysis process. Our hypothetical goal is to build a mind-mapping

Chapter 3. Domain Analysis and Abstract Syntax 71

Purpose To be able to take simple lightweight notes in a mind map format.
To be able to read these notes, when studying for exams.

Users Students taking notes on laptops during exam preparation, or during
lectures.

Concepts The center of the diagram contains the main topic, which is then
also the root of the note’s hierarchy. Subtopics are organized
centrally around the main topic.

Relations Properties: The topics can be (optionally) numbered to indicate
the order of reading. Some topics can be emphasized (for instance
printed with a bold font). Finally, topics are indexed by colors,
so that tools can mimic the idea of using several pens, when
displaying the nodes. Relations: The key relation is that between
topic-and-subtopic: decomposition of the topic into subtopics. The
nesting using the decomposition relation can be arbitrarily deep.
Besides this decomposition it is also possible to draw lines between
topics that are related even if they are not neighbours in the topic
decomposition hierarchy.

Examples Fig. 3.8 provides an example. We note that in this example topic
decompositions are black, and the cross hierarchy relation is drawn
in a light gray color. In this example only the first layer of topics
around the center is numbered (the other topics are not numbered).
The hierarchy is five topics deep, and only black color is used. The
use of syntax is informal, and at places inconsistent as common for
notations used for sketching or brainstorming on paper, before they
have been formalized.

Table 3.2: Knowledge
collected in a hypothetical
domain analysis process for
the mind-map example

tool, not unlike XMind3 or FreeMind.4 A mind map is a diagram that
organizes information visually. Each mind map diagram has a central
concept, usually represented by a label centered on a page, from which a
hierarchy of concepts and ideas extends concentrically. Figure 3.8 presents
an example mind-map diagram that could have been created while taking
notes during a lecture on meta-modeling. Our goal is to create a modeling
language that would allow to draw mind-maps on a computer.5

Figure 3.9 shows a piece of concrete syntax of an existing mind-mapping
tool. We discuss the domain analysis in Table 3.2. Figure 3.10 shows a
potential meta-model of this mind-mapping language. At this point, there
should be nothing surprising in this meta-model. Still, let us discuss a
specific design decision.

Take a look at the class Color, which we designed to be contained by the
class Model. Each topic has optionally a reference to a specific color. We

3http://www.xmind.net
4http://freemind.sourceforge.net
5The example in this section is loosely inspired by a blog post of François Pfister, available at:
http://gmf-modeling.blogspot.com, last seen Feb 2016

http://www.xmind.net
http://freemind.sourceforge.net
http://gmf-modeling.blogspot.com

72 Andrzej Wąsowski. Thorsten Berger

Figure 3.10: The
meta-model of a simple

mind-mapping language

Model

editorVersion : EInt = 1
NamedElement

name : EString

MindMap

description : EString

Topic

order : EInt
emphasized : EBoolean = false

Color

rgbcode : EString

[0..*] mindmap

[0..*] subtopics

[0..1] color

[0..*] relatedTo

[0..*] topics

[0..*] colors

could have let Color be contained by Topic, but since multiple topics will
likely have the same color, we would need to instantiate the same color
multiple times. We avoid this redundancy by this containment hierarchy,
so only one Color instance shall be created per unique color code (attribute
Color.rgbcode). Note that you could still create multiple Color instances
with the same color code; nothing prevents you from doing that. This issue
will be addressed using constraints later in Chapter 5.

You might also notice another issue with the class Color. When instantiat-
ing it, you might find it a bit cumbersome to use it, since you need to create
the color code (a string containing three hexadecimal numbers representing
the values for the red, green, and blue part of the color). So, you need to put
that information into your program code. It might be better to pre-define
potential instances of the class Color directly in the model. Unfortunately,
that is not possible in Ecore. You could not even create sub-classes of Color
and override the attribute rgbcode in the sense of giving it a specific default
value, as this is not supported by Ecore. Using constraints (explained in
Chapter 5) it could be achieved, but such a solution would be clumsy and
still not exactly what you want. In this case, when creating the model, you
would still need to manually instantiate the sub-classes of Color, and you
could to mistakes here. Instead, what you want is to specify that specific
instances will exist in a model. UML in fact has such a construct, called
instance specification, which we will get back to in Sect. 3.9 (sub-section
“Linguistic versus Ontological Instantiation”).

3.8 Quality Assurance and Testing for Meta-Models

In MDSE, meta-models become pivotal elements, used by all other parts of
your tool chain. It is thus key that they are correct. There are two main qual-
ity assurance (QA) objectives for meta-models: first, confirm that the meta-
model meets the requirements of the project (can we describe everything
we need?); second, ensure that the model has good quality and contains no
design errors. Let us discuss the strategies to achieve these goals.

Chapter 3. Domain Analysis and Abstract Syntax 73

Meeting the requirements. The key and too frequently neglected QA
practice is checking whether the meta-model adheres to its requirements.
We recommend a systematic and regular review of the requirements against
the meta-model. For example, if you followed the method of Sect. 3.2, you
can revisit the collected material in the QA phase: (i) Check whether
the purpose of the language has not moved from the prescribed goal.
(ii) Check whether the concepts in the meta-model remain relevant for
the stakeholders. (iii) Check whether the relevant concepts and relations
from the requirements are reflected well in the meta-model.

Definition 3.3. A meta-model is complete if its instances can represent all
the domain problems as defined in system requirements.

The check for completeness should be organized not by model elements,
but by the requirements. A reasonable stop criterion for the activity is thus
achieving high coverage of requirements or simply establishing that all
the requirements are met. Conversely, if you work through all the model
elements, you will not be able to see if your model misses parts requested
in the requirements.

One way to make the completeness check concrete and focused, while
producing useful artifacts, is to manually create the instances of the domain
model that witness meeting the requirements. Bentley (1986) recommends:
“Before implementing the language, test your design by describing a wide
variety of objects in the proposed language.” You can use the concrete
cases collected in the domain analysis as an inspiration for some of this
work. The created instances should be saved in the language development
repository as test cases for development of other language aspects. They
will be instrumental in setting up automated tests of the implementation
of static and dynamic semantics, and as oracles for testing the front-end.
They will also enable separate development and testing of the front-end
and the back-end, which is important for parallelizing work: the concrete
syntax developers can use them as oracles for results of parsing, the static
semantics developers and code generator developers can use them as initial
test subjects and so on.

Involving domain experts in the process is an advantage if possible, but
they might prefer to communicate using concrete syntax (see Chapter 4),
so the test with language users may be better done slightly later, or using
concrete syntax mock-ups.

Internal quality of the meta-model. Independently of assessing the extent
to which the meta-model meets the requirements, it is worthwhile to check
the internal quality of the meta-model. We focus on two main criteria:
consistency and parsimony.

Definition 3.4. A meta-model is consistent if it can be instantiated meeting
all constraints of the meta-modeling language semantics. A meta-model
is element-consistent if for each element of the meta-model there exists an
instance in which this element is instantiated.

74 Andrzej Wąsowski. Thorsten Berger

Figure 3.11: A version of the
meta-model for the language

of finite state machines that
is consistent, but not
element-consistent.

Transition

input : EString

output : EString

NamedElement

name : EString

Model FiniteStateMachine

State

root element

[1..1] target

[0..*] machines

[1..1] initial

[0..*] leavingTransitions [1..1] source

[1..1] machine

[1..*] states

Figure 3.11 presents a minor (erroneous) variation of the meta-model for
finite state machines originally presented in Fig. 3.1. Only one property
is changed: the initial reference is turned into a containment (highlighted
in red). This meta-model is consistent, but not element-consistent. It
can be instantiated by creating an instance of the Model class, without
any machines. Instantiating the FiniteStateMachine class is not possible.
Observe, that a FiniteStateMachine object should contain a State object, but
a State object must be contained both in states collection and in the initial
property, which is not possible simultaneously. The meta-model can be
fixed by relaxing the containment constraint or by relaxing the cardinality
(to make both containments optional).

Inconsistency is always a manifestation of an internal quality problem in
a meta-model. An inconsistent meta-model is useless. It defines an abstract
syntax for an empty language. An element-inconsistent meta-model can
only be partially instantiated. It is not useless as a whole, but it has parts
that are useless. Inconsistent elements in a meta-model are like dead code
in programs—most often a manifestation of problems as well.

It is fairly rare that meta-models created by experienced modelers are
inconsistent (or element-inconsistent), but inconsistency errors often show
up in models created by beginners. Thus, you should use consistency
testing also as a way to learn meta-modeling. One group of consistency
errors emerges from the interplay of containment and cardinality constraints
(like in our example). It is also possible to create inconsistencies by
building collections of enumeration values with cardinality constraints
and a uniqueness constraint. For example, there may be not enough values
of an enumeration type to populate a collection with unique elements, and
to satisfy a lower bound on the size. Finally, inconsistency errors can also
arise in an incorrect construction of your partonomy (a disconnected or
circular partonomy)—recall that all meta-classes must be reachable from
the root model class through partonomy links, so they can be part of an
abstract syntax tree.

To test for element-consistency, create minimal instances for each meta-
model element both for classes and for properties, so references and
attributes. Note that even if all classes can be instantiated, this does not
mean that all properties can be populated. This requires an additional

Chapter 3. Domain Analysis and Abstract Syntax 75

check. Each of the minimal instances should start with the root meta-model
instance (the model, the document root, and so on) and add the minimal
amount of other elements to show instantiation for some target meta-class
or property. Obviously, instances created when testing requirements already
prove consistency for many elements, so you only need to add instances for
elements that have not been covered so far. Also, because many model ele-
ments require substantial amount of parent classes, you will need much less
minimal instances than all the meta-model elements. If your meta-model is
modularized, you can also create the test cases separately for each module,
as they are likely to be tested separately later (for instance you might be
testing an expression sub-language implementation, separately from the rest
of the abstract syntax). For small meta-models, this is usually not necessary.
As before, remember to store all the created instances for future use.

If not covered by the examples yet, create a maximal example that tries
to instantiate all elements that you believe should be possible to instantiate
together. In general, there is no guarantee that a single maximal example
exists for every meta-model, as some meta-classes often cannot be instanti-
ated simultaneously, but even if this is the case, it is useful to approximate
it and create a large example, or a small number of such. This maximal
example(s) will constitute a very practical test case for implementation
of the static and dynamic semantics in the other language development
activities. Save them together with other test cases created.

Now, if you created new instances, this means that some elements have
not been directly traced to requirements. This might be a sign that your
meta-model is not minimal (cf. Avoid scope creep, page 68):

Definition 3.5. A meta-model is parsimonious if it contains no meta-classes,
no relations (references, associations) and attributes that do not address
any system requirements for the modeling language.

To ensure parsimony, we recommend a systematic review of all meta-
model elements (classes, attributes, relations) with respect to the language
requirements. Elements introduced overly zealously by the designers should
be removed (or requirements adjusted if they are justified). Finally, we
recommend investigating other bad smells in the design, particularly those
listed in sections 3.6 and 3.4.

The testing process for abstract syntax and meta-models is largely in-
dependent of whether we use a meta-modeling technology (such as class
diagrams and Ecore) or a type modeling technology (such as abstract data
types, ADTs). Inconsistency problems are less likely in ADT modeling,
but still possible. All the other issues apply to both styles. What mostly
changes are the formats in which the instances are saved.

Exercise 3.11. Describe how would you validate the meta-model presented in
Fig. 3.1, so explain how would you make sure that the design is satisfactory. What
test-cases, or other means, and how many would you use? What are the main
properties you want to test a meta-model for?

76 Andrzej Wąsowski. Thorsten Berger

3.9 The Meta-Modeling Hierarchy

Now we know how to describe the abstract syntax of languages using class
diagrams, and since we will do that in a language workbench, let us look
into the typical architectures of such workbenches. The meta-modeling
hierarchy describes the common architecture that all language workbenches
share. As such, its main purpose is to provide a framework that helps
developers of language workbenches to design and implement them.

Let us assume that you are the developer of a new language workbench.
The workbench will need to provide the language engineer with some
means to create a meta-model, so it offers class diagrams, Ecore, MOF, or
some other language that is well-suited to express meta-models (or ADTs).
Let us assume you chose Ecore, so you need to implement a tool that your
language engineers can use to to create Ecore model. Then the language
engineers use the tool to create the Ecore models, an then afterwards they
want to generate the language infrastructure for allowing the language users
to instantiate the language in terms of a model. The language workbench
needs to make sure that this infrastructure supports to only create valid
models. Then, finally, in a running system, which is either an interpreter or
a code generator, the model is loaded in main memory (more precisely, the
heap space) and will be traversed there. So, what we do have is a hierarchy
of models at different levels of abstraction, and the models are related via
references we call instantiation.

Even the very top level, Ecore, is a model itself. While the specification
of Ecore is usually only implicit in the language workbench, it turns out
that one can (retro-actively) provide an Ecore model representing Ecore’s
abstract syntax; likewise, one can provide a MOF model representing
MOF’s syntax, as well as a UML model representing UML’s syntax. One
can even build an Ecore meta-model for the abstract syntax of Scala, or
write Scala ADTs for the abstract syntax of Ecore itself. When we start
to talk about meta-modeling of meta-modeling languages we end up with
a hierarchy of models at different levels of abstraction. This hierarchy is
called the meta-modeling hierarchy.

The meta-model of Ecore. In this section, let us first take a look at the
top of the hierarchy, which is in the case of many Eclipse-based language
workbenches, an Ecore model. We will define (and draw) this model
using Ecore itself. We call this model the Ecore meta-model, since it
defines the Ecore language. Thereafter, we will take a look at the hierarchy
below the Ecore meta-model. Remember that we instantiate it to define
our own language, such as the robotics DSL, the mindmap DSL, or the
FSM DSL. These models are then meta-models themselves, since they
define all possible instances (models) in our language (e.g., the random
walk program from Fig. 2.5 and 2.2 written in our robotics DSL). Given this
hierarchy, from the perspective of models or programs that are instances of
our language, the Ecore meta-model is therefore also often called meta-meta
model. In this section, let us first take a look at the top of the hierarchy,

Chapter 3. Domain Analysis and Abstract Syntax 77

which is in the case of many Eclipse-based language workbenches, an
Ecore model. We will define (and draw) this model using Ecore itself. We
call this model the Ecore meta-model, since it defines the Ecore language.
Thereafter, we will take a look at the hierarchy below the Ecore meta-model.
Remember that we instantiate it to define our own language, such as the
robotics DSL, the mindmap DSL, or the FSM DSL. These models are then
meta-models themselves, since they define all possible instances (models) in
our language (e.g., the random walk program from Fig. 2.5 and 2.2 written
in our robotics DSL). Given this hierarchy, from the perspective of models
or programs that are instances of our language, the Ecore meta-model is
therefore also often called meta-meta model.

Figure 3.12 shows an excerpt of the Ecore meta-model, which is ex-
pressed in the Ecore language itself. In other words, the concrete syntax
of the Ecore language is that of class diagrams, so we use this notation to
draw the Ecore meta-model. The full Ecore meta-model has more than 50
classes. In the figure, we only show the core classes and their relationships;
we also hide many of the attributes and all operations.

As you can see, when instantiating the Ecore meta-model in your own
model, you can use well-known class-modeling constructs. For instance, use
EClass to represent classes in your model, add attributes (by instantiating
EAttribute) or relationships (by instantiating EReference) to it, and organize
your classes in a package hierarchy (by instantiating EPackage). EReference
is a good example of a reified relationship (cf. Sect. 3.4), since relationships
between classes in a model have properties, such as whether the relationship
represents a containment (cf. attribute EReference.containment).

Interestingly, many methods are defined in the Ecore meta-model, in an
apparent contradiction to what we recommended in Sect. 3.4: that meta-
models should not contain operations. Some of these methods realize
derived properties, such as the method EClassifier.getClassifierID. However,
most of these methods belong to the reflective API of Ecore that can be
used when no Java classes are generated from a meta-model. These are to
be used by reflective tools that operate on arbitrary meta-models. In fact,
Ecore can be used completely without using code generation. To this end,
an Ecore model (as a meta-model for a DSL) can be created dynamically at
runtime, instantiated, and then processed (e.g., traversed or modified) using
the reflective Ecore API. Such a runtime instance of an Ecore language is
called a dynamic instance (cf. Appendix B).

The Ecore meta-model of Figure 3.12 has been created post-factum,
after Ecore was already implemented. Of course, the language has to be
implemented before it can be used to describe models (i.e., other languages)
in it. So, the EMF developers first implemented Ecore and then defined
the Ecore meta-model for it using the language. This method is called
bootstrapping, and originates in compiler construction.

Bootstrapping: describing a language in itself. The fact that one can
describe the abstract syntax of a class-modeling language, such as Ecore,

78 Andrzej Wąsowski. Thorsten Berger

EAttribute

iD : EBoolean = false

EClass

abstract : EBoolean = false
interface : EBoolean = false

EClassifier

instanceClassName : EString

EDataType

serializable : EBoolean = true

EEnum

EEnumLiteral

value : EInt
instance : EEnumerator
literal : EString

EModelElement ENamedElement

name : EString

EOperation

EPackage

nsURI : EString
nsPrefix : EString

EParameter

EReference

containment : EBoolean = false
/container : EBoolean = false
resolveProxies : EBoolean = true

EStructuralFeature

changeable : EBoolean = true
volatile : EBoolean = false
transient : EBoolean = false
defaultValueLiteral : EString
/defaultValue : EJavaObject
unsettable : EBoolean = false
derived : EBoolean = false

ETypedElement

ordered : EBoolean = true
unique : EBoolean = true
lowerBound : EInt
upperBound : EInt = 1
/many : EBoolean = false
/required : EBoolean = false

[0..1] eType

[1..1] /eAttributeType

[0..*] eSuperTypes

[0..*] /eAllAttributes

[0..*] /eAllReferences
[0..*] /eReferences

[0..*] /eAttributes

[0..*] /eAllContainments

[0..*] /eAllOperations

[0..*] /eAllStructuralFeatures

[0..*] /eAllSuperTypes

[0..1] /eIDAttribute

[0..*] eExceptions

[0..1] eOpposite

[1..1] /eReferenceType

[0..*] eKeys

[0..1] eContainingClass

[0..*] eOperations

[0..*] eClassifiers

[0..1] ePackage

[0..1] eSuperPackage

[0..*] eSubpackages

[0..1] eOperation

[0..*] eParameters

[0..1] eEnum

[0..*] eLiterals

[0..1] eContainingClass

[0..*] eStructuralFeatures

Figure 3.12: An excerpt of the Ecore meta-model of Ecore. In other words: the meta-model of the eCore language, where the
meta-model is expressed in Ecore itself.

using class modeling itself has actually sometimes led to confusion that
some languages are defined in themselves, for example ’UML defined in
UML’ or ’Ecore is defined in Ecore.’ Such statements are false—circular
definitions of languages are not possible.

The practice of modeling the language in itself could better be called
bootstrapping. Indeed, it is really akin to the practice of programming
language designers, who tend to implement compilers for a new language
in the language itself, as the first serious maturity test. For example, your
favorite Java compiler is most likely implemented in Java. Of course, a
bootstrapped language first needs a compiler or an interpreter implemented
in another language (which already has a compiler or interpreter). Typically
one first implements an interpreter for the core language (say Java) in a
language with existing compiler (say C). Once this implementation works,
one reimplements the interpreter/compiler in Java again, and throws away
the temporary C-based interpreter. Similarly for modeling languages: the
first definition uses an existing language, or simply a natural language de-
scription. The bootstrap-like self-definition comes later, once the modeling
language already exists.

Meta-Modeling levels. The Object Management Group organizes models
and languages in a hierarchy of abstraction layers, also known as the MOF

Chapter 3. Domain Analysis and Abstract Syntax 79

mindmap

EcoreM3

M2

M1

M0

Languages Model Fragments (Examples)

robotics.xmi

objects in memory
(heap space)

...
Sensors : Topic

...
Ultra-Sonic : Topic

topics

TopicMindMap

description : EString

[0..*] subtopicsrelatedTo

[0..*] topics

EClass

EClassifier

EReference

EAttribute

[0..*] eSuperTypes

[0..*] /eAllReferences

[0..1] eOpposite

[0..*] /eAllAttributes

...
Robotics : MindMap

subtopics

Heap

[0..*]

‹‹instanceOf››‹‹conformsTo››

‹‹conformsTo››

‹‹conformsTo››

‹‹representedBy››

‹‹instanceOf››

‹‹instanceOf›› ‹‹instanceOf›› ‹‹instanceOf›› ‹‹instanceOf››

‹‹instanceOf››

‹‹representedBy›› ‹‹representedBy›› ‹‹representedBy››

Figure 3.13: Meta-modeling hierarchy illustrated using Ecore and our mind-map example language

meta-modeling hierarchy. This is exemplified in Fig. 3.13 using our mind-
map language and Ecore as the meta-modeling language. Recall that Ecore
is the de-facto reference implementation of MOF.

In the figure, at the very top level, called M3, we have the Ecore language,
which allows describing class diagrams. Instances of this language are
class diagrams at the level M2. A class diagram describing an abstract
syntax (the meta-model) of the mind-map language belongs here. Note
the conformsTo relations between languages and models, and we use the
instanceOf relations between model elements. On M3, the Ecore language
conformsTo itself. On M2, our mind-map DSL conformsTo Ecore.

One level below at M1, we have a concrete model in the mind-map
language, here shown using a notation of instance specifications, sometimes

80 Andrzej Wąsowski. Thorsten Berger

referred to as object diagrams (so their abstract syntax is shown). The
models at M1 describe concrete mind-map notes; here, a mind-map of some
robotics topics (sensors). It conformsTo our mind-map language.

At the bottom level of the hierarchy, M0, we have the real system,
specifically, the objects that will exist in the main memory (when using Java,
then in the heap space of the virtual machine) at runtime. These objects are
representedBy the models at M1, and these are the objects you will traverse
and process programmatically (as defined by your dynamic semantics). For
instance, when you write an interpreter, you will traverse these objects; or,
when you write a generator or a code transformation, these objects will be
the actual input.

Note that some authors instead say that M0 refers to the ’physical world’
(or the domain) that is represented by the models at M1. One could see it
like that, but we think that this can be confusing, especially since there is not
always a physical world that your model will represent. For instance, what
exactly would a mind-map topic “Sensors” represent? Instead, always keep
in mind that at some point there need to exist real objects in the computer
memory that can be traversed and processed in some way.

Now, for the model layers M1–M3, let us briefly discuss what kind of
syntax is shown. On levels M3 and M2, we use the concrete syntax of Ecore
to show the excerpts of the models—exactly the same way an Ecore model
would be shown in the graphical editor available in the Eclipse Modeling
Framework. On M1, we use the abstract syntax of our mind-map language,
so we show the model as an object diagram. If we would have used a
concrete syntax, it could look like Fig. 3.8 or Fig. 3.9, depending on how
you have designed the concrete syntax.

Figure 3.14 shows the same architecture, but using UML language instead
of Ecore to define the mind-map language. The design of the UML has
actually been the main rationale for organizing this architecture. To formally
define UML, the MOF language was created by OMG. Recall that MOF,
very similar to Ecore, is a very simple class-modeling language that is less
expressive than UML class diagrams. For this reason, it is very usable to
define the abstract syntax of languages, including that of the very complex
UML language with its different sub-languages (class diagram, sequence
diagram, state-machine diagram, etc.). Since then, it has proven very
useful for understanding the layers involved when designing DSLs, like our
mind-map language. To understand the remainder, note that the models in
M1–M3 are all shown in concrete syntax, as opposed to Fig. 3.13, where
M1 was in abstract syntax for convenience reasons.

The UML hierarchy is a bit tricky, though. While on M3, MOF con-
formsTo itself, the entire UML language is in M2 and conformsTo MOF.
Importantly, UML contains conformance of models to meta-models in itself.
So, UML allows you to model both class diagrams and their instances (i.e.,
object diagrams) in the same model. This appears to be in conflict with the
meta-modeling hierarchy: we have types and instances at the same level, or

Chapter 3. Domain Analysis and Abstract Syntax 81

UML

MOFM3

M2

M1

M0

Languages Model Fragments (Examples)

mindmap-robotics.xmi

objects in memory
(heap space)

...
Sensors : Topic

[0..*] topics

...
Robotics : MindMap

Heap

[0..*]

[0..*]

superClass

Class
...

Association
...

InstanceSpecification
...

Class
...

Association
...

MindMap

description: String

Topic

topics

classifier instance-
Specification

[0..*]

BehavioredClassifier
...

Classifier

...isAbstract: Boolean

red : Color

rgbcode = "#ff0000"

Color

rgbcode: String

...

‹‹conformsTo››

‹‹conformsTo››

‹‹conformsTo››

‹‹representedBy››

‹‹instanceOf››
‹‹instanceOf›› ‹‹instanceOf››

‹‹representedBy››

‹‹instanceOf›› ‹‹instanceOf››

‹‹representedBy››

‹‹representedBy››

Figure 3.14: Meta-modeling hierarchy illustrated using UML and our mind-map example language

a language (UML) that stretches over two levels. In the example, we can put
both our mind-map DSL and their instances into level M1. You can see this
as a kind of unification of classes and their instances, which has advantages
that we discuss shortly. The figure actually shows how UML tools are
implemented to support this, using a general language-processing stack,
such as EMF, and this stack is at the same abstraction level as M1. The
key idea is that UML models the instanceOf relation itself, in the language,
while EMF just implements it in its language-processing stack. In other
words, the UML instanceOf relation between a class and an instance (i.e.,
an object) becomes a regular reference (association) in the implementation.

Using this support, the so-called ontological instantiation (explained
shortly), you can use UML to model classes in M1, which are instances
of the UML class Class in M2, and you can model instances (i.e., objects)

82 Andrzej Wąsowski. Thorsten Berger

conforms-to

an xml schema
for example: http://grepcode.com/file/repository.grepcode.com/

java/eclipse.org/3.7/org.eclipse.emf/ecore/2.7.0/
model/EcoreXMI.xsd

xml schema lang
http://www.w3.org/2001/XMLSchema.xsd

M3

M2

M1

M0

Languages Model Fragments (Examples)

an xml file
for example: mindmap.ecore (XMI)

real data
for example: actual mindmap

conforms-to

conforms-to

conforms-to

instance-of

instance-of

instance-of

instance-of

Figure 3.15: Meta-modeling hierarchy illustrated using the XML technology stack

in M1, which are instances of the UML class InstanceSpecification. On
M2, both these classes are associated to each other, see the arrow labeled
classifier and instanceSpecification.

In M1, let us take a look at the instances on the right-hand side. Since
the model is shown in concrete syntax, what you can see is three objects
connected by two links. All of these are actually represented by five objects
in the abstract syntax. If we would show the abstract, syntax, you would
see the five objects. However, the UML specification defines the respective
concrete syntax as follows: If an object is an InstanceSpecification whose
classifier is a Class, then the object is rendered in the typical object notation.
If an object is an InstanceSpecification whose classifier is an Association,
then it is rendered as a link (an arrow that has a label).

In summary, the idea of the meta-modeling hierarchy is that various levels
of meta-modeling can be set at various abstraction levels. For example, a
meta-model of Ecore is very abstract. A meta-model of UML expressed in
MOF is more concrete. A model of a mind-map application expressed in
UML is even more concrete. An instance of that model, an actual mind-map
expressing specific topics, is very concrete.

When you design your own DSL using Ecore, it belongs to level M2,
replacing UML, and concrete models in the DSL are at level M1. It depends
on the concrete project whether they have further instances or not. Usually,
they do not. If you design your DSL using UML, you will most likely need
one more layer.

Linguistic versus ontological instantiation. We have seen how EMF and
UML support the instantiation of meta-models. In EMF, the instance model
is always a different model, whose conformance to its meta-model is assured
via the language-processing stack in EMF. In UML, you can create a meta-

Chapter 3. Domain Analysis and Abstract Syntax 83

model and (parts of) its instances in the same model, since UML supports
conformance as part of its language. The former is called a linguistic, and
the latter an ontological instantiation (Atkinson and Kühne, 2003). The
different approaches in their whole are also referred to as linguistic meta-
modeling and ontological meta-modeling (Laarman and Kurtev, 2009). The
latter is inspired by typical ontology specification languages, such as OWL,
which support modeling both classes (i.e., types) and their instances, called
TBox and ABox statements, respectively (Baader et al., 2003).

Now, what is the benefit of that? Conceptually, we are bringing classes
and their instances to the same level of abstraction. Often, when you pro-
gram (or model) you think about the program (or model) and manipulated
values (instances) simultaneously, so why not modeling them together?
Programming languages allow specifying both algorithms and values. This
need for duality is often needed in modeling DSLs as well. One common use
case is to provide a collection of predefined “runtime” objects in a language.

A useful example can be found in the M1 layer for our mind-map example
in Fig. 3.14. Ignore the objects Robotics and Sensors and assume there
would only be the object red. Remember that above in Sect. 3.7, we
lamented about the missing possibility to pre-define some concrete colors
for our mind-map language, which is not possible in Ecore. In UML, you
can just create some instance specifications for the colors that you want.
Instantiate them with the respective color codes as attribute values. This
way, you define that in the system at runtime these instances need to exist.
You can of course still separate instance models and the definition of our
mind-map DSL, but conceptually, these models reside on the same meta-
level, M1. It is unified in a way that you can just import your meta-model;
you could extend the meta-model or partially instantiate it. This allows
designing more expressive DSLs (Carvalho and Almeida, 2016; Neumayr,
Grün, and Schrefl, 2009; Atkinson and Kühne, 2003; Laarman and Kurtev,
2009; Atkinson and Kühne, 2008).

3.10 A Sneak at XML

We have discussed the meta-modeling hierarchy as established by MOF
and realized using class-diagrams from UML and EMF’s Ecore language.
You are probably familiar with XML together with its related technologies,
such as XSD, XSL, XSL-FO, and so on. These technologies also form a
meta-modeling hierarchy, similar to the one we explained above.

The example in Fig. 3.15 shows the same meta-modeling architecture
as realized by the W3C technology stack for structured data XML. At the
top level, M3, we have the XML Schema Language XSD, which conforms
to its specification in XSD—again, after the language has been designed.
It has been described in itself and the corresponding XSD file has been
published.6 At the M2 level we have XML Schemas for concrete languages.

6http://www.w3.org/2001/XMLSchema.xsd

http://www.w3.org/2001/XMLSchema.xsd

84 Andrzej Wąsowski. Thorsten Berger

Here, we use the XMI language as an example. At the M1 level we have
concrete XML files conforming to the schema of M2. In the example, we
use the mindmap.ecore file that conforms to the XMI schema for model
representation in XML format.

The familiar XML stack has very similar aims to meta-modeling lan-
guages: describing structures and data in a standard manner. The main
differences are that (1) XML documents are not really meant to be processed
by humans, and that (2) XML processing stays largely on the level of strings
or trees. The tools for processing models usually stay at a higher abstraction
level. As we will see in later chapters, models are processed using languages
that support standard object-oriented programming models.

Further Reading

Fowler and Parsons (2011) distinguish domain-models and meta-models, and
similarly to this book, they strongly argue for the use of explicit meta-models
in the design and implementation of DSLs. Meta-models are called semantic models
in their book, and they devote an entire section to the pattern of using semantic
models in language implementations.

The community advocating MDSE and meta-modeling is commonly referred to
as the modelware community. However, as we indicated at various opportunities,
language development is an old discipline and typically centers around grammars
and parsers. That community is commonly called grammarware community. For
members of that community, it might be difficult to understand the concepts
described in this book and used in the modelware community. Paige, Kolovos,
and Polack (2013) provide an introduction into meta-modeling concepts for gram-
marware practitioners. Among others, they motivate the use of a meta-model, which
roughly maps to the concept of abstract data types, but is still a relatively unknown
concept in the grammarware community.

The Meta-modeling hierarchy is described in section 6.2 of the book by Stahl
and Völter (2005). This hierarchy can also be found in the UML 2.5 Infrastructure
Specification from the Object Management Group. However, the entire specification
is not for those of faint heart.

We use the Eclipse Modeling Framework EMF with its language Ecore to
illustrate meta-modeling by example. However, technologies evolve quickly and
therefore our focus is on the underlying concepts of building DSLs, solely using
Ecore for illustrating them. Beyond our quick tutorial on EMF in Appendix B
and the scattered descriptions of EMF specifics in this book, we recommend the
following books to gain in-depth knowledge into EMF: Steinberg et al. (2009),
Budinsky et al. (2004), and Moore et al. (2004).

If you want to hear some background about the origin of EMF and Ecore, together
with some personal reflection on it, it is probably worth reading an interview with
Ed Merks, one of the initiators and main designers of EMF and Ecore at:
https://jaxenter.com/eclipse-modeling-framework-interview-with-ed-merks-100007.html.

https://jaxenter.com/eclipse-modeling-framework-interview-with-ed-merks-100007.html

Chapter 3. Domain Analysis and Abstract Syntax 85

:Model
name = "model"

:FiniteStateMachine
name="fsm"

:State
name="s1"

:State
name="s2"

:Transition
input = "a"
output = null

machines

initial

source

leavingTransitions

target states
Figure 3.16: An example
invalid instance of the FSM
meta-model of Fig. 3.1

Finally, as with many technologies, we recommend poking online, such as at
the respective websites of Wikipedia,7 Object Management Group,8 and EMF9 to
obtain more details about Meta-Modeling, EMF, Ecore, MOF, XMI, and about the
relations between these concepts.

Additional Exercises
Exercise 3.12. Specify an object diagram (a class instance specification diagram)
presenting the abstract syntax tree of the mind-map shown in Fig. 3.9. Limit your
diagram to the root topic (“Class Modeling, Meta-modeling”), the sub-topic “3.
Meta-Modeling,” and two of its sub-topics. Use the meta-model seen in Fig. 3.10.

Exercise 3.13. The object diagram in Fig. 3.16 shows (supposedly) an instance
of the meta-model of Fig. 3.1. What is the problem with this instance? Could it
represent a legal syntax tree? Why? a) Find a conformance error in this instance.
b) Correct the object diagram so that it conforms to the meta-model.

Exercise 3.14. Load the mind-map meta-model into a modeling tool and create
an instance of "Document Root" representing the abstract syntax of the model
shown in Fig. 3.9.

For the purpose of the exercise, assume that topics are represented by blue
boxes in the concrete syntax. Threads are represented by white boxes with a
little blue circle. Thread items are represented by lines branching out of thread’s
blue circle. The mind-map meta-model in Ecore format is available from the
mdsebook.figures project of the book repository.

Exercise 3.15. Figure 3.17 presents a simplified meta-model for SQL queries.
Draw an object instance diagrams representing the abstract syntax trees of the
following queries as instances of this meta-model. You will need to invent a
suitable data model with tables and columns.

a) SELECT NAME FROM CUSTOMER;

7https://en.wikipedia.org/wiki/Metamodeling
8http://www.omg.org/mof
9http://www.eclipse.org/modeling/emf/

mdsebook.figures
https://en.wikipedia.org/wiki/Metamodeling
http://www.omg.org/mof
http://www.eclipse.org/modeling/emf/

86 Andrzej Wąsowski. Thorsten Berger

Figure 3.17: A simple
meta-model for SQL queries

Figure 3.18: A meta-model
for Pascal’s triangle

row 1 1

row 2 1 1

row 3 1 2 1

row 4 1 3 3 1

b) SELECT NAME, PRICE FROM PRODUCT;

Exercise 3.16. Pascal’s triangle (see the left part of Fig. 3.18) is a numeric
hierarchical structure, where each internal node’s value is a sum of the values of
its two parents, one row above.

The right part of Fig. 3.18 presents a meta-model to represent Pascal’s triangles
of different sizes. All numbers are stored in entries nested directly under an
instance of the root class called Triangle. Then additional references are used to
connect nodes to parents and to their next sequential neighbour.

Draw the abstract syntax of the triangle in the left part of the figure as an
instance of the Ecore meta-model in the right side of the figure. To save the time,
only draw the instance for the first three rows (ignore row 4).

Exercise 3.17. Consider the feature model in concrete syntax shown in Fig. 3.19.
Figure 3.20 shows a simplified meta-model for this modeling language. Draw
the abstract syntax of the above feature model as an instance of this meta-model.
In concrete syntax we draw a hollow arc to denote XorGroup and a filled on to
denote OrGroup members. There is only an Xor-group in the instance. Remember
that an abstract syntax tree must have a single partonomy. More information
about feature models is available in Chapter 8.

Chapter 3. Domain Analysis and Abstract Syntax 87

car

transmission aircon

auto manual

Figure 3.19: A simple
feature model in concrete
syntax

Figure 3.20: A meta-model
for feature diagrams

Figure 3.21: An alternative
meta-model for
feature-models

Exercise 3.18. Draw the abstract syntax of the feature model of Fig. 3.19, as an
instance of an alternative meta-model for feature diagrams shown in Fig. 3.21.

88 Andrzej Wąsowski. Thorsten Berger

Figure 3.22: An example
graph in a hypothetical

concrete syntax

1 vertex 1;
2 vertex 2;
3 vertex 3;
4 edge 1->2 [coin];
5 edge 2->4 [coffee];
6 edge 3->1 [deliver]

Exercise 3.19. A simple meta-model for feature diagrams is presented in Fig. 3.20.10

Extend this meta-model so that it supports excludes and requires constraints. After
the extension it should be possible to state in the syntax of the modeling language
that some feature requires another feature, or some feature excludes the use of
another feature. For instance:

electric requires automaticTransmission

diesel excludes hybrid

Exercise 3.20. The meta-model of Fig. 3.21 does not allow representing optional
features. Fix the meta-model by modifying the diagram so that it can represent
the distinction between optional and mandatory features.

Exercise 3.21. An HTML document consists of a header and a body. The header
has a property ‘title’ of type string. The body is a nested tree of elements and
text chunks containing strings of characters. Elements can nest other elements
and other chunks of text underneath. Text chunks cannot nest anything. Only two
types of elements are allowed: paragraphs (p) and divions (div).

Design a meta-model representing documents in this subset of HTML. Consider
adding anchors and anchor references to your meta-model. The exercise makes
sense if you use either Ecore or ADTs for modeling. If you do both, compare the
differences and similarities.

Exercise 3.22. Consider a simple modeling language for describing labelled
directed graphs. An example, in concrete syntax, is shown in Fig. 3.22. A
graph consists of a number of vertex declarations, each naming a vertex with an
integer number, and a list of edge declarations, each relating to vertices with an
optional label (a character string). Design an Ecore meta-model (or ADTs in your
functional programming language of choice) for representing such models.

Exercise 3.23. Consider a simplified variant of the Google protocol buffers DSL
(Chapter 1.2). We use a simplified language in this task: a model consists of a
number of message types. Each message type has a number of attributes and a
name. Each attribute has a name and a type (another message type), and a Boolean
property specifying whether the attribute is optional or mandatory. Present an
Ecore meta-model, or a set of ADT definitions, for the language described above.

Exercise 3.24. Consider the following domain: describing very simple class
specifications. Each class has a name; a class can be abstract or concrete; and a

10Feature models are discussed in detail in Chapter 8

Chapter 3. Domain Analysis and Abstract Syntax 89

1 abstract class HasOptions {};
2 abstract class NamedElement {};
3 abstract class Question extends NamedElement {};
4 class MultipleChoice extends Question, HasOptions {};
5 class SingleChoice extends Question, HasOptions {};

Figure 3.23: An example
model in a hypothetical
concrete syntax

[A]FeatureGroup

OrGroup XorGroup Figure 3.24: A simple class
diagram

class may extend several other classes (multiple inheritance). Figure 3.23 shows
an example model in concrete syntax. Design an Ecore meta-model able to
represent abstract syntax of such models.

Exercise 3.25. Describe the AST of the language of the previous exercise using an
ADT instead of class diagrams (use a suitable language like Haskell, F#, or Scala).

Exercise 3.26. A simplified XML document is a tree of elements. Each element
has a name, a list of parameters, and a list of nested elements. Each parameter
has a name and a value of type string. Design a meta-model representing XML
documents from this simplified XML dialect. Note, that this is meant to be done
for XML as a language, not for a particular XML dialect.

Exercise 3.27. Now, design a meta-model (a schema!) for an XML dialect known
to you. Explain the main difference between this meta-model and the meta-model
of the previous exercise.

Exercise 3.28. Draw (on paper) the partonomy and taxonomy views for the meta-
model of Ecore (Fig. 3.12).

Exercise 3.29. Consider the simple class-diagram in Fig. 3.24, which (inciden-
tally) shows a fragment of a meta-model for feature diagrams. Draw the abstract
syntax tree of this diagram as an instance of the simplified Ecore presented in
Fig. 3.25.

Exercise 3.30. Figure 3.26 depicts a simple Ecore class-diagram (incidentally) de-
scribing a fragment of a meta-model for state machines. Draw the abstract syntax
tree of this diagram as an instance of the Ecore meta-model shown in Fig. 3.25.

Exercise 3.31. Figure 3.27 presents a fragment of a meta-model for modeling
relational schema. Draw the abstract syntax of this diagram as an instance of
the Ecore meta-model in Fig. 3.12. In the abstract syntax include classes, gener-
alizations, references, and properties such as abstract, containment, cardinality
constraints (upper and lower bound) and names.

90 Andrzej Wąsowski. Thorsten Berger

Figure 3.25: A subset of the Ecore meta-model

Figure 3.26: An
over-simplified meta-model

for state machines

FiniteStateMachine State
states

1..∗

Figure 3.27: A tiny
meta-model for relational
data (entity-relationships

diagrams)

Only show the part of the abstract syntax that partains to what is in Fig. 3.27
(so ignore that it could be contained in a package, etc).

Exercise 3.32. The meta-model of Ecore shown in Fig. 3.25 is itself an Ecore
model. Thus it can be presented as an instance of itself obtaining a kind of
boot-strapping. We attempt to understand this idea on a small part of Fig. 3.25.
Consider the part shown in Fig. 3.28.

Draw the abstract syntax of the diagram in Fig. 3.28 as an instance of the Ecore
meta-model in Fig. 3.25. In the abstract syntax include classes, generalizations,
references, and properties such as abstract, containment, and names.

Only show the part of the abstract syntax that pertains to what is in Fig. 3.28 (so
ignore that it could be contained in a package, have other properties, cardinalities,
etc.).

Chapter 3. Domain Analysis and Abstract Syntax 91

Figure 3.28: A fragment of
the Ecore meta-model

Exercise 3.33. Recall that Ecore supports bidirectional associations only indi-
rectly (see Appendix A.4). It uses the EOpposite property to relate two inverse
unidirectional references. Study the Ecore meta-model (Fig. 3.12) and explain
how bidirectional references are represented in abstract syntax. Draw abstract
syntax for a simple object diagram showing two classes related by a bidirectional
references.

Exercise 3.34. This exercise can be solved after reading Chapter 5. Use your
favorite meta-modeling mechanism to design a meta-model for Alloy instances,
like those shown in Fig. 5.14 on page 185. See also Exercise 4.57 on page 150.

References
Atkinson, Colin and Thomas Kühne (2003). “Model-driven development: a meta-

modeling foundation”. In: IEEE software 20.5, pp. 36–41.
– (2008). “Reducing accidental complexity in domain models”. In: Software &

Systems Modeling 7.3, pp. 345–359.
Baader, Franz et al. (2003). The description logic handbook: theory, implementation

and applications. Cambridge University Press.
Bentley, Jon (Aug. 1986). “Programming Pearls: Little Languages”. In: Commun.

ACM 29.8, pp. 711–721. ISSN: 0001-0782. DOI: 10.1145/6424.315691. URL:
http://doi.acm.org/10.1145/6424.315691.

Budinsky, Frank et al. (2004). Eclipse Modeling Framework. Addison-Wesley.
Carvalho, Victorio A. and João Paulo A. Almeida (June 2016). “Toward a well-

founded theory for multi-level conceptual modeling”. In: Software & Systems
Modeling. ISSN: 1619-1374.

Ernst, Johannes (2002). What is metamodeling and what is it good for? http://infogrid.
org/wiki/Reference/WhatIsMetaModeling.

Fowler, Martin and Rebecca Parsons (2011). Domain-Specific Languages. Addison-
Wesley.

Gitzel, Ralf and Tobias Hildenbrand (Apr. 2005). A Taxonomy of Metamodel
Hierarchies. URL: https://madoc.bib.uni-mannheim.de/993/.

Group, Object Management (2015). Metadata Interchange (XMI) Specification.
URL: https://www.omg.org/spec/XMI.

Kang et al. (1990). Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Tech. rep. CMU/SEI-90-TR-21.

https://doi.org/10.1145/6424.315691
http://doi.acm.org/10.1145/6424.315691
http://infogrid.org/wiki/Reference/WhatIsMetaModeling
http://infogrid.org/wiki/Reference/WhatIsMetaModeling
https://madoc.bib.uni-mannheim.de/993/
https://www.omg.org/spec/XMI

92 Andrzej Wąsowski. Thorsten Berger

Karsai, Gabor et al. (2009). “Design Guidelines for Domain Specific Languages”.
In: 9th OOPSLA Workshop on Domain-Specific Modeling. URL: http : / /www.
dsmforum.org/events/DSM09/Papers/Karsai.pdf.

Kelly, Steven and Risto Pohjonen (2009). “Worst Practices for Domain-Specific
Modeling”. In: IEEE Software 26.4, pp. 22–29.

Krahn, Holger, Bernhard Rumpe, and Steven Völkel (2010). “MontiCore: a frame-
work for compositional development of domain specific languages”. In: In-
ternational Journal on Software Tools for Technology Transfer (STTT) 12.5,
pp. 353–372.

Krasner, Glenn E, Stephen T Pope, et al. (1988). “A description of the model-view-
controller user interface paradigm in the smalltalk-80 system”. In: Journal of
object oriented programming 1.3, pp. 26–49.

Laarman, Alfons and Ivan Kurtev (2009). “Ontological metamodeling with explicit
instantiation”. In: International Conference on Software Language Engineering
(SLE).

Moore, Bill et al. (2004). Eclipse development using the graphical editing framework
and the eclipse modeling framework. IBM Redbooks.

Neumayr, Bernd, Katharina Grün, and Michael Schrefl (2009). “Multi-level Domain
Modeling with M-objects and M-relationships”. In: Proceedings of the Sixth
Asia-Pacific Conference on Conceptual Modeling - Volume 96. APCCM ’09.

Paige, Richard F, Dimitrios S Kolovos, and Fiona AC Polack (2013). “Meta-
modelling for Grammarware Researchers”. In: 5th International Conference
on Software Language Engineering (SLE).

Stahl, Thomas and Markus Völter (2005). Model-Driven Software Development.
Wiley.

Steinberg, David et al. (2009). EMF: Eclipse Modeling Framework, 2nd Edition.
Addison-Wesley Professional.

Wile, David S. (2004). “Lessons learned from real DSL experiments”. In: Sci.
Comput. Program. 51.3, pp. 265–290.

http://www.dsmforum.org/events/DSM09/Papers/Karsai.pdf
http://www.dsmforum.org/events/DSM09/Papers/Karsai.pdf

4 Concrete Syntax

Parser development
is still a black art

(Klint, Lämmel, and Verhoef, 2005)

Models and meta-models, algebraic data types and values, XML schema
and files, class and instance diagrams, YAML files—all these abstract
syntax specification methods are clearly important for you as a language
designer. At the same time, the end users, especially domain experts who
are not programmers, tend to find them unnatural and cumbersome to use.
An important part of a domain specific language design is to choose a
natural and easy to use concrete syntax, so that users can work efficiently.

In this chapter, we define what is concrete syntax, and detail how to
create syntax that is easy to read and write for the language users, remaining
understandable and maintainable for the language designers. We discuss
specification mechanisms (context-free grammars and regular expressions),
design guidelines for textual syntax and quality assurance. Graphical syntax
is the subject of ??. However, we try to limit the theoretical considerations
to bare minimum. We hope that with this chapter we can actually meet
the wishes of Klint, Lämmel, and Verhoef (2005) expressed in the paper
quoted on the top of this page: demystify creation of parsers, showing and
systematizing how grammars are written. The chapter contains examples,
case studies, exercises, but also many practical rules and guidelines on
how to arrive at a good design of concrete syntax, expressed in a robust
grammar.

4.1 Concrete and Abstract Syntax

Figure 4.1 shows a model of a finite state machine in three different rep-
resentations. The well known graphical concrete syntax is found in the
bottom left, repeated from Table 3.1. Meant for human consumption, it uses
graphical elements (e.g. arrows) on top of characters, to represent the model.
An object-oriented abstract syntax of the very same model is shown in the
top, repeated from Fig. 3.3. Finally, the bottom right part of the figure brings
the very same model in a textual concrete syntax, a text-based representation
aiming at human readers. Textual representations tend to be the easiest user-
oriented representations to define and implement. Users–engineers prefer
them over graphical ones, if large models need to be created or inspected
manually. This chapter focuses on defining such textual concrete syntax,
and on parsing it to obtain the corresponding abstract syntax.

Let us state explicitly the definition suggested above:

93

94 Andrzej Wąsowski. Thorsten Berger

target

sourcesource

target

source

target

target

source

initial

: Transition

input="sendEmail?"
output="sendErr!"

: Transition

input="sendEmail?"
output="sentOK!"

: Transition

input="login?"
output="credentialsOK!"

: Transition

input="login?"
output="authErr!"

: State

name="S1"

: State

name="S0"

machines

: Model

name="simple"

: FiniteStateMachine

name="simple FSM"

states

leavingTransitions

leavingTransitions

leavingTransitions

leavingTransitions

states

S0 S1

login? / credentialsOK!

sendEmail? / sentOK!

sendEmail? /
sendErr!

login?
/ authErr!

1 machine "simple FSM" [
2 initial S0
3 state S0 [
4 on input "login" output "credentialsOK" and go to S1
5 on input "login" output "authErr" and go to S0
6]
7 state S1 [
8 on input "sendEmail" output "sendErr" and go to S1
9 on input "sendEmail" output "sendOK" and go to S0

10]
11]

Figure 4.1: A state machine model in abstract syntax (top), concrete graphical syntax (bottom left), and in concrete textual
syntax (bottom right). Convince yourself that the three representations indeed capture the same model

Definition 4.1. Concrete syntax is a representation of the model that is seen,
produced, and manipulated by the language user. Concrete syntax is called
graphical if it uses drawn elements (typically lines, arrows, geometrical
shapes or icons). It is called textual if it is written as text, in a character set
available in the model editor.

Why these names? Why abstract and why concrete? The abstract syntax ab-
stracts away the visual aspects, including the linear or graphical layout that
encode the model structure. For example, in Fig. 4.1 the instance diagram
does not contain any information on how transition arrows are routed, what
is the color and size of the state ovals, and where the labels are physically
placed. Nor does it store the order of transitions in the textual version.
The square brackets have been replaced by association links in the instance
diagram. The link labeled leavingTransitions represents the same information
as the fact that an arrow is sourced in a state oval, or that a line between is
placed between square bracket section of a state in the textual syntax.

A careful reader notices a paradox in Fig. 4.1: the instance diagram on
top shows lots of concrete information, even though it presents the abstract
syntax of a state machine. It has its own arrows, lines, boxes, and labels.
This is because it is drawn in a concrete syntax of another language, the
UML instance specification diagrams. Otherwise, you would not be able
to see it! Indeed, we have no way to show the abstract syntax on paper
or screen—it only exists abstractly, as objects and values during program

Chapter 4. Concrete Syntax 95

Instances vs Specifications for Concrete and Abstract syntax
In Sect. 3.9 we were extremely careful to specify conformance levels between elements of languages
and models. We have distinguished meta-models, defining abstract syntax of all possible models in the
language, and instances defining abstract syntax of a particular model. We should admit that in daily
communication, and also in this book, we will often just write abstract syntax without specifying if
we refer to the entire language (meta-model or types) or to a specific model (objects or values). The
meaning should typically be clear from the context.

execution. Whenever we want to make abstract syntax visible for human
eyes, we need to write it down in some notation, using some concrete syntax.
Therefore, a human-readable syntax is useful, not only if we have to write
models, but also whenever models are not written by humans, created and
processed completely automatically, but need to be read by humans for
example for debugging and monitoring.

Exercise 4.1. Revisit the examples of abstract and concrete syntax in Fig. 4.1.
Explain how the following changes to the model affect each of the three represen-
tations:

a) Make state S1 initial in this machine.
b) Add a new transition from S1 to S0 with input “reset” and output “initialized.”
c) Rename state S0 to S2. Be sure that you indicate all places where the changes

need to be made. How many places need to be changed in the abstract syntax?
How many places need to be changed in the textual concrete syntax?

4.2 Defining Concrete Syntax

We seek a way to recognize concrete syntax in order to distinguish the cor-
rect programs from the incorrect ones, and to translate them to an abstract
syntax, a form easy to handle for tools. To get there we need a precise
and unambiguous definition of the concrete syntax, completing the loose
English requirements collected during domain analysis. In order to explain,
how such definitions are made, we first need to put a few basic concepts on
the table. This short section recalls the basic theoretical underpinnings of
concrete syntax definitions, leaving the practical applications to later pages.

Lexical and syntactic structure of program text. It is useful to split the
concrete syntax into two layers, traditionally called lexical and syntactic.
The lexical structure defines what are the legal words in the language,
for instance: How does a string literal look? What are the available
ways to write numbers? What are the keywords and operators in the
language? The syntactic structure defines how the words can be connected
into understandable sequences, analogous to sentences in natural languages.
For instance, that a variable declaration consists of a type name, followed
by an identifier, and an initializer.

96 Andrzej Wąsowski. Thorsten Berger

Definition 4.2. The lexical structure determines what terms (also known as
words, tokens, lexemes) are legal in a language. The syntactic structure
defines in what order the terms (words, tokens) can appear in a model.

Let us define the lexical structure of the FSM language (Fig. 4.1, bottom
right) as follows:

Example 9. The keywords are: machine, initial, state, on, input, output,
and, go, and to. String literals are any sequence of characters not containing
double quotes, surrounded by double quotes. Identifiers (state names) start
with a letter followed by a sequence of letters and digits. Square brackets are
used to denote nesting of states and machines. White space has no meaning in
this language, except that it is used to separate tokens.

The syntactic structure of this language can be summarized as follows:

Example 10. A model begins with a keyword machine followed by a string
literal, an opening bracket, and a closing bracket. State definitions are placed
between the brackets. A state definition is either a declaration of initial state, or
a proper state definition. A declaration of initial state consists of the keyword
initial followed by an identifier. A proper state definition consists of a
keyword state followed by an identifier and a pair of square brackets. Tran-
sition definitions are placed between the brackets. Each transition definition
starts with keywords on input followed by a string literal, a keyword output,
followed by a string literal, followed by keywords and go to, followed by an
identifier (a target state name).

Ouch! This was quite hard to read! We definitely need a better way to
express specifications like the above. Writing them in English seems very
cumbersome. We normally do not. Still, being able to describe syntax
in natural language is a useful skill. It shows that you can conceptualize
syntax, it makes formalization easier, and helps to explain the language
to fellow developers. Thus if you have no prior experience with defining
syntax, it makes sense to try this on several examples.

Exercise 4.2. Following the style of the FSM example above, describe the lexical
and syntactic structure of a part of the Google Protocol Buffers language. Use the
fragment of the language visible in Fig. 1.4 on page 6.

The software language engineering community agrees that the concrete syn-
tax should be specified using regular expressions (for the lexical structure)
and formal grammars (for the syntactic structure). Regular expressions
seem to capture most of the necessary constraints for tokens in software
languages, and grammars do the same for syntactic structure. We briefly
recall the essence of both formalisms below.

Chapter 4. Concrete Syntax 97

Regular expressions. You are probably familiar with regular expressions
from scripting languages, web programming practice or advanced search
facilities in development editors. Regular expressions found in real lan-
guages and tools tend to be complex and rich. The good news is that a tiny
fully expressive core hides inside that has it all. It turns out that there are
only three operators in the core language! It is useful to appreciate this
minimal core language to internalize the limitations and use cases of regular
expressions.

Regular expressions are defined given a fixed finite set of characters, an
alphabet. In modern practice, this set of characters is typically a variant
of Unicode. However, since regular expressions can be used to describe
other things than program text, let us just assume that we use a finite set Σ

of unknown symbols.

Example 11. Binary numbers are numbers that are written using only two
digits: zero (0) and one (1). We will write a regular expression defining what
is a syntax of a binary number. For this example, we take the alphabet to be
all letters and digits:

Σ = {0, . . . ,9,a, . . . ,z} ,

although we will only use the first digits in our expression. Other characters
might be used in describing other tokens of our language.

Do not get discouraged by the abstract nature of this example. We chose
binary numbers mostly because zeroes and ones are easy to write on paper.
Nevertheless, binary patterns have many applications. Imagine instead that we
are designing a language where we want to describe Morse code messages. A
zero may represent a short tone and one may represent a long tone. A token in
our language can represent a coded letter. Or consider a computer game, where
users are allowed to define their own textures to create new tiles. One possible
texture definition is via monochromatic patterns. A token of zero-ones could
represent an alternation of black and white points in the texture.

The regular expression 0 represents a word consisting just of zero, and
the expression 1 represents a word consisting just of the digit one. A single
symbol from the alphabet Σ is a regular expression and it means a string
that contain exactly one symbol, this digit. Below, we use the double square
brackets to denote the meaning of an expression. Note that a meaning of a
regular expression is a set of tokens (strings), so the meaning of 0 is a set
containing a single-character string with zero:

J0K ={”0”} (4.3)

J1K ={”1”} (4.4)

We write ε to represent an empty (zero-length) word that contains no char-
acters. This might sound weird at first, but an empty word is rather useful.
It may for example represent an empty pattern texture (which could mean
transparency in our game). It is also useful for keeping the regular expression
notation small, as it allows deriving many interesting constructs (see below).
In practical implementations ε is typically written as “nothing” (no character),

98 Andrzej Wąsowski. Thorsten Berger

but in the definition below we will write it out explicitly for clarity.

JεK = {””} (4.5)

We can build more complex expressions to describe longer words or tokens
by concatenating simpler expressions sequentially. For instance, 00001111
represents the word of four zeros followed by four ones, 01 may represent
the letter A in Morse code, and 00000000 can represent a completely black
fragment of a texture in our game.

J00001111K = {”00001111”} (4.6)

J01K = {”01”} (4.7)

J00000000K = {”00000000”} (4.8)

Languages using only one possible term are not interesting. In our example,
we need to describe not a single token, but any binary number. To describe
bigger sets of tokens, we can combine simpler expressions with the alternative
operator denoted by the pipe symbol. For example, ε | 01 | 1000 means a set
of three tokens (in Morse code: no letter, letter A, or B):

Jε | 01 | 1000K = {””,01”,”1000”} (4.9)

Even with the alternative operator, we can only describe finite numbers of
tokens. Worse, our regular expressions are as large the languages they describe.
We cannot possible list all binary numbers in a single expression! We need an
iteration constructs to define larger sets. This is a task for the Kleene closure
operator, denoted with a post-fix plus sign. An expression 1+ means any
non-empty sequence of 1s (a unary number). We describe a binary number
by combining the Kleene closure with alternative: (1 | 0)+. The meaning of
the two expressions is:

J1+K = {”1”,”11”,”111”, . . .} (4.10)

J(0|1)+K = {”0”,”1”,”00”,”01”,”10”,”11”, . . .} (4.11)

Let us gather the constructs in a formal definition of the notation of regular
expressions:

Definition 4.12 (Syntax of Regular Expressions). Let Σ be a finite alphabet
and let ε denote the empty sequence. Then

Base case (simple expressions):

ε is a regular expression

a is a regular expression for any symbol a ∈ Σ

Let r, s be regular expressions. Then (inductive case):

r |s is a regular expression (alternative or union)

rs is a regular expression (concatenation)

r+ is a regular expression (Kleene closure)

Chapter 4. Concrete Syntax 99

A regular expression generates a set of tokens over alphabet Σ according to
the following rules:

Definition 4.13 (Semantics of Regular Expressions).
Base case (simple expressions):

JεK = {ε}
JaK = {a} for any a ∈ Σ

Inductive case (composite expressions):

Jr |sK = JrK∪ JsK (alternative or union)

JrsK = {vw | v∈JrK∧w∈JsK} (concatenation)

Jr+K = {v1...vn | vi∈JrK,1≤ i≤n,n∈N} (Kleene closure)

The first inductive case in Def. 4.13 says that the generated language
contains any word generated either by r or s. The second case means that
the generated language contains languages created by concatenating any
word from the language generated by r with any word from the language
generated by s. The last case, the Kleene closure, should be read as follows:
the generated set contains words created by concatenating any positive
number of words from the language generated by r.

It turns out that the above definition is complete—It defines regular
expressions able to generate any regular language, so any language recog-
nized by finite automaton. If you are interested more about its theoretical
properties, please refer to a more foundational text on theory of automata
(for example Hopcroft, Motwani, and Ullman (2001)). For us, this simply
means that we can define essentially any relevant token using the above
constructs. Try the following exercise:

Exercise 4.3. Write a regular expression defining binary numbers without (left)
leading zeroes. The only binary number with leftmost zero allowed is zero itself.
Only use the regular expressions operators introduced above. Positive examples:
0, 10, 11, 10101011; Negative examples: 00, 01, 011, 0000000

Table 4.1 lists several examples of extensions1 to regular languages known
from scripting languages and other operating systems tools. Moreover, it
shows that these are, in fact, syntactic sugar of our simple core subset; they
allow to write more conveniently things already possible in the language of
Def. 4.12. Syntactic sugar is of course important for users, and when you are
defining the lexical structure of languages, you definitely want to use such
extensions. Similarly, you want to add convenience syntax to your own lan-
guage, thus we will return to adding syntactic sugar to your language below.

Context-free grammars. We shall use context-free grammars (CFGs) to
describe syntax of correct models in a DSL. A specification of concrete
syntax shall facilitate translation from textual input to abstract syntax

1See for instance https://www.regular-expressions.info/posixbrackets.html, accessed 2019/08

https://www.regular-expressions.info/posixbrackets.html

100 Andrzej Wąsowski. Thorsten Berger

Figure 4.2: A decomposition
of the abstract syntax

instance shown in the top of
Fig. 4.1. Convince yourself
that it is an instance of the

partonomy of Fig. 3.4

: Transition

input="login?"
output="credentialsOK!"

: Transition

input="sendEmail?"
output="sendErr!"

: Transition

input="sendEmail?"
output="sentOK!"

: Transition

input="login?"
output="authErr!"

: State

name="S1"

: State

name="S0"

machine

: Model

name="simple"

: FiniteStateMachine

name="simple FSM"

states

leavingTransitions

leavingTransitions

leavingTransitions

leavingTransitions

states

trees. Yes, the core structure of any abstract syntax representation is a
tree (cf. Fig. 4.2). Intuitively, since we need to create trees, we need a
formalism that will be able to “see” the input as trees.

There is a tree in disguise in most structured computer text, a model,
or a program. The most obvious tree structure is given by nesting of
parentheses. For example, in Fig. 4.1 (bottom right), square brackets show
that transitions are nested in states and that states are nested in machines.
Another kind of nesting is defined by property–object relationships. In the
figure, a machine has a name, transition has an input, an output, and a target
state; so properties are nested under the larger objects.

How can we describe trees hiding in the textual input? We do this
inductively! We define what are the leaves (the base case) and what are the
inner nodes—for each node type we say what are the possible children (the
inductive case). Grammars are exactly the formalism that allows to describe
such an inductive generation of trees. Consider the example below.

Example 12. Let us develop an intuition how grammars capture program text
by analyzing syntax of arithmetic expression, a small language with a rather
natural inductive structure. Assume that expressions can be written with use
of variable names, and two operators: multiplication (∗) and addition (+), for
example x+ y ∗ z. This expression is captured by the following expression
tree. You have probably seen similar expression trees in primary school, not
realizing that they were abstract syntax trees:

Table 4.1: Examples of
syntactic sugar extensions of

regular expressions

Operator name Expression Expansion

optional r? r|ε

Kleene star r∗ r+|ε

character range [a− zA−Z] a | · · · | z | A | · · · | Z

alphanumeric symbol [: alnum :] [a–zA–Z0–9]

Chapter 4. Concrete Syntax 101

1

3 2

3 3
Figure 4.3: An abstract
syntax tree for the expression
x+ y∗ z, an informal
notation. Numeric labels
indicate a possible derivation
order, explained below

In the figure, the leaves are drawn as poker tokens to emphasize that the basic
elements in our grammatical statements are lexical tokens, defined by regular
expressions. Observe that the tokens, ordered from left to right form the
original expression x+ y∗ z.

How do we specify what arrows should we draw to form the tree on top of
the tokens? First, look at the unary nodes (nodes with only one outgoing arrow).
In this example, they all happen to be basic nodes, pointing to leaves. We can
capture this in a grammar by saying that an expression can be an identifier:2

expr→3 ID , (4.14)

where expr stands for a piece of text that is an expression, and ID means a
token representing a variable name (an identifier).

What about the two remaining ternary nodes? For them we have to specify
the branching: what three components are allowed to be nested under them.
It turns out that we have two kinds of them, one for addition, and one for
multiplication. Each allows first a left-subexpression, then an operator token,
and a right subexpression:

expr→2 expr ’*’ expr (4.15)

expr→1 expr ’+’ expr (4.16)

Note how this structure with nesting subexpressions (instead of identifiers di-
rectly) allows us to represents larger and larger expressions inductively. For ex-
ample, the same rules can be used to generate a sum of sums of multiplications.

The above three rules allow us to generate arbitrary expression trees in
the language of arithmetic expressions with addition and multiplication. The
keyword are to generate or to derive, as we apply the rule from left to right,
creating longer and longer strings. Here is an example of a derivation, with
labels on arrows denoting which rule has been applied (they also correspond
to the labels in Fig. 4.3):

102 Andrzej Wąsowski. Thorsten Berger

expr→1 expr ’+’ expr

→2 expr ’+’ expr ’*’ expr

→3 expr ’+’ expr ’*’ ID

→3 expr ’+’ ID ’*’ ID

→3 ID ’+’ ID ’*’ ID (4.17)

In the above, we always expand the rightmost occurrence of expr using one
of our rules, as labelled on the arrow. If you start drawing the tree in the
same order, you will obtain the same image as in Fig. 4.3. Such a sequence
of expansion steps, is called the right-most derivation of the string of tokens.

We define context-free grammars for a fixed finite set of symbols denoted
T (for ’tokens’). In grammars, the basic symbols are entire tokens, unlike
in lexical specifications where they tend to be characters:

Definition 4.18 (Syntax of Context-Free Grammars). Let T be a finite set of
terminal symbols (tokens), and let N be a finite set of non-terminal symbols
(syntactic categories).

A grammar production rule, or a production for short, is a pair of a
non-terminal symbol n ∈ N and a sequence σ of terminal and non-terminal
symbols σ ∈ (N ∪ T)∗. We typically write a production (n,σ) using an
arrow, emphasizing that the sequence σ can be derived or generated from
the non-terminal n:

n→ σ .

A context-free grammar (CFG) over sets of terminal (T) and non-terminal
(N) symbols is a set of production rules over T and N, with a dedicated
start non-terminal s ∈ N.

In other words, to write a grammar, we we need to choose a set of tokens
and specify left-to-right productions generating strings of these tokens. The
meaning of the productions, so which language do they define, is explained
in the semantics of context-free grammars:

Definition 4.19 (Semantics of Context-Free Grammars). Assume that s
is a start non-terminal of a context-free grammar G, with a production
relation→⊆ N×T . Then the grammar G generates a language of words
(sequences) over the alphabet of terminals T as follows:

JGK = {w ∈ T ∗ | s→∗ w} (4.20)

where→∗ denotes a reflexive transitive closure of relation→.

2For the time being, ignore that we need to distinguish precisely what identifier we are seeing.
We will come back to this in ??

Chapter 4. Concrete Syntax 103

The Unusual Past of Formal Grammars
Noam Chomsky (born 1928) is an American linguist, philosopher, and
political activist. Chomsky created a formal theory of transformational
generative grammars to understand natural languages. As a linguist, Chomsky
was not particularly interested in programming and modeling languages—he
studied the structure of natural languages used by people to communicate.
Chomsky defined a hierarchy of increasingly expressive ways to specify
languages using grammars, known today as Chomsky’s Hierarchy. The least
expressive languages in the hierarchy are the regular languages (generated
by familiar regular expressions). Context-free languages (generated by
context-free grammars) take the second level, followed by context-sensitive
languages, and recursively enumerable languages. This work was published
in a highly influential volume Syntactic Structures (Chomsky, 1957).

Today, Chomsky’s work remains one of the foundations of theoretical computer science, while the
specification formalisms he introduced are the staple of software language engineering work.

In simple words, the language JGK defined by the grammar G contains
all the models that can be created by expanding the start symbol by re-
peated application of production rules, until all non-terminal symbols are
eliminated.

Why do we call these grammars “context-free”? Recall the format of
the grammar rules: a production is applied to any non-terminal symbol
in a sequence, without taking into consideration its context. In Example
4.30, we expanded rules 1–3 without considering what precedes and what
follows the non-terminal expr. We always choose just one terminal at a time,
and expand it by substituting the right hand side of the production. There
exist more complex, context sensitive, grammars where the productions are
applied by considering in what surrounding the expanded non-terminal is
placed. These grammars are rarely used in language engineering.

Exercise 4.4. Consider again the grammar for arithmetic expressions used above:

expr→2 expr ’*’ expr expr→1 expr ’+’ expr expr→3 ID .

Add two terminals, representing the opening and closing parentheses: ’(’ and
’)’. Extend the grammar to handle parenthesized expressions. How many rules
do you need to add?

Exercise 4.5. Consider the following context-free grammar (small letters denote
non-terminals, quoted letters terminals, ε the empty string, and n is the start
symbol):

n→1 ’a’ ’c’ b b b→2 ’x’ b ’x’ n→3 b b ’a’ ’c’ b→4 ε .

104 Andrzej Wąsowski. Thorsten Berger

Does the word ’acxxxac’ belong to the language generated by this grammar?
Argue why not, or show a derivation of the string from the start symbol.

So far, we have strictly separated the use of grammars and regular expres-
sions: We used regular expressions to define tokens (the lexical structure)
and the grammars to define the overall syntax. However, both in practice,
and in theory these two notations, are overlapping significantly. As noted
in Chomsky’s Hierarchy (info box on p. 103), every regular language is
a context-free language. This means that we can rewrite every regular
expression over an alphabet Σ to a context-free grammar with Σ being the
set of terminal symbols. Can you?

Exercise 4.6. Translate the regular expression from Exercise 4.3 (p. 99) to a
context-free grammar. If you skipped that exercise, simply write from scratch
a CFG generating the language of binary numbers without leading zeroes. The
terminal symbols shall be ’0’ and ’1’. Hint: The translation rules from regular
expressions to CFGs are listed below.

The translation rules for core regular expressions to context-free grammars
are quite simple. The expressions in extended regex languages can be
reduced to context-free grammars by first expanding their syntactic sugar
(Table 4.1) and then applying the rules below.

1. A regular expression r generating a single alphabet symbol, say ’r’ is
translated to a production with a single token representing the same
symbol. We need to invent a non-terminal symbol to be placed on the
left-hand side, say: R’→ ’r’.

2. A regular expression r|s is translated to two productions: RS’→ R and
RS→ S, where RS’ is a fresh nonterminal, and R, S are the nonterminals
created during translation of r and s (inductively).

3. A regular expression rs is translated to a single grammar production:
RS’ → R S, where RS’ is a fresh nonterminal, and R, S are the
nonterminals created during translation of r and s (inductively).

4. A regular expression r+ is translated to two productions: R’→ R R’
and R’→ R, where R’ is a fresh non-terminal, and R is the nonterminal
created during translation of r (inductively).

Why do we bother to learn and use regular expressions, if all the same
could have been achieved with grammars? Foremostly, because the regular
expression notation is so concise and convenient. Even when you are
writing grammars, it is convenient to use some regular expression operations.
For example, it is much easier to write a regular expression for a list of
objects with the same syntax (just use Kleene star) than to devise the
appropriate productions. You need two grammar productions to express
this simple case. Try!

For this reason, researchers have defined an extended notation for CFGs,
the Extended Backus-Naur Form (EBNF for short). EBNF includes the

Chapter 4. Concrete Syntax 105

regular expression operators as syntactic sugar. The essence of the EBNF
notation is summarized in Table 4.2. EBNF became very popular. It is the
basis of the specification language of most modern syntax design tools.

Exercise 4.7. Write a simple EBNF grammar for an expression language with
variables, and conjunction (∧), disjunction (∨) and negation (¬). Assume that
terminals Id, Not, And, and Or are defined. They match, in the following order:
variable identifiers, negation, conjunction and disjunction operators. Your gram-
mar should be able to generate, among others, the following example expression:
x∧¬(y∨ (z∧ x∨¬y)).

4.3 How to Actually Write a Grammar in Practice?

Having seen the basic specification notations, we want to understand how
these specifications are created in practice. We shall observe the process on
a small case study; beginning with sketches (mock-ups), requirements, and
moving to identification of tokens, nonterminals, and rules. Even though we
want to be practical, we still use only classic EBNF and regular expressions.
We shall move to real tools in Sect. 4.4. Especially for new languages, it is
useful to lay down the initial construction of concrete syntax sidestepping
the accidental complexity invariably brought by tools. A base-line grammar
is best created using fundamental notations (Klint, Lämmel, and Verhoef,
2005), especially in learning situations.

Develop mock-ups. In practice, designing and specifying concrete syntax is
not as formal, as it would seem based on the above definitions. Expressing
the design for a language in formal notation is cumbersome, especially if
the usability is to be assessed. It is easier and more effective to create mock-
up models in the envisioned syntax. Mock-up models may be shown to
stakeholders and discussed. Before you start writing grammars and regular
expressions, ask yourself how the models in your language will look like.
Revisit the last question from domain analysis: Do we have any examples
of existing notation? Use the existing examples and create new (cf. the last
row of Table 3.1).

EBNF operator EBNF production CFG productions

alternative S→ α | β S → α

S → β

optional S→ α T? β
S → α T’ β
T’→ T | ε

iteration S→ α T+ β
S → α T’ β
T’→ T T’?

grouping S→ α (β) γ
S → α T’ γ

T’→ β

Table 4.2: Extended
Backus-Naur Form (EBNF)
for context-free grammars,
defined as a syntactic sugar
of Chomsky’s CFGs. α and
β stand for arbitrary
sequences of terminals and
nonterminals. Kleene star
can be expanded to iteration
just like for regular
expressions

106 Andrzej Wąsowski. Thorsten Berger

1 let State = { S0, S1 }
2

3 let Tran = {
4 transition (S0, "login"?, "credentialsOK"!, S1)
5 transition (S0, "login"?, no!, S0)
6 transition (S1, "sendEmail"?, "sendErr"!, S1)
7 transition (S1, "sendEmail"?, "sendOK"!, S0)
8 }
9

10 let simpleFSM = machine (State, S0, Tran)

1 machine "simple FSM" [
2 initial S0
3 state S0 [
4 on input "login" output "credentialsOK" and go to S1
5 on input "login" output "authErr" and go to S0
6]
7 state S1 [
8 on input "sendEmail" output "sendErr" and go to S1
9 on input "sendEmail" output "sendOK" and go to S0

10]
11]

Figure 4.4: Two sketches of concrete syntax for the language of finite state machines: mimicking a mathematical definition
(left), and programming language style with nested blocks (right)

Example 13. For the finite state machine language (FSM), we may want to
base a textual syntax on the familiar mathematical definition of a state machine:
A state machine is a triple—a set of states, an initial state, and a transition
relation. The left part of Fig. 4.4 shows how such a syntax could look. We
start with defining and naming a finite set of states (Line 1), proceed to define
a transition relation (l. 3–8), and finally use these elements to declare a state
machine (l. 10).

This notation is very concise. The key control structure of our state machine
is covered in just four lines (4–7)! On the other hand, this syntax is not very
scalable. If we had many states, the flat list of transitions would not resemble
an automaton at all. Our target audience (CS students) might find this notation
alien, too remote from programming languages.

We recommend to create several prototypes of the syntax, and possibly
several variations of the most interesting prototypes, before you start any
implementation. Prototyping is very easy (use paper, or a generic text
editor) and it provides instantaneous and valuable feedback. Consider
another design for the FSM language.

Example 14. The right hand side of Fig. 4.4 shows an example of the same
FSM model in another prototype syntax, where states are used to group
transitions. A transition is always nested in its source state, and it is presented
in text resembling English sentences. This syntax clearly takes more space,
but it does have some advantages. The behavior of each state is always
gathered in one place and the blocks enclosed in brackets will appear familiar
to programmers. Even though in our language (Table 3.1) states cannot be
nested, this syntax will support nested states as a conservative extension, if
we needed it one day. Finally, recall that our main use case was to support
interpreters. A syntax devoting a line to each state, will make it easier to
design an animation tool that highlights the active state during the execution.

Obviously, whether the first or the second design is preferred, depends on
many criteria and on a particular usage context (that is arguably underspeci-

Chapter 4. Concrete Syntax 107

Requirement Justification if met, extension otherwise Example syntax

Can we
represent
initial
states?

A declaration of an initial state is shown in l. 3 (Fig. 4.4, right) initial

Can we
represent
end-states?

The meta-model allows states without outgoing transitions.
This can be written in the mock-up syntax using empty
brackets. Allowing an empty list of transitions is a new
requirement though. It would be good to allow omitting the
brackets.

state S2 []
state S3

State and
machines
should have
names.

Both states and machines are named in Fig. 4.4 (lines 1, 5, 10),
but some names are quoted and some are not. Uniformize the
design and allow to quote state names (plus spaces in names).

state "state S4" []

Transitions
should have
inputs.

The mock-up transitions already have inputs, but all inputs
are quoted. Relax this requirement to uniformize with state
names. When input names are not quoted, it seems natural to
drop the input keyword, too. Let’s make it optional.

on input sendEmail
output sendErr and go to S1

on sendEmail
output sendOK and go to S0

Can we
represent
optional
outputs?

Our mock up example always includes an output label. Let us
add another example of a transition to show syntax without
output labels. When omitting an output, we would like to skip
the and keyword to avoid awkwardness, as shown to the right.

on shutDown and go to S3
on shutDown go to S3

Table 4.3: The mock-up FSM syntax of Fig. 4.4 (right), against the requirements of domain analysis

fied in our example). Somewhat arbitrarily, we decide to continue with the
second variant in the remaining part of this chapter. Exercise 4.46 continues
further development of the first, more mathematical, design.
Extend your mock-up against requirements. When creating syntax mock-
ups it is useful to inspect corner cases in the language: How are we going
to express all the syntactic variations? We can identify and address such
questions by systematically scanning the meta-model for variability of
properties, or by going through initial language requirements. For the FSM
example, we extract the requirements and issues from the domain analysis
in Table 3.1 and from the meta-models in Fig. 3.1 and Fig. 3.5. Table 4.3
shows the results of this analysis.

An analysis, like the one in Table 4.3, provides a good opportunity to
create a model encompassing all syntactic variations. Always create a
possibly complete, large mock-up model and save it for the purpose of
testing the parser. Figure 4.5 shows such a model for the FSM case.

Once mock-ups are created we begin to design the grammar. Let us start
with tokens.
Identify tokens. We enumerate all token kinds used in the mock-up example
(Fig. 4.5), grouped by their role in the syntax:

The above three categories of tokens are typical for most languages.
Punctuation can be further divided into separators (comma, colon, semi-
colon), operators (plus, minus, navigation dot), and delimiters (parentheses,

108 Andrzej Wąsowski. Thorsten Berger

Figure 4.5: A larger FSM
syntax mock-up, created as a

test case for a parser. This
mock-up contains most of
the possible variations in

syntactic structure

1 machine "Complete FSM" [
2 initial S0
3 state S0 [
4 on input "login" output "credentialsOK" and go to S1
5 on input "login" output "authErr" and go to S0
6]
7 state S1 [
8 on input "sendEmail" output "sendErr" and go to S1
9 on input "sendEmail" output "sendOK" and go to S0

10]
11 state S2 []
12 state S3
13 state "state S4" [
14 on input sendEmail output sendErr and go to S1
15 on sendEmail output sendOK and go to S0
16]
17 state S5 [
18 on shutDown go to S3
19 on input shutDown go to S3
20]
21]

source: fsm/test-files/Complete.fsm

Category Tokens Regular expression Terminal symbol
Keywords machine ’machine’ Machine

initial ’initial’ Initial
state ’state’ State
on ’on’ On
input ’input’ Input
output ’output’ Output
and ’and’ And
go ’go’ Go
to ’to’ To

Punctuation [’[’ LBracket
] ’]’ RBracket

Identifiers "complete FSM" "login" "credentialsOK"
"authErr" "sendEmail" "sendErr"
"sendOK" "state S5" S0 S1 S2 S3 S4 S5.

("[a-zA-Z]([:alnum:]|’ ’)*")
| ([a-zA-Z][:alnum:]*)

Id

Table 4.4: Token categories in the FSM case study.

brackets, braces, quotes). Besides these, one typically would like to allow
comments (often handled as white space in the definition of lexical structure)
and literals (string literals, integer and floating point number literals, etc.)
We keep the list of tokens very small for this example language for brevity.

Exercise 4.8. Write a regular expression defining the tokens of signed integer
literals. A literal constant cannot start with a zero, except for 0 constant itself. The
sign is optional. Positive examples: +1, 231, -0, -999999999. Negative examples:
001, 0009, -099999, +01

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm/test-files/Complete.fsm

Chapter 4. Concrete Syntax 109

Specify terminals. We begin specifying the syntactic structure of a language
by defining its terminal symbols. For every fixed token (mostly punctuation
and keywords) we create a terminal symbol representing it. With most
tools this happens automatically—token definitions are made available as
grammar symbols. For convenience, we typically do not use these terminals
explicitly, but write regular expressions directly in the grammar, as most
tools allow this. Table 4.4 lists the terminal symbols of our grammar in the
right-most column.

Handling identifiers and literals is slightly more complex than keywords
and punctuation. A keyword carries no interesting information besides
that it appears in the program text. An identifier or a literal belongs to
a larger category defined by a single regular expression, and we need to
remember what is the actual name or constant written by the programmer.
For this reason, in tools, a token carries the string value of the matched
expression, which can be later mapped to the right type. For instance, a
matched identifier or a string literal may be stripped of surrounding quotes,
while an integer constant may be converted to an integer value.

A careful reader has noticed that there seems to be a conflict between the
definitions of keywords and identifiers in the FSM example. (Can you spot
it in Table 4.4?) All our keywords are also identifiers! For instance machine
is technically also a legal state name. Naming a state a machine could be
extremely confusing! Fortunately, this is not a problem in practice. Most
parsers allow to prioritize tokens, so that keywords should be matched first,
and pre-empt any possible matching of an identifier, if a keyword match
succeeds. So any identifier specification in a language definition has an
implicit condition that the matched string does not match any other token
with a higher priority. Simple tokens, like keywords and punctuation, tend
to be assigned the highest priority.

Exercise 4.9. Identify tokens (and categories of tokens) in the example model in
the robot language shown in Fig. 2.2 (p. 31). Formulate regular expressions for
the identified categories of tokens. The exercise should result in a table similar to
Table 4.4, but for the robot language.

Identify syntactic categories. We shall now define the syntactic structure
of our language. This is more difficult than understanding what tokens are
used. We need to infer the structure from the examples. We shall proceed by
listing the syntactic categories, so groups of adjacent tokens that represent a
single concept in the model. Usually the nesting structure allows to discover
some of these, others appear because they are logically cohesive. Table 4.5
lists syntactic categories that are easy to spot in the example of Fig. 4.5.

Inferring syntactic categories from examples is a rather difficult pro-
cess that requires intuition and experience. Typically, only key syntactic
categories are easily visible, and nonterminal symbols can be defined for
them (below). Normally, you will discover the missing categories when
specifying the grammar. Of course, in practice we never write out the

110 Andrzej Wąsowski. Thorsten Berger

Syntactic category Example Intuition / Justification

machineBlock machine "complete FSM"
[...]

The machine keyword (Fig. 4.5) initiates a block encompassing
the entire file that describes a machine. It clearly corresponds
to the meta-model concept FiniteStateMachine in Fig. 3.1.

initialDeclaration initial S0 Line 2 declares that state S0 is initial. It seems logical to
make this declaration separate from the definition of state S0
in the following lines. Eventually, this declaration should
correspond to the initial reference in Fig. 3.1. The state has an
optional block of transitions in the last part. We probably need
a transition concept, too.

stateBlock state S2 [...] The example contains six state definition blocks (S0–S6), they
all seem to have a similar structure, and correspond to the State
concept in the meta-model.

transition on input "login"
output "authErr"
and go to S0

Transitions come in a number of variations, but there is no
doubt that they are all an instance of the same concept, the
Transition meta-class in the meta-model. It appears that each
transition line has up to three parts: input, output, and a target
state. Since some of these are optional, it is useful to think
about them as separate syntactic elements (below).

inputClause on input "login" Specifies the input to which the transition reacts. It will popu-
late the input property of the Transition meta-class.

outputClause output "authErr" and Specifies the output that the transition produces; will populate
the output property of the Transition class.

targetClause go to S0 Specifies the target state of a transition. It will be used to set
the target reference in the meta-model.

Table 4.5: Syntactic categories (larger than one token) extracted from our examples, cf. Figs. 3.1 and 4.5

syntactic categories with the level of detail of Table 4.5. An experienced
grammar writer makes such observations on-the-fly, while writing the
grammar productions. On the other hand, if you are new to the graft of
grammar specification, this might be a useful exercise.

Specify grammar rules. Once you can see the syntactic categories of your
language, writing the grammar productions is quite easy. Syntactic cate-
gories become nonterminals, tokens become terminal, and your syntax spec-
ification governs the rules (mostly try to cover the examples you generated
by now). We begin with several simple rules from the bottom of Table 4.5:

inputClause → ’on’ ’input’? Id

outputClause → ’output’ Id ’and’

targetClause → ’go’ ’to’ Id

transition → inputClause outputClause? targetClause

stateBlock → ’state’ Id (’[’ transition∗ ’]’)?

initialDeclaration → initial Id (4.21)

Chapter 4. Concrete Syntax 111

Exercise 4.10. Explain how the Kleene star (∗) and the optional operator above
(?) interact to provide two possible syntactic ways to specify an end-state?

The above rules were rather simple to specify, but now we are up for a
stumbling block: the initial state declaration (initial S0 below) should be
allowed to be placed anywhere within the machine block. At the same time,
we would like to make sure that at least one state and exactly one initial
state are specified. We could try, for instance, the following sequence of
grammar symbols:

stateBlock∗ initialDeclaration stateBlock∗ (4.22)

This enforces that exactly one initial declaration is placed within a sequence,
while some state blocks are allowed before and after. It does not guarantee
though that at least one state is defined (one state block is included). This
single state could be defined either before, or after the initial declaration, so
we need to change the Kleene star operation on one of them to a Kleene
plus. But which one? If we want to be entirely flexible, then we should
allow both options: the state block must appear either in front, or after the
initial declaration. Now that this piece of grammar becomes large enough
to give it a non-terminal name:

machineBlockContents →
(

stateBlock+ initialDeclaration stateBlock∗
)

|
(

stateBlock∗ initialDeclaration stateBlock+
)

(4.23)

Defining the shape of allowed inputs precisely quickly becomes quite
cumbersome. It is typically better to settle with simple, approximating pre-
sentations like Eq. (4.22). It has several advantages. Smaller grammars are
easier to maintain and debug. Also better error messages can be produced
if detection of detailed misformulation is done later, in the static analysis
phase using a type checker or constraints (see Chapter 5).

Finally, we use the new non-terminal to specify the machine blocks. We
also add a new non-terminal, the start symbol, defining the entire model
with multiple machines:

machineBlock → ’machine’ Id (’[’ machineBlockContents? ’]’)?

model → machineBlock∗ (4.24)

We conclude the section, by summarizing the 6-step method, which we
used for writing down the FSM grammar:

1. Develop mock-up examples. Writing examples is easier than writing
grammars. You can experiment faster with examples, and show them to
customers before you commit to an implementation.

2. Extend mock-ups against requirements. Collect all the requirements
you can, from domain analysis, and from interacting with customers. In
the end, create a large comprehensive example and use it for testing.

112 Andrzej Wąsowski. Thorsten Berger

Figure 4.6: The grammar for
the finite state machine

language, as described in
this chapter, expressed in the

input language of the Xtext
workbench

1 grammar mdsebook.fsm.xtext.Fsm
2 with org.eclipse.xtext.common.Terminals
3 import "http://www.mdsebook.org/mdsebook.fsm"
4 import "http://www.eclipse.org/emf/2002/Ecore" as ecore
5

6 model returns Model:
7 {Model} machines+=machineBlock*;
8

9 machineBlock returns FiniteStateMachine:
10 {FiniteStateMachine}
11 ’machine’ name=EString (’[’
12 ((states+=stateBlock)+
13 & (’initial’ initial=[State]) // initialDeclaration
14 & (states+=stateBlock)*)?
15 ’]’)?;
16

17 stateBlock returns State:
18 {State}
19 ’state’ name=EString
20 (’[’ leavingTransitions+=transition* ’]’)?;
21

22 transition returns Transition:
23 ’on’ ’input’? input=EString // inputClause
24 (’output’ output=EString ’and’)? // outputClause
25 ’go’ ’to’ target=[State|EString]; // targetClause
26

27 EString returns ecore::EString:
28 STRING | ID;

source: fsm.xtext/src/main/java/mdsebook/fsm/xtext/Fsm.xtext

3. Identify tokens. Group tokens into categories. These categories are sim-
ilar across most languages. Parsing tools often offer predefined tokens.

4. Specify terminals. Use predefined tokens from your tool, and add the
missing regular expressions yourself.

5. Identify syntactic categories. Exploit nesting (brackets, parentheses,
known structures like expression trees), seek for cohesive concepts, and
check that your meta-model concepts are represented in the grammar.

6. Specify grammar rules. At this stage most rules, are simple. When
some rule is hard to write precisely, consider writing a more permissive
rule instead. We can still detect erronous inputs later using name analysis,
type checking, and well-formedness constraints (Chapter 5).

4.4 Parsing and Tools

A grammar definition is made operational by turning it into a parser. So far,
we encouraged you to think about grammars as generators of legal models
and programs in the language. A parser does the opposite: it checks (recog-
nizes) if a given input model belongs to the language; whether it could have
been generated by the grammar. While doing that, it constructs an abstract
syntax tree, or a meta-model instance, representing the input as a data struc-

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.xtext/src/main/java/mdsebook/fsm/xtext/Fsm.xtext

Chapter 4. Concrete Syntax 113

ture in memory. For example, it takes a representation like in the bottom-
right corner of Fig. 4.1 and turns it into the instance shown in the top of the
figure. In addition, advanced parsers perform name resolution and linking,
turning identifiers of model elements into references to identified objects.
For instance, in Fig. 4.1 the parser has turned the token S0 in line 3, into
a reference initial from a FiniteStateMachine object to a State object.

Definition 4.25. A parser is a tool that checks whether an input is syntacti-
cally correct and constructs an abstract syntax representation if so.

Parsers are rarely written from scratch. Instead we use parser genera-
tors and interpreters (combinator libraries). However, these tools need
more information than a plain context-free grammar provides. EBNF just
describes how to structure input symbols intro trees. A parser needs to
know also what types to construct and how to initialize the properties
of abstract syntax objects. An extended notation to specify languages is
needed. Unfortunately, there is no agreement on the parser specification
languages, besides using EBNF as a core. This makes it difficult to present
them systematically, in a tool-oblivious manner in a textbook. As the second
best option, we show two quite different examples below: Xtext (a parser-
generator based language model) and Parboiled2 (a language specification
using a parser combinator library for Scala).

In this book, we do not explain in detail, how parsers, parser generators,
and combinator libraries work (although we do give some pointers to further
reading in the end of the chapter). Parsing is a very specialized field of
knowledge by itself. Instead, we focus on deriving principles of efficient
and practical use of the parsing tools.
An example with Xtext. Xtext3 is a language workbench, based on the
ANTLR4 parser generator. Xtext is a mature and popular language in-
frastructure tooling for the JVM platform, popular for both industrial and
research-oriented language implementation. Besides parsers, Xtext can gen-
erate rich IDE plugins, web editors, language server support,5 and testing
infrastructure for your language implementations. Figure 4.6 presents the
FSM grammar in the syntax of the Xtext input langauge. This grammar
specification mixes two kinds of information: How to recognize (generate)
a valid model, and how to construct a valid instance of the abstract syntax
based on the recognized model.

The first two lines in the example declare the grammar name—the Java
package to host the parser code—and import the definitions of standard
terminal symbols (typical tokens). Xtext allows modularizing and reusing
grammars. In particular reusing the specification of terminals is very useful
as most modern languages share vast majority of terminals (string literals,
numeric literals, identifiers, and operators). Lines 3–4 import the meta-
models defining the abstract syntax. We are importing the FSM meta-model

3https://www.eclipse.org/Xtext/
4https://www.antlr.org/
5https://langserver.org/, more on this topic in Chapter 7

https://www.eclipse.org/Xtext/
https://www.antlr.org/
https://langserver.org/

114 Andrzej Wąsowski. Thorsten Berger

(Fig. 3.1) and Ecore. These two imports will allow using the types of
abstract syntax in the grammar productions to construct abstract syntax
objects.

Lines 6–7 define the start symbol, corresponding to the last rule in
Eq. (4.24). We used the same identifiers for symbols as in the original
production (model, machineBlock), so that the Xtext syntax is directly
traceable to our abstract grammar. Colon replaces the right arrow of EBNF.
The returns clause declares the type of abstract syntax objects constructed
and propagated upwards by the rule. We shall return an object of type
Model, more precisely an mdsebook.fsm.Model. In Line 7, the identifier
in curly braces is a semantic action, denoting the actual type which will
be constructed; this will often be a subtype of the type specified in the
returns clause. Xtext will translate this action to a call of the right factory
method from the Ecore framework. In this example, the same type is
constructed and returned by the rule. In general, when generalization and
type hierarchies are used in abstract syntax definitions these two types may
differ. For instance we may construct a binary expression object, but return
upwards an up-cast to an abstract expression type.

Further in Line 7, we match zero or more machine blocks using a Kleene
star (machineBlock*). Each of the matches will produce an object of
type FiniteStateMachine—consult lines 9–15 to confirm this. All the
constructed objects will be added to the machines collection of the returned
Model object. Check Fig. 3.1 on p. 58 to convince yourself that a Model
object indeed has a property machines, and that this property is indeed a
collection (it has multiplicity higher than one). The addition of the new
object to the machines property is another semantic action admitted in the
Xtext input language.

Definition 4.26. Semantic actions are executable instructions how to build
the abstract syntax tree. They typically include object constructors, for-
matting and conversion of the input data to AST format, initialization
and updates to properties of the constructed AST, or scoping and name
resolution directives.

Lines 9–15 define a machine block. They correspond to productions
in Eqs. (4.23) and (4.24). The grammar elements and semantic actions
used are largely the same as in the model rule discussed above. We note
that the machine identifier is matched using a nonterminal EString (see
lines 27–28). This allows both quoted and not quoted identifiers as per our
requirements. The identifer is stored in the name property of the constructed
FiniteStateMachine object. For convenience, the production defining the
machineBlockContents (4.23) has been inlined into the machineBlock rule.
This is easier to do in Xtext if a rule is not constructing a new object, but
merely populates the properties of an already constructed object. More
interestingly, it uses the & operator of Xtext to specify more succinctly the
requirement that the initial state declaration statement has to appear in the
machine block, and some states should be defined either before it or after,

Chapter 4. Concrete Syntax 115

or on both sides. Compare lines 12–14 to Eq. (4.23). The & operator is an
unordered composition operator. It admits any sequencing of its operands,
which yields a simpler formulation than our original EBNF.

Exercise 4.11. Show that the unordered composition operator & of Xtext does
not add expressiveness to EBNF, that is show how to eliminate the operator as
a syntactic sugar. More precisely, explain how a production T→ α (β & γ) δ

should be transformed to generate the same language, but only using EBNF
operators. In the above, T stands for a nonterminal symbol, the Greek letters
stand for subexpressions in EBNF. You may want to use Table 4.2 for inspiration.

In the initial state declaration fragment (Line 13), we meet a new kind of
semantic action: a name resolution rule: [State]. This action instructs
Xtext to match an ID token, and to turn the token’s value to a reference to an
object of type State, which has a property name holding the same value as
the identifier. Thus a name resolution semantic action resolves name-based
references into actual references between JVM objects. Technically, this
name resolution is performed by Xtext in the second pass, after the parsing
has completed successfully and an unlinked abstract syntax instance is
already constructed. Still, a single specification is used for both purposes.

The remaining productions in Fig. 4.6 use the constructs of Xtext already
explained above. You are encouraged to compare them to our abstract
grammar. Note that the input, output, and target clause productions have
(again) been inlined, into the transition rule. The EString rule refers to two
terminals (STRING, ID) previously imported from the standard library of
Xtext in lines 1–2. Appendix C presents a short tutorial to using the Xtext
framework, if you are interested in learning more about this tool.

An example with Scala and Parboiled2. For contrast, consider the same
example coded in the language of Parboiled2,6 a popular parsing library for
Scala. Parboiled2 is a parser combinator library. This means that, unlike
Xtext, it is not an independent language, but an internal DSL, so an API
exposing the grammar construction operators inside Scala programs. Par-
boiled2 is implemented using macros, the main meta-programming facility
of Scala. Scala macros are executed at compile-time. Parboiled2 uses them
to generate an efficient implementation of a parser. This is why Parboiled2
is very fast, unlike most parser combinator libraries. We will talk more
about internal DSLs in ?? and mechanisms for meta-programming in ??.

Most parser combinator libraries, including Parboiled2, do not parse
context-free languages specified by context-free-grammars, but use Parsing
Expression Grammars (PEGs). In general, PEGs and CFGs define two
incomparable classes of languages (Ford, 2004). This means that there exist
languages accepted by PEGs, but not by CFGs and most-likely vice-versa
as well. Fortunately, PEGs are stylistically similar to EBNF: the notation
and the design process are essentially the same as for CFGs. Thus we can
reuse the grammar example from Sect. 4.3 to demonstrate Parboiled2. In

6https://github.com/sirthias/parboiled2

https://github.com/sirthias/parboiled2

116 Andrzej Wąsowski. Thorsten Berger

Figure 4.7: The PEG
grammar for the finite state

machine language, as
described in this chapter,

expressed in the input
language of the Parboiled2
parser. Only core part with
non-terminal productions is

shown here

1 def model: Rule1[Pure.Model] =
2 rule { machineBlock.* ~ EOI ~> Model }
3

4 def machineBlock: Rule1[Pure.FiniteStateMachine] = rule {
5 "machine" ~ EString ~ BEGIN ~
6 stateBlock.* ~
7 initialDeclaration ~
8 stateBlock.* ~
9 END ~> FiniteStateMachine

10 }
11

12 def initialDeclaration: Rule1[String] =
13 rule { "initial" ~ EString }
14

15 def stateBlock: Rule1[StateTr] =
16 rule {
17 "state" ~ EString ~ (BEGIN ~
18 transition.* ~
19 END).? ~> StateTransitions
20 }
21

22 def transition: Rule1[Pure.Transition] =
23 rule {
24 inputClause ~ outputClause.? ~ targetClause ~> Transition
25 }
26

27 def inputClause: Rule1[String] =
28 rule { "on" ~ "input".? ~ EString }
29

30 def outputClause: Rule1[String] =
31 rule { "output" ~ EString ~ "and" }
32

33 def targetClause: Rule1[String] =
34 rule { "go" ~ "to" ~ EString }
35

36 def EString: Rule1[String] = rule { ID | STRING }

source: fsm.scala/src/main/scala/mdsebook/fsm/scala/FsmParser.scala

contrast to CFGs, PEGs are unambiguous—the parsing algorithm is deter-
ministic and fast—but they do lack some of the theoretical succinctness of
CFGs, a problem not really experienced in practice. The combinator-based
implementations of PEGs, like Parboiled2, allow for natural inclusion of
arbitrary code into the grammar specification, so expressiveness is not really
a problem. The main difference is perhaps in the attitude: a PEG grammar
designer should think more in terms how the text is parsed (recognized),
and not how all the legal models in the language are generated. Some of
these issues are explored in the exercises in the end of the chapter.

Figure 4.7 presents a PEG in Parboiled2 for the finite state machine
language. Contrast it with Fig. 4.6 (Xtext) and with the abstract grammar for
finite state machines of Sect. 4.3. In the figure, each production is modeled
by a single Scala function. We use the same function names as the names
of the nonterminal symbols in the context-free grammar. The first function,

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/mdsebook/fsm/scala/FsmParser.scala

Chapter 4. Concrete Syntax 117

model, defines the start symbol. The presentation format is specific to
Parboiled2, but most grammars expressed using parser combinator libraries
will look similarly.

The grammar specification language of Parboiled2 is more flexible than
the one used by Xtext, so we have not inlined any rules. We use separate
productions for input, output, and target clauses and for the initial state
declaration. These were all inlined in the Xtext example in Fig. 4.6. Note
that we also add the EString rule, in the bottom, mimicking the Xtext style,
to match regular and quoted identifiers using a single non-terminal.

Each production is a nullary function (a function that takes no arguments).
We explicitly annotate the return types. Thanks to Scala’s type inference,
these annotations are not strictly required. We include them for clarity, to
show what type is constructed by each production. Visually the return types
annotations play a similar role to returns clauses in the Xtext definition in
Fig. 4.6. We have only one kind of rules in this figure, the Rule1[]. Such
rules return a single value which is placed on the parser stack. Thus model
and transition return the abstract syntax object representing respectively
the entire model and a single transition.

All productions in the example follow the same format: a sequence of
grammar symbols is placed within braces after the rule keyword (actually
a Scala macro). If the value produced by the rule needs to be adjusted, for
instance to invoke a constructor of a meta-model type, we suffix the rule with
a squiggly arrow (~>) and the name of a function implementing the semantic
action. Thus in Line 9, the FiniteStateMachine is a function name; it is
called as the last part of the matching process for the machineBlock to
execute the semantic action. We discuss an example of a semantic actions
implementation below. Other notational conventions of interest include:
tilde (~) to sequentially combine symbols (white space in classic EBNF),
and the navigation dot to attach the otherwise familiar EBNF operators
asterisk, plus (Kleene) and question mark. These operators are actually
Scala methods. The pipe symbol represents optionality, but unlike in EBNF,
it is left-biased, so once a symbol on the left-hand side is matched, the
later alternatives will not be considered. This eliminates the ambiguity
(non-determinism) issues in PEGs.

In contrast to the Xtext variant of the example, we chose to use the simpli-
fied version of the state sequencing rule (4.22) in the machine block (lines
5–9). This version admits state definitions before and after the initial state
declaration, but does not enforce that any definitions are actually included.
This simplified rule is easier to read than the one presented in Sect. 4.3 with
two alternative choices, but, obviously, this means that we will have to check
whether any states are actually declared in later stages. Typically such check-
ing happens during name resolution or static semantic checks (Chapter 5).

Most combinator-based parsers do not have a separate scanner for estab-
lishing the lexical structure. We know already from Sect. 4.2 that grammars
are sufficiently expressive to replace regular expressions, which proves that

118 Andrzej Wąsowski. Thorsten Berger

Figure 4.8: The part of the
PEG grammar handling the

tokens, so what corresponds
to a lexer/tokenizer in a

classical CFG parser like
Xtext/ANTLR

1 def STRING: Rule1[String] =
2 rule { WS.? ~ ’"’ ~ capture ((!’"’ ~ ANY).*) ~ ’"’ ~ WS.? }
3

4 val IDFirst: CharPredicate = CharPredicate.Alpha ++ "_"
5 val IDSuffix: CharPredicate = CharPredicate.AlphaNum ++ "_"
6

7 def ID: Rule1[String] =
8 rule { WS.? ~ capture (IDFirst ~ IDSuffix.*) ~ WS.? }
9

10 def BEGIN =
11 rule { WS.? ~ ’[’ ~ WS.? }
12 def END =
13 rule { WS.? ~ ’]’ ~ WS.? }
14

15 implicit def StringWS (s: String): Rule0 =
16 rule { WS.? ~ str (s) ~ WS }
17

18 def WS: Rule0 =
19 rule { anyOf (" \n\t").+ }

source: fsm.scala/src/main/scala/mdsebook/fsm/scala/FsmParser.scala

they can be used to define the lexical structure of the language as well.
This is typically the approach taken by PEGs implementers and by parser
combinator libraries, including Parboiled2. The commonly followed pattern
is to write grammar productions to define the tokens. Technically in these
grammars the only terminal symbols are characters of the input character
set (say Unicode), and all other symbols, tokens and non-tokens alike, are
non-terminals.

Figure 4.8 shows the respective part of the Scala example for the finite
state machine language. We define terminals for quoted strings (STRING),
identifiers ID, opening and closing brackets (BEGIN, END), and white space
(WS). The last one is probably the most surprising—since there is no explicit
scanner, which would normally filter the white space out, like in Xtext, we
need to explicitly mention in the grammar where white space is allowed and
required. This is also why all the token productions mention WS. Parboiled
interprets string and character literals as parsers matching the literal exactly.
Since we would like to admit some white space before and require some
white space after keywords we modify the default behavior in lines 15–16.
This prevents ‘glueing keywords’ like in andgoto (instead of and go to).

This listing also includes a new kind of productions (Rule0). Rule0 is
the type of rules that do not return any interesting value, but consume some
tokens. This is very common for keyword terminals, for white space, and
for comments (we do not allow comments in the example).

Lines 4–5 introduce character predicates, which are a compact way to
define productions based on character classes. We use them to state what
are the legal first characters in an identifier (a letter or underscore), and
what are the legal subsequent characters (adding digits to the mix). Both
predicates are used in the identifier rule in lines 7–8.

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/mdsebook/fsm/scala/FsmParser.scala

Chapter 4. Concrete Syntax 119

Parser combinator libraries

1 transvbphrase = !transverb --- jointermphrase >> apply2
2 | !linkingverb --- !passtrvb
3 --- !preposition --- jointermphrase >> drop3rd

Given the early history of the formal grammars, it is unsurprising that parser combinators are also related
to research in natural language processing (NLP). Parser combinators are often attributed to the paper
of Frost and Launchbury (1989), who used them to construct a natural language processing tool in
the Miranda language, an ancestor of Haskell. The picture above shows a fragment of their grammar,
displaying a remarkable similarity to Parboiled2 grammars. Frost and Launchbury used combinators,
because of the compositional design and the ability of expressing rich semantic actions needed in NLP.
Their syntax mimicked BNF, enabling fast prototyping and experimentation with language processors.

Parser combinators are used to build recursive descent parsers. Such parsers decide which production
applies based on a prefix of the stream of symbols at the current position, and then invoke the production
recursively. A production typically consumes the symbols from left to right and constructs the AST
on-the-fly. Today, many mainstream parsing tools are recursive descent, as this semantics are easier to
understand to users than the alternatives (say shift-reduce parsing).

Over time, parser combinators libraries became a part of the basic infrastructure of any serious pro-
gramming language: Java, Scala (Parboiled, Parboiled2, and Petit Parsers), JavaScript (Bennu, Parjs,
Parsimmon), C# (pidgin, superpower, parseq), C++ (Cpp-peglib, boost meta-parse, boost-spirit, Parser-
Combinators), Python (Parsec.py, Parsy, Pyparsing, parsita) and so on.

We encourage the reader to study the figure before attempting to solve
the following exercise.

Exercise 4.12. Modify the STRING definition in Fig. 4.8 to admit special characters
using escaping in string literals. In particular, admit \n for newline, \t for a
tabulator symbol, and \" for a quote (note that quotes are presently not admitted
inside fsm strings).

The easiest way to work on this exercise is to modify source code in the
book code repository. You can test whether it worked by adding a test case to
fsm.scala/src/test/scala/mdsebook/fsm/scala/FsmParserSpec.scala.

Finally, we consider the construction of the abstract syntax tree by this
parser. Since our parser is a pure functional program we cannot easily
construct instances of the AST types in mdsebook.fsm (Fig. 3.1). This
meta-model admits cycles in instances, and it is not possible to construct
cyclic structures of references in a purely functional manner without using
laziness. Instead the parser uses the pure variant of the meta-model shown
in Fig. 3.5, built with algebraic data-types. This meta-model is simpler,
and does not actually ensure that there are no dangling references in the
instances. For instance, the meta-model construction will not detect that
a non-existent state has been selected as an initial state of a machine. To

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/test/scala/mdsebook/fsm/scala/FsmParser\protect \discretionary {\char \hyphenchar \font }{}{}Spec.scala

120 Andrzej Wąsowski. Thorsten Berger

produce an instance of the Ecore meta-model we need to perform an addi-
tional transformation and checking. We will discuss such transformations
in ????.

The construction of instances of the meta-model types happens in seman-
tic actions. Consider the rule for transition (lines 22–25 in Fig. 4.7) as an
example. This production gathers a string produced by three clauses (the
middle one will be optional due to the question mark), and feeds them into
a semantic action Transition shown below in Fig. 4.9:

Figure 4.9: The semantic
action for constructing
instances of transition

1 val Transition: (String,Option[String],String)=>Pure.Transition =
2 (input, output, target) =>
3 Pure.Transition (target, input, output getOrElse "")

source: fsm.scala/src/main/scala/mdsebook/fsm/scala/FsmParser.scala

The action is a function taking the three constructed values and producing a
transition object. The parsed values are just reordered, so that they match
the order of arguments of the constructor (cf. Fig. 3.5), and the optional
output is replaced with an empty string, if missing. These general way to
specify semantic actions is far more expressive than the constructor calls
and property assignments of Xtext. It almost does not happen that one needs
to adjust the grammar to allow the parser to easily construct the meta-model
types when using Parboiled2 (in Xtext we inlined rules because of this).

Overall, working with a general PEG parser and parser combinators gives
us more possibilities than with fixed formalism tools based on variants of
context-free grammars, like Xtext and ANTLR. However this flexibility
comes at a non-trivial cost. First, the grammar specification in Xtext (for our
example) is about three times shorter than in Parboiled2. The production
rules are similarly concise, but the need to explicitly write semantic actions,
token parsing, and white-space handling creates a lot of additional work.
Recall that Xtext provides a pre-defined library of tokens and a default
white-space handling mechanism suitable for most needs. Also the semantic
actions of Xtext, albeit limited, are introduced with minimal effort. Second,
and perhaps more important, parser combinators are a powerful expressive
tool, with much weaker error reporting than a closed format Xtext editor.
This translates to much harder development experience. In the words of
Ford (2004), a powerful syntax description paradigm also means more
rope for the careless language designer to hang himself with. Mistakes are
harder to understand and debug. And one still typically needs to resolve
named references afterwards, without any automatic support. It is clear
that these two groups of tools represent very different strategies suitable
for different use cases. External parsing tools are heavy dependencies
for projects and require mastering a new grammar specification language.
Parser combinators are very lightweight dependency (just a library) that
can be embedded in any place in an existing program written in the host

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/mdsebook/fsm/scala/FsmParser.scala

Chapter 4. Concrete Syntax 121

language. They are particularly, but not only, suitable for small local parsing
jobs. A language engineer, and indeed any experienced programmer, needs
to be able to use either depending on the context.

4.5 Guidelines for Specifying Concrete Syntax

Let us switch from discussing concrete tools and case studies to general
rules and guidelines for creating concrete syntax. We have identified a range
of recommendations in research papers and through personal experience
of teaching and developing DSLs. We begin with big decisions (whether
to write a grammar at all!), and move through architecture level guidelines
(how to choose rules, how to modularize and reuse) all the way to low-level
patterns (how to avoid left-recursion, where to use grammars vs regular
expressions, and how to handle comments).

Consider not writing a grammar. No parser at all! Standard format
technologies (YAML, JSON, XML, and CSV)7 are natural alternatives
to bespoke syntax. They allow fast and ad hoc creation of file formats
with efficient parsers and validity checkers. These are excellent for many
structural and configuration modeling tasks. On the other hand, bespoke
syntax may be needed if humans have to create models in an editor, when
the DSL is complex, or the intended users do not have technical background.
A tailor-made concrete syntax can also make users much more efficient, so
consider it for high-volume tasks.

Another alternative to syntax design is to develop a GUI application
for creating “models,” typically a web-form or a wizard that populates a
YAML/JSON/XML file, or stores data in a relational database. For many
simple input formats, this will give a better user experience than a bespoke
textual or graphical modeling syntax.

If the users of your language fall into several groups with distinct presenta-
tion requirements, it might be worth to invest in creating multiple front-ends
for the same abstract syntax, to allow the various tools inter-operate in the
back-end. For example, programmers and IT operations technicians can
use textual syntax that resembles a programming language, while business
product modellers would use a GUI or a graphical syntax, yet both would
be producing and changing models in the same abstract language.

Textual or graphical syntax? Concrete syntax may be textual, graphical
(typically some form of a diagram), or hybrid (for instance state machine
graphs with attached program code like in MATLAB/Simulink). The main
advantages of the textual form are the clear order of reading and efficient
typing with keyboards. Typically, mathematical expressions are hard to
input with other means than keyboard, so it is natural and efficient to express
them as text. Furthermore, textual syntax is clearly the most popular among
professional programmers—DSLs aimed at software developers should

7See also Sect. 3.10.

122 Andrzej Wąsowski. Thorsten Berger

Figure 4.10: A fragment
of the robot language meta-
model presenting the abstract

syntax of expressions
(top). In the bottom,

an ambiguous context-free
grammar capturing

the same syntax. See
Chapter 2 for background
about this example DSL.

source: robot/model/robot.ecoreaExpr→ aExpr BINOP aExpr

aExpr→ ’-’ aExpr

aExpr→ ’random’ ’(’ aExpr ’,’ aExpr ’)’

aExpr→ INT

probably be textual Kelly and Pohjonen, 2009. The textual syntax is also
the cheapest to implement, especially with language workbenches like
Xtext, Monticore, or Spoofax.

On the other hand, textual syntax is relatively hard to read, especially for
non-programmers. Text tends to hide indirections and references. While
in graphical syntax edges (arrows, lines) can express relationships, textual
syntax usually requires writing down an identifier as a reference to another
element. The structure of complex relationships (beyond natural nesting,
like partonomy) is obscured. For instance, it is very hard to spot a cycle or
a bottom connected component in a finite state machine expressed in the
syntax of Fig. 4.5. If such structures should be visible, graphical syntax
might be preferred. However, for complex and large files it is probably still
better to replace reliance on visual skills with custom model analysis tools.
We discuss the design of graphical DSLs in ??.

Use familiar, friendly, and intuitive notations, optimized for comprehension.
It is well known that engineers are attracted to learning new languages,
and that they tend to learn fast. This is quite the opposite for many non-
programmers. A new notation is likely to become yet another barrier to
adoption of the technology you want to introduce (Karsai et al., 2009).
(Remember that your future users also need to learn the tools and to adapt
to new work processes.) To minimize this risk, look to informal notations of
the domain as the foundation for the DSL. Adopt whatever formal notations
the domain experts already have and know, rather than invent new ones

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.robot/model/robot.ecore

Chapter 4. Concrete Syntax 123

(Karsai et al., 2009; Wile, 2004). Use their jargon terms whenever possible.
Wile recalls a case, where a concept called by experts a ‘metadata data
item’ was not anything more than a ‘variable’ in the eyes of language
designers. Still the original term, known to users, was kept in the language.
For any non-fundamental issues, it is easier for language designers to
adapt to users than the other way around. In another place, Wile reports
sticking to an existing notation even if it appears bad from programming
language perspective; he recalls a case of a DSL where parentheses were
not balanced.

For the same reason choose known symbols for the known concepts. A
plus (‘+’) should still mean addition and unlikely anything else, etc. If
in need for new symbols, use descriptive terms (English words) or multi-
character symbols. In our robot language (see Chapter 2) we have a need
to calculate angles, speeds, and durations. Such calculations do not differ
essentially from basic mathematical (and programming) expressions. Thus
we suggest using a basic abstract-syntax and grammar for them as shown
in the example for the robot language in Fig. 4.10. (Since core arithmetic
expressions are extremely common, we return to them in the discussions
below.) For the sake of readability, avoid overloading symbols, unless
expected, and make different concepts visually distinct.

Models and programs are read much more often than written (Karsai
et al., 2009). Hence, balancing comprehensibility and compactness is
a delicate matter. For a designer it is fairly easy to focus on compact
representations, but you should test your designs against users who try to
read your example models.

Exploit the examples and the meta-model to structure grammar productions.
The least clear part of the Sect. 4.3 is the selection of grammar productions.
Let’s dwell a bit longer on this problem. When writing a grammar, we are
aiming at constructing a parse tree. What kind of branches do we have in the
tree? The branches in the tree must agree with two sources of constraints:
the input and the output structure.

We begin with seeking inspiration in the input. The most obvious
structure of the production rules comes out from nesting parenthetical
constructions in your model. Look at a larger mock-up of your DSL syntax,
squint your eyes, and observe the parenthetical structures: parts of syntax
that are enclosed with fixed opening and a closing elements. Some possible
examples include: quotation marks, including double and triple quotation
marks, keywords begin...end, tags <div>...</div>, funny keywords
if...fi, do...od etc., as well as parentheses, brackets, braces, and so on.
In languages like Python and Haskell, where white space is used to nest
objects, the pairs could be indent/unindent, so they are a bit harder to see,
but they are still there!

Figure 4.11 demonstrates nesting context-free productions according to
nested structures in the input text. In the left of the figure, we show the

124 Andrzej Wąsowski. Thorsten Berger

1 machine [
2 state [...]
3 state [...]
4 state [...]
5 state [...]
6]

root

machine

statestate state state

[...] [...] [...] [...]

root→ machine

machine→ ’machine’ ’[’ state∗ ’]’

state→ ’state’ ’[’ . . . ’]’

Figure 4.11: Picking up production nesting by parenthetical constructs. Left: the core nesting structure in Fig. 4.5, Center: a
hypothetical core structure of a parse tree for the same example, Right: A hypothetical CFG able to generate the tree in the

middle

1 {
2 var x;
3 x = 1;
4 print (x);
5 }

root

block

stmtOrDeclstmtOrDecl stmtOrDecl

decl stmt stmt

var x; x = 1; print (x);

root→ block

block→ ’{’ stmtOrDecl∗ ’}’

decl→ . . .

stmt→ . . .

Figure 4.12: Creating an abstract nonterminal (stmtOrDecl) for elements appearing at the same level in a nesting structure of
productions. The example uses a hypothetical Javascript-like syntax

model from Fig. 4.5, eliding non-parenthetical aspects to make the nesting
stand out; in the middle, the same parenthetical structure is shown as a
tree; in the right, we extract productions from the tree. Note how the direct
nesting in the tree turns into productions (root and state). For machine
we turn similar structures into a repetition mechanism (Kleene star), but
otherwise the nesting still follows the tree. It is clear that the grammar on
the right will generate trees like in the middle.

Figure 4.12 shows how to unify various syntactic structures that are
allowed to be placed at the same nesting level. The left side includes a
code fragment in a Javascript-like language. We have a block (delimited by
braces) and, within this block, a handful of constructs that are syntactically
different: the first one is a declaration, the last two are statements. Had you
followed our advise from Sect. 4.3 you would have created two separate
nonterminals for declarations and statements. What should we then nest un-
der the block? Placing two, or more, syntactic categories at the same level is
a common pattern. We would still like to handle these situations with simple

Chapter 4. Concrete Syntax 125

replication like machine/ state dependency in Fig. 4.11. In order to do this,
we introduce a new abstract nonterminal (called stmtOrDecl here) that ad-
mits both kinds of expansions, or use the alternative operator, for example:

block→ ’{’ (stmt | decl)∗ ’}’ . (4.27)

Finally, the semantic meaning of the parsed text often gives hints to creation
of single rules: a convex piece of syntax that returns a single value (an ex-
pression for instance) or performs a single coordinated action (a declaration
of a complex type, and if-then-else statement, or a while-loop) are good
candidates for grouping under a single rule. This is how we created the
transition rule in Sect. 4.3. This is also seen in Fig. 4.10, where we chose a
single non-terminal aExpr to group arithmetic expressions. A common top-
level expression non-terminal will allow all kinds of expressions, wherever
an expression is needed in the robot language, giving the language a nice
design orthogonality.

Exercise 4.13. Consider the subset of Cascading Style Sheets (CSS) studied in
Exercise 3.2 and in Fig. 3.2, page 58. Write a simple context-free grammar in
EBNF for this subset of CSS. Assume that the start nonterminal is called css.
You need to decide what are the terminals in your language (typically keywords,
operators, punctuation, and names), but you do not have to formally define them.
Focus on the high-level structure, production nesting, and non-terminal selection.

Another, less obvious way to realize the structure of productions is to
consider the output structure.8 Since the parser creates an instances of a
meta-model, the parse-tree should be closely aligned with the main tree
structure embedded in the meta-model. To appreciate this, revisit Fig. 4.10.
The meta-model in the figure contains two kinds of lines: generalization/in-
heritance and containment relations. Observe that all the productions of
the non-terminal aExpr (which constructs an instance of AExpr) follow
the inheritance relations (the taxonomy tree); there is one production for
each inheritance line. At the same time the containment relations (the
partonomy) become references to nonterminals in the right-hand-side of
the productions. This way a grammar can generate structures that can be
typed by (can conform to) this meta-model.

There is a third kind of line we could see in a meta-model, the usual
references (not shown in this figure). The non-containment references
in the meta-model correspond to references to non-terminals in the right
hand-side of productions, just like containment references. However, for
non-containment references, we usually do not construct an instance of
the subtree, but identify this subtree elsewhere, and link to it (reference it.)
We have observed this mechanism in Line 25 of Fig. 4.6. Verify that the

8This is (roughly!) the procedure that the Xtext tool uses to generate an initial grammar for any
given meta-model.

126 Andrzej Wąsowski. Thorsten Berger

target property of a transition object in Fig. 3.1 is indeed a non-containment
reference, and this is why we resolve a reference in the Xtext grammar
there instead of constructing a new object.

If you use the target meta-model to construct a grammar, the grammar
is likely to be ambiguous (many parse trees are possible for the same
input) and left-recursive (the left-biased recursive-descent parsers will not
terminate on it). Indeed, a grammar which simply captures abstract syntax
will lack a few details to make it an effective parsing grammar. However,
standard techniques (see below) can be used to eliminate the left-recursion,
and this, most often, will get rid of the ambiguity as well.

Exercise 4.14. Write a simple, possibly ambiguous and left-recursive, grammar
for the language of feature models by purely studying the meta-model in Fig. 3.21
on p. 87.

Do not fight the input-output impedance in a grammar design. But what
if the input structure and the output meta-model lead to a very different
grammar? You are experiencing a case of an input-output impedance.
Fighting an input-output impedance during parsing is usually a bad idea.
A parser is not a natural tool to mold the input data into an incompatible
output structure. Parsing is difficult enough without this. It is better to
try to move the abstract and concrete syntax close to each other. If you
are experiencing an input-output impedance, design a new abstract-syntax
meta-model structurally similar to the input format. Populate this new
abstract-syntax during parsing (Karsai et al., 2009), and then use a separate
transformation pass (outside the parser) to obtain an instance of the ultimate
target meta-model. Parsing should to be compatible with abstract syntax.
Otherwise post-processing is needed. This post-processing is easier done in
a general programming language, after parsing.

This is, in fact, what we did for the finite state machine language, when
parsing with Parboiled2 in Scala. Since the combinator-based parser was
pure, it was difficult to create a cyclic graph structure instantiating the
meta-model of Fig. 3.1. Instead, we used a simpler acyclic meta-model,
which requires an additional transformation pass (see ?? for more about
transformations).

Modularize your grammars (Alves and Visser, 2008). Grammars for real
languages can get large. Modularize your grammar vertically and horizon-
tally, not only to help reuse in other language project, but also to make it
easier to understand and evolve your parser. For vertical modularization
group syntax elements in syntactic categories. Introduce non-terminals
for the entire categories and place productions defining the members of a
category close to each other in a file. This kind of abstraction was proposed
in Fig. 4.12, where we extracted stmtOrDecl, and in Eq. (4.23), where we
extracted machineBlockContents.

For horizontal modularization, split the definitions of tokens and the
lexical structure from the high-level rules, even if your parsing system does

Chapter 4. Concrete Syntax 127

not have a separate scanner system, but uses context-free productions for
the entire task. This is how we structured our Parboiled2 grammar: the
lexer in Fig. 4.8 and the “actual parser” in Fig. 4.7. Separating the lexical
and syntactic productions has an additional advantage that it allows to limit
handling white space to the low-level rules (see below, p. 127).

Many grammar specification languages allow importing parts of AST
definitions and grammar fragments. For instance, Xtext allows importing
terminal definitions and grammars, and multiple Ecore meta-models (so
one can structure abstract syntax into several modules). In fact, an entire
grammar for Java-like expressions (XBase) is provided. In the above, we
have imported less—only the definitions of standard terminals, see line 2
in Fig. 4.6. Also when using Parboiled2 you can split a large grammar
into several modules. Use Scala/Java packages, imports, and generics to
effectively compose them together. ANTLR,9 Spoofax/SDF3,10 TXL,11

and most other language development systems today support import and
modularity constructs.
Reuse existing grammars or parts of grammars. As mentioned above, once
using a rich language development system, or if you have modularized your
previous grammars, you can reuse language design modules by importing.
Instead of starting to design syntax from scratch, develop a habit to check
what sub-languages have already been defined. You will save time on testing
and getting things right. In the extreme, never plan to develop a grammar
for a well established language as the first line of attack. For most existing
languages and sub-languages, open-source grammars are already available,
either as part of their compilers, or editing environments, or included in
language workbenches as examples and resources.12 Even, if you cannot
reuse the grammar directly due to different development languages and tools
being used, you can quite often reuse the design, by transcribing the produc-
tions to your set up. (Make sure you respect the licensing when you do so!)
Handle white space at the lexer level. In most situation, it is recommended
to handle white space in a lexer. Most languages use the same treatment
of white space (spaces, tabs, and newline characters). Dedicated lexers
tend to have built-in support that does not require any specification—any
white space is just ignored. It only separates tokens that could otherwise be
confused, for instance adjacent tokens and identifiers: e.g. state S0 should
not be allowed to be written stateS0. Often it is possible to modify the
definition of what characters count as white space, for the rare case, when
controlling them tighter this would be needed (see below).

The situation gets more complex when using a parser combinator library.
PEG are typically defined at the character level, like our example with

9https://www.antlr.org/
10http://www.metaborg.org/en/latest/
11http://www.txl.ca.
12See for example: the ANTLR grammar collection https://github.com/antlr/grammars-v4, TXL

grammar collection https://www.txl.ca/txl-resources.html, and a large grammar zoo at the
software language engineering body of knowledge website https://slebok.github.io/zoo/

https://www.antlr.org/
http://www.metaborg.org/en/latest/
http://www.txl.ca.
https://github.com/antlr/grammars-v4
https://www.txl.ca/txl-resources.html
https://slebok.github.io/zoo/

128 Andrzej Wąsowski. Thorsten Berger

Parboiled2. There the programmer may match white space wherever she
sees fit. Still, even with PEGs, it is a good practice to handle white space
in the rules that logically belong to the lexer, so the productions building
tokens. Anything else tends to lead to extremely complex and messy rule
systems, which are hard to debug. Recall that in our Scala grammar, all
white space issues have been confined to the part shown in Fig. 4.8. The
high-level productions in Fig. 4.7 have remained purely at the syntactic
level, disregarding individual character issues. Ford (2004) recommends
handling white-space immediately after each token, and we mostly followed
his advice in Fig. 4.8.

White space sensitive parsing. There are, of course, exceptions to the above
rule. Some languages use indentation or line-breaks as part of their syntactic
structure. Hereunder Haskell and Python use indentation to mark code
blocks (what many other languages solves with braces), and Scala allows
using line breaks as statement separators (what most C-family languages,
including Java, do with semicolons). White-space-sensitive parsing, is a
tempting design technique for DSLs as well: It allows to create models that
are more concise, and may resemble human-aimed notation. For instance,
in the Clafer Bak et al., 2016, we chose to use indentation and newlines to
group and separate model elements, so that the models look more similarly
to notes made by someone collecting main bullet points about a domain.
White-space-sensitive syntaxes have also some disadvantages; chiefly it is
hard to move pieces of code between places at different level in the blocks.
They may also be confusing to programmers who trained with classical
block-oriented syntax.

When your language has white-space sensitive syntax, the parser needs to
consider white space. This is typically done by tracking the current nesting
(counting tab characters or spaces), and using an explicit new-line character
as a separator in the productions listing statements, declarations, etc. The
unimportant white space, not at the beginning or at the end of a line, can
still be handled at the lexer level for simplicity. Refer to the manual of
your parsing system to see, whether any explicit support is provided for
white-space sensitive parsing.

Allow comments and handle them at the lexer level. Always include some
syntax for comments in your DSL. Comments not only allow users to
annotate models, but also help to experiment and to quickly hide defunct or
underdeveloped parts of the model. They are an important usability feature
(Karsai et al., 2009).

For most language implementation tasks, comments are considered white
space and they should be handled in a lexer. Whether handled in a lexer or a
parser, they are typically not saved in an AST, but just consumed. The only
problem is caused by multi-line comments, which should be allowed to be
nested for usability purposes, so that it is possible to comment out a piece
of program that already contains comments. Nested comments, like nested
parentheses, are not regular languages, so they cannot be defined just with

Chapter 4. Concrete Syntax 129

regular expressions, without the additional power of context-free languages.
In practice, lexers often include built-in extensions (for example nesting
counters), so that it is possible to handle (even) nested comments at this level.
Of course, PEGs, like in Parboiled2, have no problems handling nested
structures, so this is not an issue there. Ford (2004) proposes the following
rule for handling nested comments in a production. It uses a negative
predicate (the exclamation mark that means “anything except” the operand).

comment→ ’/*’ (comment | (! ’*/’))∗ ’*/’ (4.28)

The rule says that a comment opens with a slash and asterisk and ends
with an asterisk and slash. Between the delimiters, we allow an arbitrary
mixture of other comments and any characters that are not a closing se-
quence for a comment (!’*/’). This rule could also be formulated in Xtext.
The Xtext syntax specification language includes the, so called, until tokens,
negative tokens, and hidden tokens13 that help parsing multi-line nested
comments. The terminal grammar that we imported in our example supports
default handling of Java-like multi-line and single-line comments using a
simpler rule. This means that our implementation of the finite state machine
language in Xtext allowed comments, although not nested comments.

Like for any other guideline, there is an exception from this one, too. If
you are building a tool that processes comments, for instance a docbook/java-
doc-style processor, or if the user comments are supposed to be forwarded
to generated code, then comments need to be parsed for information with
proper rules, and represented explicitly in the AST meta-model.
Do not use lexing and regular expressions for nested inductive structures.
Only use regular expressions for “finite memory” constructs. A common
picture is a web-programmer trying to parse a complex input using regular
expressions. The expressions are growing and becoming increasingly
complex, but some cases remain uncovered, and new bugs pop up all
the time. We would like you to develop an intuition, when to switch to
grammars when parsing, so that you can avoid these frustrating situations
in your developer practice.

Intuitively, a regular language can be recognized using finite and bounded
amount of memory. Languages that require counting during parsing are
not regular. For instance the language representing all mixtures of balanced
pairs of parentheses is not regular. Here is one example word in this lan-
guage: “((((()))))).” Imagine a finite memory recognizer for this language
as a finite state automaton. With every open parentheses we need to advance
to a new state to remember how many are opened, and with each closed
one we can retract to the previous state. So in the example above, we will
advance through five states when opening the parentheses, and start to move
back when the first one is closed. We can always create a sufficiently long
string of nested balanced parentheses, on which your recognizer will “run
out of memory” and loose track of balanced pairs during parsing. As soon

13https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html#syntax

https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html#syntax

130 Andrzej Wąsowski. Thorsten Berger

as we have to reuse one of the previously visited states we will not know
precisely how many parentheses have been opened: the number that was
open at the very first visit, or at the second one. (Recall that for a finite
automaton the only way to store information is to change states.)

This result is formalized in mathematical linguistic under the name
the pumping lemma for regular languages. (We recommend the book by
Hopcroft, Motwani, and Ullman (2001) for a thorough study of this theory.)
It means that if there is some form of arbitrary nesting in your language,
you will not be able to parse or validate it using regular expressions, but
you need a grammar.14 In these cases, there is no point to “try harder” with
regular expressions.

Exercise 4.15. Recall that a polynomial is a function whose defining formula is a
sum of terms; each term is a constant factor multiplied by a variable raised to a
natural number. For example 2x3 is a term, and 2x3−2y2 +7x is a polynomial.
Consider the following grammar describing a language of simple polynomials,
starting with the nonterminal poly.

poly →1 poly sign var ’^’ num | ε var →3 ’x’ | ’y’

sign →2 ’+’ | ’-’ num →4 ’0’ | ’1’ | ’2’
(4.29)

In our polynomials, all terms must be signed for simplicity. First, write out
one or two examples of polynomials generated by this grammar. Second, write a
regular expression accepting the same language. Third, replace the production
for var with: var → ’x’ | ’y’ | ’(’ poly ’)’. Understand, what new
polynomials became syntactically legal; write 1–2 examples. Can we define a
regular expression matching the language generated by the modified grammar?

Sometimes you just need to mix parsing and lexing. For some languages,
it is not practical to separate parsing and lexing. This happens for some
advanced (some would say “quirky”) syntax designs. It may happen that
interpreting a grouping of symbols into tokens depends on the parsing
context. For instance in C++ the sequence “<<” could be parsed as a single
token (a shift-right arithmetic operator), or as two tokens (two opening
angle brackets in a list instantiation). Compare how double angle is used
in these two pieces of C++: “x >> 2” vs “list<list<string>>”. In such
situations, it is convenient to distinguish what tokens are we dealing with
based on whether we are in the context of parsing a type expression, or an
arithmetic expression. This is best done directly in the grammar productions,
not in the lexer, when the high-level structure is not known yet. PEG parsing
tends to support such cases well.

Interestingly, the C++ grammar, prior to version C++11, was defined
with a separate parsing and lexing phase, instantiating a list of lists of
strings could not be written as above. Instead one should have written

14Technically a push-down automaton would suffice, but typical language definition tools give
you a choice between regular expressions and grammars.

Chapter 4. Concrete Syntax 131

“list<list<string> >” separating the angle brackets, which is confusing
for the users. The newer versions of C++ and Java, which uses a similar
syntax for generics apparently do not suffer from the same problem.

Even if you need to tokenize based on the syntactic context, we recom-
mend to limit this practice to the absolute minimum, and still perform most
of tokenizing and parsing separately.

Figure 4.13: The left-most
derivation tree for the
expression x+y∗ z using the
grammar from Eqs. (4.14)
to (4.16). Compare to
Fig. 4.3

Avoid ambiguity in grammars. The grammar expression grammar from the
beginning of the chapter (4.14–4.16) is ambiguous. The rightmost deriva-
tion shown therein (4.30) gives rise to the parse tree shown in Fig. 4.3. The
following derivation, which is also right-most but picks the production rules
in a different order, leads to the tree in Fig. 4.13. A different tree! Check!

expr→2 expr ’*’ expr

→3 expr ’*’ ID

→1 expr ’+’ expr ’*’ ID

→3 expr ’+’ ID ’*’ ID

→3 ID ’+’ ID ’*’ ID (4.30)

Exercise 4.16. Write down a left-most derivation of the string x+ y∗ z using the
grammar of Eqs. (4.14) to (4.16), and draw the corresponding parse tree. Which
tree did you obtain? Is it the only possible left-most derivation tree?

In general, we define ambiguity as follows:

Definition 4.31. A grammar G is ambiguous iff there exists a word (a
sequence of symbols) that can be derived from the start symbol of G in
more than one way, so expanding nonterminals in different order or using
different productions, and resulting in two different parse trees.

As you can see, depending on the order of applying the productions we
obtain either a representation of (x+ y)∗ z or of x+(y∗ z)! (Which tree is
which?) Not only for addition and multiplication, but in many other cases,

132 Andrzej Wąsowski. Thorsten Berger

this choice has serious consequences! You should control the ambiguity of
your grammar so that you are sure that the precedence of the operators and
similar structures is handled in agreement with your intentions.

For this very reason, many parsing tools restrict the input language for
syntax specification to an unambiguous subset of context free grammars
such as LL(1), LALR, LL(∗), LR(k), or even PEGs. Typically, the ambi-
guity errors in input grammars are detected by these tools during parser
construction. Most of these algorithms require that at any given time a rule
can be chosen deterministically, otherwise an ambiguity is detected. PEGs
eliminate non-determinism by using a fixed rule ordering combined with
deterministic backtracking.

An ambiguity error message flags an error in your grammar, not in the
parsing tool! Whatever tool your are using, you should understand whether
it reports ambiguity errors, and what mechanisms it offers for handling
the ambiguity problems. Most parsing tools allow to specify precedence
of operators which reduces non-determinism. Also, ambiguous grammars
tend to be left-recursive, like our example with expressions. Eliminating
left recursion tends to eliminate ambiguity as well (especially if the parsing
tool follows a fixed left, or right parsing strategy). We talk about the
left-recursion elimination below.

Ambiguous grammars, like our expression grammar, tend to be easy
to write. They strongly resemble abstract syntax definitions. In fact,
researchers often use ambiguous grammars to define “abstract syntax” in
papers. If you are just starting to doodle a syntax for your language, it may
well be the easiest to start with proposing an ambiguous grammar first, a
so called baseline grammar, and to eliminate the ambiguities once you are
satisfied with the core design.

Like every rule, also this one must have an exception. TXL (Cordy, 2006)
is a parsing tool that embraces ambiguity and expressly allows working with
ambiguous grammars. This makes writing TXL grammars much easier, at
the cost of making the control over what trees are constructed more difficult.
Left recursion elimination. The simple expression grammar used above is
left-recursive. In production (4.16) the non-terminal expr is immediately
expanded to another instance of expr, followed by some other symbols.
Left-to-right parsers cannot handle left-recursion, due to prefix-ambiguity.
Let us try to understand why this might be a problem. Intuitively, the
left-to-right parsers try to match a rule like the one in (4.16), but cannot
decide whether it is applicable or not. It seemingly allows infinite recursion:
the very same rule can be tried immediately again, and again. Formally, we
define left recursion as follows:

Definition 4.32. A grammar is left-recursive if and only if it has a non-
terminal symbol n such that there exists a derivation n→+ nα for some
arbitrary string of symbols α . (Aho et al., 2006)

In other words, the grammar is left recursive if it has a production with n
on the left-hand side that can be expanded, possibly multiple times, until

Chapter 4. Concrete Syntax 133

we obtain n as the left-most symbol again. Productions (4.16) and (4.15)
are both left-recursive. You are encouraged to convince yourself that none
of the productions in Figs. 4.6 and 4.7 are. This might be a bit harder to see
in a grammar written using Xtext or Parboiled2 than in abstract EBNF.

Inexperienced users of modern parsing tools frequently suffer from
left-recursion issues. Only recently, ANTLR, which is the parsing tool
underlying Xtext, started to support automatic left-recursion elimination
for the special case of grammars with directly self-recursive productions
(so all the left-recursion appears in the same EBNF rule, perhaps using
several alternative cases). At the time of writing, Xtext however does
not make benefit from this functionality. Thus Xtext grammars cannot be
left-recursive, and ANTLR grammars cannot include left recursion along
several separate productions. Furthermore, most PEG implementations,
including Parboiled2, simply loop indefinitely on left-recursive grammars.

This restriction of Parboiled2, ANTLR, Xtext, and of many other tools,
is not a serious one, as it is widely believed that all interesting programming
languages are specifiable in a non-left recursive syntax. The only problem
is that it sometimes takes some effort to put the grammar of the language
in the right form. Learning how to do it, also helps to fine tune operator
precedence and associativity, which is a useful skill, if you ever use a
parsing tool without direct support for operator precedence specification
(like Xtext or Parboiled2).

Let us simplify our expression grammar for a moment, to just two
rules, in order to facilitate explanation (we ignore the second rule with
the multiplication):

expr→ ID | expr ’+’ expr (4.33)

For brevity, we use parentheses instead of trees to show different parsings
below. For the input string “w+z+y+z” the above grammar admits, among
others, the following three parse trees:

((w+ x)+ y)+ z the left-associative,
(w+ x)+(y+ z) a balanced one,
w+(x+(y+ z)) the right-associative.

If you cannot see why these trees arise, try to write out the corresponding
derivations. To eliminate left recursion, we would like to disallow arbitrary
parse trees, and focus the parser on one particular format, the last one listed
above. The parsing w+(x+(y+ z)) makes it particularly clear that we can
see a complex arithmetic summation just as a sequence of additions, which
always starts with an identifier and then it is followed by more identifiers,
separated by addition symbols. This really looks like a plus-separated list
of identifiers! A standard grammar generating a comma-separated list of
identifiers is not left-recursive (Try to write it out! see Exercise 4.34). We
should be able to model a list of additions the same way.

134 Andrzej Wąsowski. Thorsten Berger

If you see it like that, there is no inherent left-recursion in parsing
long summations. The left-most symbol in an input string is always a
known terminal, here an ID, not a full-blown expression. This suggest the
following grammar transformation:

expr→ ID (’+’ ID)∗ . (4.34)

After this change there is no more left recursion left, but we still express
the same language as the original grammar. Let’s generalize this example
to a rule that handles the most cases of left recursion in practice. In the
following figure, the grammar on the left can always be rewritten to the
grammar on the right, without changing the generated language:

Figure 4.14: The workhorse
rewrite rule of the left
recursion elimination.

n→ β | nα n → β (α)∗

In the figure, n is a non-terminal, β is a string of symbols not starting with
n, and α is any string of symbols. For our example, n = expr, β = ID, and
α = ’+’ expr.

The rule in Fig. 4.14 is slightly more general than what we did in our
example. It keeps recursive expressions in α under Kleene-iteration, which
is not a problem in this case, as they are not left-recursive. Admittedly, it is
slightly hard to see that this rule may produce a right-heavy derivation tree,
making the string α right-associative, as in β (α(α(α · · ·))). Appreciating
this requires studying Tables 4.1 and 4.2 carefully. In practice, this also
depends on how your parsing framework implements the Kleene star in
EBNF. Most tools would just produce a flat list representation for parsing
Kleene iterations.

Let us consider the original example again, where we had two inter-
dependent left recursions. We recall it here for convenience:

expr→ ID | expr ’+’ expr | expr ’*’ expr (4.35)

The rewrite rule from Fig. 4.14 does not apply directly anymore, as we have
two cases of expressions. A naive attempt to generalize it could produce
something like this:

expr→ ID (’+’ ID | ’*’ ID)∗ . (wrong!)

The above production generates any mixture of multiplications and addi-
tions, which, in principle, means that we can handle all the strings we want.
However, its derivation and parse trees disregard that the multiplication
and addition have different precedence, so that multiplication should bind
stronger than addition. For example, the string “w*x*y+z” may be parsed

Chapter 4. Concrete Syntax 135

as w∗ (x ∗ (y+ z)) instead of the most likely desired (w∗ (x ∗ y))+ z. We
will exploit the two precedence levels to remove left recursion here. At the
top level we have addition, which binds weaker than multiplication. Our
addition is still a plus-separated list, but the basic building blocks must be
identifiers or multiplications of identifiers. We call these elements terms, as
used in algebra for expressions that are summed. We apply the same trick
as before to ensure that summations involve no left recursion:

expr→ term (’+’ term)∗ . (4.36)

term→ term ’*’ term | ID (4.37)

We are not completely done, yet! We still have left recursion in the second
production (4.37), this time between terms. We have replaced expr with
term, as we can only multiply identifiers and other terms. Multiplying
expressions (so additions) is not possible, because addition has lower
precedence. However, when doing this renaming, we have still allowed the
second production to remain left recursive. We shall apply the rewrite of
Fig. 4.14 again to this rule, to eliminate the left recursion entirely:

expr→ term (’+’ term)∗ (4.38)

term→ ID (’*’ ID)∗ . (4.39)

In the new grammar, a summation term is an asterisk-separated list of identi-
fiers. We obtained a grammar for expressions that accepts all the same inputs
as the original example, but reconstructs the tree respecting the operator
precedence. They key to get there, was to apply the rewrite from Fig. 4.14
twice, once per each case, and also to observe that different precedence ex-
pression should be represented by different non-terminals (stratified), where
we can use Kleene iteration at each level. The following figure summarize
the general rule for grammars with left recursion in multiple cases:

n→ β | nαn | nγn n→ m (αm)∗

m→ β (γβ)∗
Figure 4.15: The left
recursion elimination strategy
with stratification of operator
precedence.

In the figure, n is a non-terminal and α , β , γ are any strings of symbols not
containing n. We want α to bind weaker (have lower precedence) than γ .
In our example, n = expr, β = ID, α = ’+’, γ = ’*’, and m is term.

Finally, what if we wanted to allow parentheses in our language, in order
to override precedence? We leave understanding this issue to the reader by
comparing the following two grammars. First, an ambiguous left recursive
grammar with parentheses:

expr→ ID | ’(’ expr ’)’ | expr ’+’ expr | expr ’*’ expr (4.40)

136 Andrzej Wąsowski. Thorsten Berger

and the unambiguous non-left recursive grammar, where precedence has
been enforced. (A factor is an expression that can be multiplied.)

expr → term (’+’ term)∗

term → factor (’*’ factor)∗

factor → ID | ’(’ expr ’)’ (4.41)

Convince yourself that both grammars generate the same strings, and that
the second one is indeed not left recursive, and that it creates derivation
trees that respect the precedence of multiplication over addition, unless
overwritten with parentheses.

4.6 Quality Assurance and Testing for Grammars

Focused tests for small grammar fragments. We strongly recommend to
develop grammars iteratively. Do not attempt writing a grammar for a
complex language in a single seating. Even small grammars hide many
intricate interacting constructs that are difficult to get right. Debugging a
large grammar quickly becomes overwhelming. Instead, create, run, test,
and fix coherent parts separately. At first, scaffold an empty parser that
always fails, or always succeeds. Most tools support this with an empty
start symbol production, or with a special “fail” (respectively “accept”)
combinator. Make sure you can run your parser from this point on, every
time you implement an extension or fix a bug. Build groups of productions
bottom-up, starting from terminals, expressions, block-like compound
groupings all the way to top-level concepts like modules, models and
programs. Feel free to ignore optional syntax elements in early iterations.
Every time a meaningful subset of productions is specified write a unit
test for them, and keep this automated tests alive and passing throughout
the development. Writing tests for small language fragments reduces the
combinatorial explosion of testing on all possible input variations. It also
gives you localized error information that is easy to interpret.

Do not stop working on a grammar, when the parser works. Grammars
should be optimized and refactored. Your first designs are likely to be
suboptimal. Optimization tends to eliminate excessive non-terminals and
rules (Alves and Visser, 2008). Optimization might give you a faster parser,
but most importantly it helps you to understand your parser well. It helps
to spot and remove issues. It makes it easier for others to understand it, to
remove any emerging problems, and to extend it in the future. This other per-
son might be you in two years, surprised how complex a parser you made.
Positive and negative test cases. Figure 4.16 shows example tests for
the Xtext parser of Fig. 4.6. These tests have been written using the
Scalatest framework and the Xtext testing API. The testing framework and
the programming language are inessential here. We could have written them
using JUnit, or in any other JVM language, as these parsers are compatible

Chapter 4. Concrete Syntax 137

1 "Transition variations (positive)" in new Fixture {
2

3 """
4 machine MACHINE [
5 initial STATE
6 state STATE [
7 on input INPUT output OUTPUT and go to STATE
8 on INPUT go to STATE
9]

10]
11 """.parse[Model] should not be None
12 }
13

14 "A machine without initial state (negative)" in new Fixture {
15

16 """
17 machine MACHINE [
18 state STATE []
19]
20 """.parse[Model] shouldBe None
21 }

source: fsm.xtext.scala/src/test/scala/mdsebook/fsm/xtext/scala/ParsersSpec.scala

Figure 4.16: A positive and
a negative test for the
Xtext/Antlr parser using the
Xtext testing API, scripted in
the Scalatest framework.

with the standard JVM infrastructure. We want to draw your attention to
(i) the format of the tests, and (ii) the use of positive and negative test-cases.
Regarding the format, when testing parsers you typically create small pieces
of syntax (we are using Scala’s multi-line strings here), then you invoke
the parser and inspect the result. The parse method used in Fig. 4.17 is
injected into the string class by the book library, which integrates Xtext with
Scala to make writing Xtext tests in Scala more idiomatic.15 The function
returns None if the parser failed, and Some if it succeeded. In these two
simple tests we only check for success, not for the structure of the created
AST. This is often sufficient in small tests for DSLs.

We insist on using both negative and positive test cases. We should
not forget that a parser fulfils two major roles: it translates an input to an
abstract syntax tree, which is later processed by other parts of the tool-
chain, and it validates the structure of the input. Testing a parser only on
positive examples neglects its validation role. A good parser must fail on the
erroneous input. Test syntactic constraints on examples that violate them,
ideally the near-miss examples that violate the rule but resemble a correct
input. In the figure, the first test is positive, the second test is negative.
Notice that the second input string, looks like a plausible model—it takes
some attention to notice that it lacks the initial state required by our syntax.

Figure 4.17 presents two test cases for the Parboiled2 parser developed
earlier in this chapter. The Parboiled2 sub-parsers are accessible via a
call to run. Here, transition refers directly to the transition production
from Fig. 4.7. The direct access to sub-parsers is handy for testing parts
of the grammar in the modular and incremental style recommended above.

15source: xtext.scala/src/main/scala/mdsebook/xtext/scala/XtextScala.scala

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.xtext.scala/src/test/scala/mdsebook/fsm/xtext/scala/ParsersSpec.scala
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.xtext.scala/src/main/scala/mdsebook/xtext/scala/XtextScala.scala

138 Andrzej Wąsowski. Thorsten Berger

Figure 4.17: A positive and
a negative test for the

Parboiled2 parser
recognizing a transition, a
part of the FSM language.

The transition production is
implemented in Fig. 4.7, line

22.

1 "input, no output (positive)" in {
2 "on input I go to T".transition.run() shouldBe
3 Success (Transition("T","I"))
4 }
5

6 "missing white space in transition (negative)" in {
7 "onI goto T".transition.run().toOption shouldBe empty
8 }

source: fsm.scala/src/test/scala/mdsebook/fsm/scala/FsmParserSpec.scala

Most parser combinator libraries expose such an interface naturally, as all
productions in these libraries are usually implemented using a single type—
so every production can be used as a start production, a fully functional
parser. In the first test, we not only check that it succeeded, but also that the
created abstract syntax tree value has the right structure.

At the time of writing, Xtext does not support testing parts of grammar
directly. This is why our Xtext tests invoked the top-level Model rule. An
independent project provides facilities for production-level tests.16

Properties to test on grammars. When creating tests for parsers we recom-
mend considering the following properties:
• Handling white space. For PEGs and any other parsers that mix lexing

and parsing in a single mechanism, it is important to test whether white
space is allowed where it should be, but it is not required more than
strictly necessary. Arbitrary syntax errors involving spaces are irritating
for users. Humans are not concious of white space when reading—it is
only important if its absence would cause a confusion. For instance, in
Fig. 4.17 the second test establishes that white space is required between
“on” and “I” if you want to interpret them as a keyword followed by
an identifier—they are seen a single identifier otherwise. Dually, white
space should not be required if tokens are clearly separatable visually, for
instance between identifiers and operators, separators, or parentheses.

• Optionality of elements. Check if the elements required to be optional
can be omitted, and if they can be added. Both errors are typical: you
might have forgotten to include a question mark in an EBNF grammar,
or to specify an entire optional clause.

• Associativity and precedence of operators. Test associativity if the
order of evaluation influences the semantics for your operators. This
is always the case if your expressions have side-effects. For operator
precedence, compare ASTs both with and without parentheses, to check
if it is appropriately reflected in the nesting of the AST. These tests have
additional importance if you use parser combinators. Parser generators
(like Xtext/Antlr) will warn you that you have left-recursion issues at
generation time. Combinator parsers may enter an unbounded recursion
at runtime, so it is good to test well at design time. See the discussion of
left-recursion, associativity, and precedence in Sect. 4.5.

16https://github.com/itemis/xtext-testing

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/test/scala/mdsebook/fsm/scala/FsmParserSpec.scala
https://github.com/itemis/xtext-testing

Chapter 4. Concrete Syntax 139

• Metamorphic properties. Metamorphic properties are relations between
data involved in several program runs. A classic metamorphic relation in
parsing is that parsing an input, pretty-printing the resulting AST, parsing
the pretty-printed output, and pretty-printing the obtained AST again,
should produce the same AST and the same concrete syntax twice. This
property can be tested on all valid input strings you have. Metamorphic
relations are a good property to test if you have a lot of test cases, or
if you have a possibility to generate inputs randomly. This avoids the
problem of creating many test oracles manually, while it is still likely to
find instabilities.

Test coverage for grammars. As always, the key coverage property to watch
in testing is the coverage of user requirements. You shall test whether user
requirements are met. This is done by creating examples capturing the cases
in the design and requirements documents (Sect. 3.2). At this stage, it is also
useful to involve users. A few sessions with users, where you show them
example models and ask to create new ones, will uncover misconceptions
in the syntax design, confusing notations, incomprehensible error messages,
and missed requirements. Requirements can also be used to established
parsimony of concrete syntax (cf. Def. 3.5). Since maintenance of DSLs is
costly, we encourage you to look for nice-to-have but not required syntax
extensions at this stage, and eliminate them from your grammar.

Finally, it is useful to ensure production and terminal coverage. This can
often be done by creating one large input model including all features of
the language (Bentley, 1986). In this chapter, the model in Fig. 4.5 was
created to fulfil this role. The key advantage of this tactics is that it can be
implemented very fast.

Exercise 4.17. Consider the following simple grammar for a subset of Cascading
Style Sheets.a The non-terminal css is the start symbol. Devise a testing strategy
for this grammar including test objectives, selection of test-cases, scope of testing
and stopping criteria for the testing process. Show some example test cases.

css → specification∗

specification → element ’{’ attribute∗ ’}’

element → ’p’ | ’div’
attribute → attrID ’:’ color ’;’

color → ’black’ | ’white’ | ’red’
attrID → ’color’ | ’background-color’ (4.42)

4.7 Meta-hierarchy for Grammars
Let us step back for a moment and look at Figs. 4.6 and 4.7 again. Both
figures present language definitions. They define what models can be

ahttps://www.w3.org/Style/CSS/Overview.en.html

https://www.w3.org/Style/CSS/Overview.en.html

140 Andrzej Wąsowski. Thorsten Berger

Figure 4.18: A fragment of
the meta-model used in the
implementation of the Xtext
framework for representing

grammars.

written in the finite state machines language. However, these language
definitions are also models themselves. Yes! Grammars are models and
parsers are programs. They are specified in a fixed specification language,
a DSL with its own abstract and concrete syntax.

Since context-free grammars are a DSL, we can define abstract syntax
for them (for instance using meta-modeling) and we can design grammars
for this language (using grammars!). Figure 4.18 presents a fragment of the
original meta-model for the Xtext language.17 Observe that the concepts in
the meta-model reflect what we can present in a grammar, among others
rules and tokens.

Exercise 4.18. Design a meta-model in Ecore (or an ADT in a functional lan-
guage) for representing EBNF grammars as defined in Def. 4.18 and Table 4.2.
Inspect the Xtext meta-model linked above, to identify conceptual similarity.

Defining grammars for grammar languages is not an academic exercise in
sophistry. It is yet another example of the design practice for language tools
known as bootstrapping. Compiler builders for GPLs take implementing
a compiler for their language as the first major project undertaken in the
language itself; a rite of passage for the tools and the language design. This

17The meta-model is available in the source tree of Xtext, see https://github.com/eclipse/xtext-
core/tree/master/org.eclipse.xtext/org/eclipse/xtext (seen January 2020). Our code repository
provides a laid out diagram, which was used to create the Fig. 4.18. See figures/model/Xtext.aird

https://github.com/eclipse/xtext-core/tree/master/org.eclipse.xtext/org/eclipse/xtext
https://github.com/eclipse/xtext-core/tree/master/org.eclipse.xtext/org/eclipse/xtext
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.figures/model/Xtext.aird

Chapter 4. Concrete Syntax 141

practice has spread from the compiler community to the broader community
building language infrastructures in general. Thus Ecore models are rep-
resented as instances of Ecore meta-model, which has been implemented
in Ecore. Xtext grammars are parsed using an Xtext grammar, and so on.
There are two important reasons for this practice. First, building a self-
applying language tool is a rite of passage, the first major case study, for a
language processing system. If the designers of Xtext can “eat their own
dog food” (use their own tool), then they can understand all the usability
issues and develop it further in relevant directions. Second, the designers
of language tools usually really believe in their ideas, so they are eager to
use them, eager to demonstrate their usefulness. For designers of MDSE
tools, like Xtext, the tools themselves serve as a major demonstration of the
power of the paradigm. For example, it is thanks to the use of Xtext, the
Xtext editor in Eclipse can offer syntax completion, and all the diagnostics
facilities, based on just a small language definition.

Bootstrapping a compiler usually involves building an intermediary
compiler in another language first, so that the first native-native compiler
can be compiled. Similarly, bootstrapping a language processing tool
requires implementing less powerful papier-mâché version of the tool. The
early prototype shall powerful enough to build the first real boot-strapped
tool. For instance, a parser generator might be first implemented using a
manually built parser for its own grammar, or using a competing parsing tool.
Once this works, we can generate the parser for the grammar specification
language, and throw out the original simplistic manual implementation.
Afterwards the tool can be evolved by itself, using its own infrastructure.

To make this discussion slightly more concrete, consider the problem of
writing a grammar for regular expressions:

Exercise 4.19. Consider a standalone lexer generator (like Flexa). A lexer genera-
tor is a language processing program. It reads a specification of a lexical structure
(a set of named regular expressions defining tokens) and generates a piece of code,
tokenizing a stream of symbols into a list of tokens. How is lexing done in a lexer
generator? What are the tokens in the input for the lexer generator? Think about
these questions before continuing to read.

The tokens in a regular expression language are (cf. Def. 4.12): a pipe (|), a
plus (+), and an epsilon symbol (ε). We shall also add parentheses, to allow
controlling the precedence, which was implicit in Def. 4.12. Having agreed
on the tokens, we can write a grammar for regular expressions, so that we
can parse them as part of a grammar definition, the lexical specification, for a
hypothetical language processing tool. If you look carefully, Def. 4.12 is al-
ready an ambiguous grammar in disguise. It is best if we reuse its structure:

ahttps://en.wikipedia.org/wiki/Flex_(lexical_analyser_generator)

https://en.wikipedia.org/wiki/Flex_(lexical_analyser_generator)

142 Andrzej Wąsowski. Thorsten Berger

Figure 4.19: The top-level
production (Grammar) of the

grammar for the Xtext input
format (describing

grammars).

1 Grammar:
2 ’grammar’ name=GrammarID
3 (’with’ usedGrammars+=[Grammar|GrammarID]
4 (’,’ usedGrammars+=[Grammar|GrammarID])*)?
5 (definesHiddenTokens?=’hidden’
6 ’(’ (hiddenTokens+=[AbstractRule|RuleID]
7 (’,’ hiddenTokens+=[AbstractRule|RuleID])*)? ’)’)?
8 metamodelDeclarations+=AbstractMetamodelDeclaration*
9 (rules+=AbstractRule)+ ;

10

11 AbstractRule : ParserRule | TerminalRule | EnumRule;

source: github.com/eclipse/xtext-core/blob/master/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.xtext

regex → regex ’|’ regex regex → ’(’ regex ’)’

regex → regex regex regex → ’a’ for any character a∈ Σ

regex → regex ’+’ regex → ε (4.43)

Incidentally, the above grammar is ambiguous and left-recursive. Exer-
cise 4.44 considers transforming it into a non-left-recursive form. Impor-
tantly, the pipe symbol above is a terminal symbol, not the alternative
operator from EBNF (this is why we quoted it). Similarly the quoted plus
symbol, and the quoted parentheses are not EBNF parentheses or Kleene
iteration from EBNF. When writing grammars for a grammar DSL, we face
the same cognitive confusions we had seen when discussing meta-models
for meta-modeling languages in Chapter 3. The challenge there was that we
had to use (meta) classes to represent classes and objects. Now we are using
the grammar rules to represent rules, and the same symbols appear possibly
in two roles: as the object symbols and the meta-language symbols.

Exercise 4.20. Write an abstract EBNF grammar defining the syntax of simplest
context-free grammars, following Def. 4.18. Warning: Do not be surprised—
this grammar will be extremely short, given how simple the syntax of grammar
productions is.

Exercise 4.21. Expand the above grammar to generate the syntax of EBNF
grammars. Your grammar should handle the EBNF operators as specified in
Table 4.2. Compare your grammar to the official Xtext grammar.18 Are there any
signs of conceptual proximity?

Figure 4.19 presents two of the top-level rules of the Xtext grammar for
the Xtext language for comparison. Figure 4.20 summarizes the discussion
of this section with a hierarchical diagram—a grammar counterpart of
Fig. 3.13. In the bottom of the figure, we have the syntax of a concrete
finite state machine model. This model is written in the Fsm language, so

18http://github.com/eclipse/xtext-core/blob/master/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.
xtext

http://github.com/eclipse/xtext-core/blob/master/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.xtext
http://github.com/eclipse/xtext-core/blob/master/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.xtext
http://github.com/eclipse/xtext-core/blob/master/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.xtext

Chapter 4. Concrete Syntax 143

Fsm.xtext

Xtext.xtext

Languages (Grammars)
Models (Files)

Syntax Fragments (Examples)

simple.fsm

M3

M2

M1

‹‹conformsTo››

‹‹conformsTo››

‹‹conformsTo››

Figure 4.20: Hierarchy of
concrete syntax languages
(with the finite state machine
language in the bottom).
Compare to Fig. 3.13

its syntax conforms to the Fsm.xtext grammar. Here conformance means
that it parses without errors. The Fsm.xtext grammar is itself a model,
written in the Xtext language, so it parses agains the Xtext.xtext grammar.
Because of the bootstrapping, the Xtext grammar is specified in itself, and
is possible to parse against Xtext.xtext. This actually happens when you
compile Xtext from source. In the right hand side of the figure, we list
example files in the languages listed to the left. You will notice that all these
examples have been used earlier in the chapter to present these languages.

Further Reading

The standard reference on grammars and parsing is the so called Dragon Book by
Aho et al. (2006). However, many competing books exist and most of them are very
good. A more recent concise reference has been authored by Mogensen (2011).
Classic compiler books have the advantage that they discuss different categories of
grammars, and different classes of parsing algorithm with varying strengths and
weaknesses; a nerdy zoo of exotic constructions, mostly irrelevant for an average
DSL designer. Thus we limited ourselves to a rather superficial discussion of parsing
issues. Anybody building a parsing tool or experiencing performance issues with a
parser (a relatively rare situation with DSLs), is warmly encouraged to delve deeper
into the subject, starting with the above two volumes.

144 Andrzej Wąsowski. Thorsten Berger

The documentation of Parboiled219 is helpful if you need to learn using the com-
binators. Myltsev (2019) describes the design principles, and the implementation
of the Parboiled2 tool. Chiusano and Bjarnason (2014) devote an entire chapter to
the case study of design of a parser combinator library in Scala (see Chapter 9).
Interestingly, as of today, the problem whether PEGs and CFGs are incomparable
is still open. Ford (2004) has shown that there exist languages accepted by a PEG,
that cannot be generated by any context-free grammar. However, we still do not
know whether there exist context-free languages that are not possible to accept with
a PEG. Recently, Loff, Moreira, and Reis (2018) shown that PEGs are surprisingly
expressive, which is an indication (not a proof yet) that they might be a strictly more
expressive formalism than CFGs.

The problem of checking whether a given context-free grammar is ambiguous
is undecidable in general. Knuth (1965) was probably the first to propose a
conservative procedure for deciding the problem, based on detecting the LR(k)
shift–reduce conflicts. More recently, Brabrand, Giegerich, and Møller (2010) give
a short account of state of the art on grammar ambiguity checking, and give a
heuristic conservative procedure for detecting ambiguity.

You might be surprised to see that the recursive descent LL-parsing using left-
recursive grammars is a solved problem, at least theoretically. Unfortunately,
the GLL parsing methods (Lang, 1974) are entering mainstream tools extremely
slowly. Open source libraries are only starting to appear and gather initial interest.20

Independently of the developments in generalized parsing, there are many works
on automatic and manual left-recursion elimination. Above, we presented a simple
method loosely inspired by the section on left-recursion elimination in the book
of Aho et al. (2006). Medeiros, Mascarenhas, and Ierusalimschy (2012) propose
a method to systematically and automatically handle left recursive PEGs. This
method has not been implemented in Parboiled2 at the time of writing.

Xtext provides extensive documentation21 for language designers. We have
included a condensed summary in Appendix C. Bettini (2013) has written a book
on the framework, the best reading material on the topic so far.

Additional Exercises
Exercise 4.22. Explain in English what are the languages described by the fol-
lowing regular expressions; Parentheses are meta-operators used for grouping,
and denotes a single blank character:

a) (10)∗, b) 1(0|1)∗, c) ((0(1|2)3))+.
Examples: The expression ab∗ describes the set of all words starting with a

symbol a and followed by zero or more bs. The expression (aa)+ describes the
language of all non-empty words that can be built from symbol a that have even
length.

19Available at their GitHub page https://github.com/sirthias/parboiled2, seen January 2020
20Examples: https://github.com/rust-lang/gll for Rust, https://github.com/djspiewak/gll-combinators

for Scala, seen January 2020
21http://www.eclipse.org/Xtext/, seen January 2020

https://github.com/sirthias/parboiled2
https://github.com/rust-lang/gll
https://github.com/djspiewak/gll-combinators
http://www.eclipse.org/Xtext/

Chapter 4. Concrete Syntax 145

Exercise 4.23. Decide if each of the following strings belongs (or not) to the
language generated by the regular expression: ’0’|[’0’-’9’]+’.’[’0’-’9’
’a’-’f’]*. Explain why.

a) ’c0ffee.0730’, b) ’0’ c) ’1’ d) ’0830.c0ffee’ e) ’09ea67.’ .

Exercise 4.24. The language L comprises words consisting of zero or more
repetitions of a followed by a single b or a single c. If the final symbol is b
the number of as must be even. If the final symbol is c the number of as may be
even or odd. Write a regular expression matching/generating the language L.

L = {b,aab,aaaab,aaaaaab, . . .}∪{c,ac,aac,aaac,aaaac, . . .} (4.44)

Exercise 4.25. Write a regular expression specifying identifiers as in the following
quote from the ISO C standard: An identifier is a sequence of letters and digits;
the first character must be a letter. The underscore _ counts as a letter. We
recommend writing out several positive and negative examples first.

Exercise 4.26. The following regular expression defines a language of identifiers
built from small letters and underscores: (’_’|[’a’-’z’])*. Improve it so that an
identifier can no longer be built solely of underscores (if it starts with underscore
it has to contain some letters, and possibly more underscores mixed in).

Exercise 4.27. Write a regular expression capturing unsigned fixed-point numbers
with up to 3 digits precision. There are no restrictions on the leftmost and the
right-most zeros. There must be at least one digit to the left and at least one to the
right of the decimal point. Positive examples: 1.5, 123456.00, 199.159, 001.1;
Negative examples: 7, 5.000001, .99

Exercise 4.28. Write a regular expression matching hexadecimal numbers.

Exercise 4.29. The following regular expression matches fixed point decimal
constants:
[’0’-’9’]+’.’[’0’-’9’]+. a) Show an example of a string that begins with a
zero and matches this regular expression. b) Show a string that ends with zero
and matches. c) Modify the expression to disallow prefix zeros and trailing zeros
after the decimal point, except if a zero would be the only symbol before or after
the point.

Exercise 4.30. Write a regular expression matching a correct cardinality ex-
pression of the Clafer language (Bak et al., 2016), according to the following
specification: A cardinality expression is enclosed in square brackets and consists
of two integer constants separated by two consecutive dots. For instance: ‘[1..0]’,
‘[5..10]’ and ‘[11..00]’, but not ‘[0..1..2’. See also Exercise 4.47

146 Andrzej Wąsowski. Thorsten Berger

Exercise 4.31. Write a regular expression (grammar) generating (parsing) Roman
numerals up to 100. Your expression should only match valid numerals, not just
any combination of letters used in them.

Exercise 4.32. Explain in English what is the language described by the following
context-free grammar, with s being the start symbol:

s →1 t u ’a’ v u →3 ’reads’ | ’writes’
t →2 ’John’ | ’Mary’ | ’Alice’ v →4 ’book’ | ’letter’ | ’poem’

Exercise 4.33. Explain in English what language is generated by the following
EBNF grammar, with s being the start symbol.

s →1 s op id | id op →2 ’->’ | ’.’ id →3 ’x’

Exercise 4.34. Consider the following context-free grammar for a comma-separated
list of identifiers, where the start symbol is s and the terminal ID refers to a
standard Java identifier token.

s →1 ’(’ t ’)’ t →2 ID ’,’ t t →3 ε (4.45)

a) Does the string (a, b, c) belong to the language generated by this grammar?
b) If yes, show a derivation. If not, fix this grammar so that it belongs to it.
c) Write a regular expression that accepts the same language as accepted by the

grammar above.

Exercise 4.35. Specify concrete syntax for a comma-separated list of hexadecimal
numbers. Each number is built of arbitrary number of white-space-separated
groups of digits. Each group of digits consists of four digits, except for the
leftmost (most-significant) group which can contain less. Decide whether to
use regular expressions, grammars, or both to solve the task, and argue for your
choice. Positive example: ’c0 ffee, ff, f10 abcd 0123’. Negative example:
’c0ff ee, abcd0123’.

Exercise 4.36. In the following context-free grammar, s is the start symbol. Write
a regular expression that accepts the same language.

s→ a b c b→ b ’1’ | ε a→ a ’2’ | ε c→ c ’3’ | ε

Exercise 4.37. Write a grammar representing the language of balanced parenthe-
ses of three kinds, so ’(’, ’{’, and ’[’, where they can be arbitrarily nested as
long as they are always balanced with a closing parenthesis of the same kind. A
positive example: (())[{}], a negative example: ([){]}.

Chapter 4. Concrete Syntax 147

Exercise 4.38. Recall the language L from Exercise 4.24. Write a context-free
grammar in EBNF generating this language, replacing the original regular expres-
sion. The grammar may be ambiguous and left recursive. Symbols ’a’, ’b’,
and ’c’ will be terminals in your grammar.

Exercise 4.39. In the following grammar, s is the start symbol. Show two different
derivations of different length of two different strings from this grammar. Mark
the derivation arrows with production numbers, so that it is easy to reconstruct
the order in which the rules are applied.

s →1 ’a’ ’b’ s s →3 ’(’ s ’)’ s →5 ’d’

s →2 ’g’ s →4 ’a’ ’b’ s (4.46)

Exercise 4.40. In the following grammar, the start symbol is start. Is this grammar
left recursive? If not, explain why. If yes, eliminate the left recursion (write down
the non-left recursive grammar in EBNF accepting the same language).

start→ ’(’ parameterList ’)’

parameterList→ parameter | parameterList ’,’ parameter

parameter→ ID ID (4.47)

Exercise 4.41. Which of the following grammars are left recursive? Symbol s is
the start symbol.

a) s→1 s g, g→2 ’a’ ’b’, s→3 ’c’ ’d’
b) s→1 g s, g→2 ’a’ ’b’, s→3 ’c’ ’d’
c) s→1 x y z, x→2 z, z→3 ’a’ | ’b’ | s, y→4 ’c’ | ’d’

Exercise 4.42. Eliminate left recursion from the following grammars:

a) stmt→1 stmt ’;’stmt, stmt→2 ’{’stmt ’}’, stmt→3 ’print’ | ’skip’
b) qualified-name→1 qualified-name ’.’ ’ID’, qualified-name→2 ID

Exercise 4.43. Consider the following definition of the conjunctive normal form
(CNF) for propositional logics formulae: A literal is a variable identifier. An
atom is either a literal (say x) or a negation of a literal (say ¬x). A clause is a
disjunction of several atoms (possibly zero), for example: (x || y || ¬z). A CNF
formula is a conjunction (&&) of zero or more clauses. Write a non-left-recursive
EBNF grammar for parsing propositional formulae in CNF, as defined above.
Your grammar, should be able to parse, among others, the following example:
(x || y || ¬z) && (¬x) && (x || ¬x)).

148 Andrzej Wąsowski. Thorsten Berger

Exercise 4.44. Eliminate left-recursion from the grammar in Eq. (4.43) on p. 142.

Exercise 4.45. This exercise attempts to develop a more domain-specific syntax
for Morse code than the one presented in the chapter. A message in Morse code
consists of a sequence of short and long tones. We can represent a short tone by a
single dash character (-, a minus) and a long tone by three consecutive dashes
without any spaces between them (---). Spaces separate long and short tones. A
single slash character (/) marks a break between words.

Write a short valid input string in this syntax, so that you can example. For
instance, transcribe “MDSE IS FUN”. Write an EBNF grammar defining a
message in the Morse code over the set of the above three tokens (long tone,
short tone, space, and slash).

Exercise 4.46. Revisit the mathematically oriented syntax for finite state machines
presented in the left part of Fig. 4.4. Write 2–3 more variants of this example. For
instance, consider whether it is required to use let definitions, or if the definitions
can be nested directly in the “simpleFSM,” can naming of finite state machines
be optional? Then write an abstract EBNF grammar generating this language or
use your favourite syntax specification tool to implement it.

Exercise 4.47. Parsing cardinality expressions, like those in Exercise 4.30, using a
regular expression is suboptimal. Separating elements of the expression is clumsy,
and it is somewhat messy to control the white-space. Write an EBNF grammar
for Clafer’s cardinality expression, following a slightly reacher specification than
the one above.

A cardinality constraint is enclosed in square brackets and consists of two
integer constants separated by two consecutive dots. For instance: ‘[1..0]’,
‘[5..10]’ and ‘[11..00]’, but not ‘[0..1..2’. A cardinality constraint can also
be a single character selected from ’?’, ’+’, ’*’. Assume that there exists a
terminal symbol INT that is defined, and you can use it in your grammar. It
matches non-negative integer constants.

Exercise 4.48. [mini-project] The advantage of a rich language workbench (Xtext)
over a simple parser (parboiled2) is that it can support a broader range of use
cases than just parsing. Use editor generation facilities to generate an Eclipse
plugin for the finite state machine language, and to generate a web editor for this
language. Use the Xtext documentation for detailed steps in the process.

Exercise 4.49. [mini-project] Use https://github.com/xtext/xtext-external-editors
to generate vim, atom and sublime syntax definitions for your external DSL.
Alternatively, develop your own generator of syntax highlighting from Xtext
grammars. Use the tool to obtain syntax highlighting models for complex Xtext
languages (for example Xtend and Xtext itself).

Exercise 4.50. [mini-project] Use the Xtext New Project wizard to initialize a
grammar from an existing Ecore meta-model. Use the meta-model for feature
diagrams shown in Fig. 3.20 on page 87 available from the book code repository
at featuremodels/model/FeatureModels1.ecore. Xtext will generate a default gram-

https://github.com/xtext/xtext-external-editors
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.featuremodels/model/FeatureModels1.ecore

Chapter 4. Concrete Syntax 149

mar for this language. Edit the generated grammar to improve readability and
write-ability of the syntax. Revise the syntax and test in a generated editor as
many times as you need, until you are satisfied.

Exercise 4.51. Recall that, unlike context-free grammars, the program expression
grammars are deterministically processed from left to right, and once a rule
matches, a typical PEG parser is not backtracking. Consider a variant of the rule
for inputClause from Equation (4.21). We basically replace the optionality by
an alternative. Interpret the following production as a PEG not a CFG rule:

inputClause→ ’on’ ’input’ ID | ’on’ ID (4.48)

Does reordering (swapping) the two operands of the alternative in the above
production affects the language this production accepts? Reflection points: Ford
(2004) writes that this question is often obvious, but sometimes gets difficult. In
general, it is an undecidable problem. This problem is trivial for context-free
grammars—the reordering never changes the generated language. (Think why!)
There is an interesting duality between PEGs and CFGs: for PEGs ambiguity is
trivial (always unambiguous) but commutativity of alternative is undecidable. For
CFGs the alternative operator is commutative, while ambiguity is undecidable.

Exercise 4.52. Following Ford (2004), Parboiled2 supports syntactic predicates.
A syntactic predicate enforces a condition on the current symbol. A positive
predicate (must hold) is written &(p) and a negative predicate (must not hold)
is written !(p). The predicate action does not consume any symbols from the
input, and does not add anything to the output. The rule just fails and backtracks
if a predicate is violated. The predicate p, in great simplicity can be any Boolean
function that examines the current symbol, for instance: Is it a digit? Is it a letter?
Is it capitalized? Typically with PEGs, the symbols are input stream characters.22

Rewrite the ID production in Fig. 4.8 to use only IDSuffix and a negative
predicate instead of IDFirst. Notes: The formulation in Fig. 3.5 is likely better,
but the point is to train the use of predicates in PEGs. If you seek an example,
Ford (2004) shows a negative predicate in Figure 1, the Primary rule.

Exercise 4.53. Design positive and negative test cases for the grammar of Equa-
tion (4.41). Select the test cases to ensure good coverage, and argue for your
selection of cases, as well as for the choice of the coverage metric.

Exercise 4.54. Design a concrete textual syntax for simple Ecore-like models,
including classes, binary references, and generalization. Express your syntax
definition as a context-free grammar.

Exercise 4.55. Design a grammar for the core of the XML language (opening/-
closing tags, attributes, and standalone empty-element tags). Make the exercise
more challenging, by including arbitrary non-tag strings inside the elements,
possibly using negative syntactic predicates.

22More about predicates in Parboiled2 grammars at https://github.com/sirthias/parboiled2.

https://github.com/sirthias/parboiled2

150 Andrzej Wąsowski. Thorsten Berger

Exercise 4.56. Recall the basic syntax of grammars without any EBNF extensions
and parentheses, so as shown in Def. 4.18. This syntax is so simple that it can
be described using a regular expression (sic!). Write this regular expression
matching a valid grammar production. Assume that the expression is written over
the tokens: ID and ->. These tokens are obviously also regular, so they can be
inlined into your solution without loosing the regularity of the language.

Exercise 4.57. This exercise can be solved after reading Chapter 5. Use your
favorite parsing tool to define a grammar and parse the Alloy instance syntax,
as shown in the right panel of Fig. 5.14 on page 185. See also Exercise 3.34 on
page 91.

References
Aho, Alfred V. et al. (2006). Compilers: Principles, Techniques, and Tools. Edition

2. Prentice Hall.
Alves, Tiago L. and Joost Visser (2008). “A Case Study in Grammar Engineering”.

In: SLE. Vol. 5452. Lecture Notes in Computer Science. Springer, pp. 285–304.
Bak, Kacper et al. (2016). “Clafer: unifying class and feature modeling”. In: Soft-

ware and System Modeling 15.3, pp. 811–845. DOI: 10.1007/s10270-014-0441-1.
URL: http://dx.doi.org/10.1007/s10270-014-0441-1.

Bentley, Jon (Aug. 1986). “Programming Pearls: Little Languages”. In: Commun.
ACM 29.8, pp. 711–721. ISSN: 0001-0782. DOI: 10.1145/6424.315691. URL:
http://doi.acm.org/10.1145/6424.315691.

Bettini, Lorenzo (2013). Implementing Domain-Specific Languages with Xtext and
Xtend. Packt.

Brabrand, Claus, Robert Giegerich, and Anders Møller (2010). “Analyzing ambigu-
ity of context-free grammars”. In: Sci. Comput. Program. 75.3, pp. 176–191. DOI:
10.1016/j.scico.2009.11.002. URL: https://doi.org/10.1016/j.scico.2009.11.002.

Chiusano, Paul and Rúnar Bjarnason (2014). Functional Programming in Scala.
Manning.

Chomsky, Noam (1957). Syntactic Structures. Mouton & Co.
Cordy, James R. (2006). “The TXL source transformation language”. In: Sci.

Comput. Program. 61.3, pp. 190–210. DOI: 10 . 1016 / j . scico . 2006 . 04 . 002.
URL: https://doi.org/10.1016/j.scico.2006.04.002.

Ford, Bryan (2004). “Parsing expression grammars: a recognition-based syntactic
foundation”. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2004, Venice, Italy, January
14-16, 2004. Ed. by Neil D. Jones and Xavier Leroy. ACM, pp. 111–122. ISBN:
1-58113-729-X. DOI: 10.1145/964001.964011. URL: https://doi.org/10.1145/
964001.964011.

Frost, R. and John Launchbury (1989). “Constructing Natural Language Interpreters
in a Lazy Functional Language”. In: Comput. J. 32.2, pp. 108–121. DOI: 10.1093/
comjnl/32.2.108. URL: https://doi.org/10.1093/comjnl/32.2.108.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman (2001). Introduction to
Automata Theory, Languages, and Computation. Addison-Wesley.

Karsai, Gabor et al. (2009). “Design Guidelines for Domain Specific Languages”.
In: 9th OOPSLA Workshop on Domain-Specific Modeling. URL: http : / /www.
dsmforum.org/events/DSM09/Papers/Karsai.pdf.

https://doi.org/10.1007/s10270-014-0441-1
http://dx.doi.org/10.1007/s10270-014-0441-1
https://doi.org/10.1145/6424.315691
http://doi.acm.org/10.1145/6424.315691
https://doi.org/10.1016/j.scico.2009.11.002
https://doi.org/10.1016/j.scico.2009.11.002
https://doi.org/10.1016/j.scico.2006.04.002
https://doi.org/10.1016/j.scico.2006.04.002
https://doi.org/10.1145/964001.964011
https://doi.org/10.1145/964001.964011
https://doi.org/10.1145/964001.964011
https://doi.org/10.1093/comjnl/32.2.108
https://doi.org/10.1093/comjnl/32.2.108
https://doi.org/10.1093/comjnl/32.2.108
http://www.dsmforum.org/events/DSM09/Papers/Karsai.pdf
http://www.dsmforum.org/events/DSM09/Papers/Karsai.pdf

Chapter 4. Concrete Syntax 151

Kelly, Steven and Risto Pohjonen (2009). “Worst Practices for Domain-Specific
Modeling”. In: IEEE Software 26.4, pp. 22–29.

Klint, Paul, Ralf Lämmel, and Chris Verhoef (2005). “Toward an engineering disci-
pline for grammarware”. In: ACM Trans. Softw. Eng. Methodol. 14.3, pp. 331–380.
DOI: 10.1145/1072997.1073000. URL: https://doi.org/10.1145/1072997.1073000.

Knuth, Donald E. (1965). “On the Translation of Languages from Left to Right”. In:
Information and Control 8.6, pp. 607–639. DOI: 10.1016/S0019-9958(65)90426-2.
URL: https://doi.org/10.1016/S0019-9958(65)90426-2.

Lang, Bernard (1974). “Deterministic Techniques for Efficient Non-Deterministic
Parsers”. In: Automata, Languages and Programming, 2nd Colloquium, Uni-
versity of Saarbrücken, Germany, July 29 - August 2, 1974, Proceedings. Ed.
by Jacques Loeckx. Vol. 14. Lecture Notes in Computer Science. Springer,
pp. 255–269. ISBN: 3-540-06841-4. DOI: 10.1007/3-540-06841-4_65. URL:
https://doi.org/10.1007/3-540-06841-4%5C_65.

Loff, Bruno, Nelma Moreira, and Rogério Reis (2018). “The Computational Power
of Parsing Expression Grammars”. In: Developments in Language Theory - 22nd
International Conference, DLT 2018, Tokyo, Japan, September 10-14, 2018,
Proceedings. Ed. by Mizuho Hoshi and Shinnosuke Seki. Vol. 11088. Lecture
Notes in Computer Science. Springer, pp. 491–502. ISBN: 978-3-319-98653-1.
DOI: 10.1007/978-3-319-98654-8_40. URL: https://doi.org/10.1007/978-3-319-
98654-8%5C_40.

Medeiros, Sérgio, Fabio Mascarenhas, and Roberto Ierusalimschy (2012). “Left
Recursion in Parsing Expression Grammars”. In: CoRR abs/1207.0443. arXiv:
1207.0443. URL: http://arxiv.org/abs/1207.0443.

Mogensen, Torben Ægidius (2011). Introduction to Compiler Design. Undergraduate
Topics in Computer Science. Springer, pp. I–XXI, 1–204. ISBN: 978-0-85729-
828-7, 978-0-85729-829-4.

Myltsev, Alexander A. (2019). “parboiled2: a macro-based approach for effective
generators of parsing expressions grammars in Scala”. In: CoRR abs/1907.03436.
arXiv: 1907.03436. URL: http://arxiv.org/abs/1907.03436.

Wile, David S. (2004). “Lessons learned from real DSL experiments”. In: Sci.
Comput. Program. 51.3, pp. 265–290.

https://doi.org/10.1145/1072997.1073000
https://doi.org/10.1145/1072997.1073000
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.1007/3-540-06841-4_65
https://doi.org/10.1007/3-540-06841-4%5C_65
https://doi.org/10.1007/978-3-319-98654-8_40
https://doi.org/10.1007/978-3-319-98654-8%5C_40
https://doi.org/10.1007/978-3-319-98654-8%5C_40
https://arxiv.org/abs/1207.0443
http://arxiv.org/abs/1207.0443
https://arxiv.org/abs/1907.03436
http://arxiv.org/abs/1907.03436

152 Andrzej Wąsowski. Thorsten Berger

5 Static Semantics

Plenitude, when too plenitudinous,
was worse than destitution,

for—obviously—what could one do,
if there was nothing one could not?

(Lem, 1967)

5.1 Why Static Semantics?

In Chapter 3 (see also Appendix A), we have discussed how to use gener-
alization, containment, cardinality constraints, and associations to control
the set of legal instances of a model. Nevertheless, when working on your
own models, you must have arrived at situations when capturing the exact
set of desirable instances using a class diagram was either impossible or
cumbersome in counter-productive ways. For example, consider the simple
class diagram shown in Fig. 5.1. The model captures parent-child relations
between people. Every person can have up to two parents, and every person
can have some children. The parent-child relation is modeled using two
uni-directional references, since Ecore lacks bidirectional associations.

Person

[0..*] child

[0..2] parent

Figure 5.1: An Ecore class
diagram with two
unidirectional references
(overlayed on top of each
other) for the Person class

It is natural to require, for any instance conforming to this model, that if
person A is a parent of B then the two persons are distinct, and that B is also a
child of A. Figure 5.2 shows instances violating these two invariants. In the
first instance, object B (respectively object C) is not a child of A (respectively
D). The second and third instances in the figure are variations of circularity
problems involving two objects and one object.

Alice: Person

Bob: Person

E: Person

D: Person

B: Person C: Person

A: Person

parent

parent

child

parent

parent

child

parent

Figure 5.2: Three
undesirable instances
admitted by the diagram of
Fig. 5.1. The diagrams show
complete models, not partial
views.

153

154 Andrzej Wąsowski. Thorsten Berger

Figure 5.3: An unexpected
instance for the FSM

meta-model of Fig. 3.1, with
one machine ’borrowing’ its

initial state from another one

: State

: State

: FiniteStateMachine

: FiniteStateMachine

: Model

initial

machine
states

machine
initial

states

machines

machines

In this case, we could fix the class model using a black diamond, to rule out
cycles, and a bidirectional association instead of two references,1 to rule
out violations of inverse of parent–child relations. This would invalidate
all the instances of Fig. 5.2. Unfortunately, the problems mount up quickly
when we add more intricate constraints. What if we are only interested
in instances that contain at least two generations of people? Or families,
where the two parents hold different passports? The meta-models quickly
get large, when you start to be precise about all domain constraints. Often
it is impossible to capture the desired constraint using just the diagram
constructs, due to their limited expressiveness.

In the finite state machine meta-model (Fig. 3.1, page 58), we would like
to require that the initial state of each machine is also its own state. An
instance violating this requirement is presented in Fig. 5.3. Working around
this problem is cumbersome. We may turn the initial reference in Fig. 3.1
into a containment (diamond). This would prevent referencing a state from
another state machine, at the cost of creating a new problem: the collection
of states would no longer contain all states, as each object can have at
most one owner. For an even more annoying complication, consider the
following exercise.

Exercise 5.1. Sketch an instance of a finite-state machine meta-model, with two
machine objects and a transition that crosses between states of the two machines.
Is it possible to rule out this instance via meta-modeling?

Problems with capturing constraints precisely are not limited to references
and containments in Ecore, which can only express constraints enforcing
acyclic hierarchies. They are not limited to object-oriented meta-modeling
languages either. We experience the same challenges when building abstract
syntax as algebraic data types in functional style. In fact, Ecore has
slightly more mechanisms to express constraints than the type systems
of mainstream programming languages. As an example, Fig. 5.4 shows an
ADT in Scala corresponding to the meta-model of Fig. 5.1. Lines 1–5 define
a class Person with collections parent and child. This class can only be

1In Ecore, one can enforce that two references are opposites by setting the eOpposite
property (http://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/
EReference.html#getEOpposite())

http://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EReference.html#getEOpposite()
http://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EReference.html#getEOpposite()

Chapter 5. Static Semantics 155

1 // This model disallows cycles,
2 // but also disallows parent-child inversion...
3 case class Person (
4 name: String,
5 parent: List[Person],
6 child: List[Person]
7)
8 // The following fails to typecheck
9 val A: Person = Person ("A", parent = List (B))

10 val B: Person = Person ("B", child = List (A))

Figure 5.4: A Scala ADT for
the Parent/Child example
(cf. Fig. 5.1). An attempt to
disallow cycles ends up with
a model that cannot be
instantiated.

instantiated if parent child relationships are acyclic. In any pure functional
programming language, values with cyclic reference structures cannot be
created using eager constructors. Unfortunately, this not only disallows
cycles but also the duality of parent–child references. Consequently, we
cannot represent that an object is a parent of its own child in this design.

One way to work around this, is to use side-effects and imperative
programming: create disconnected objects first, and then wire them up
with assignments. This is essentially what Ecore does, and we have seen
above that it has its own problems. Alternatively, we can follow the same
pattern as in Chapter 3 and model the problem not using object references,
but maps and identifiers (cf. Fig. 3.5). There is however no obvious way
to statically enforce correctness of such maps, so that one is an inverse of
another, or that a transitive closure of map key–value pairs forms no cycles,
etc.

Exercise 5.2. Create an ADT representing the abstract syntax of the person
example in Scala (or any other functional programming language) that uses
explicit person names, and named-based references, like in Fig. 3.5. Specify the
‘broken’ instances, corresponding to those in Fig. 5.2, that type-check against,
and can be constructed successfully with, your ADT.

Figure 5.5 presents an alternative abstract syntax in Scala for our example.
In this case, we are using lazy (by-name) references to encode cycles. The
main idea is found in lines 1–3, where parent and child are properties that
resolve to a lazy list of persons with a delay. Because the value of parent and
child are placed in a function value, a lambda, they are not evaluated before
access. This way we can complete constructing a person object without an
immediate access to the parent and child objects. These references need to
exist only later, when we ask for parent or child properties in a subsequent
computation. The remaining part of the code provides a more convenient
API to construct the objects. If you are not a Scala programmer, feel free to
skip to the next paragraph. Lines 6–10 define a convenience constructor (a
factory function) that uses call-by-name to create Persons without evaluating
the child/parent objects. This allows constructing objects without explicit

156 Andrzej Wąsowski. Thorsten Berger

Figure 5.5: A Scala ADT for
representing persons purely;

corresponds to the Ecore
model in Fig. 5.1. This

design can be instantiated,
and can represent the duality
of parent–child relationships,

unlike Fig. 5.4, but cannot
prevent cycles.

1 class Person (name: String,
2 parent: ()=>LazyList[Person],
3 child: ()=>LazyList[Person])
4

5 object Person {
6 def apply (
7 name: String,
8 parent: =>LazyList[Person] = empty,
9 child: =>LazyList[Person] = empty): Person =

10 new Person (name, ()=>parent, ()=>child)
11 }

source: person.scala/src/main/scala/Person.scala

Figure 5.6: Four instances
of the ADT in Fig. 5.5. The

first instance shows that
duality of the parent/child

relationships can be
represented in a pure

manner using laziness.
Unfortunately instances

(b)–(d) show that all
pathological cases of Fig. 5.2
can be represented as well.

1 // (a) Capturing the parent-child duality (a positive example)
2 lazy val Mom: Person = Person (name="Mom", child=LazyList (Son))
3 lazy val Son: Person = Person (name="Son", parent=LazyList (Mom))
4

5 // (b) A violation of parent-child duality (a negative example)
6 lazy val B = Person (name="B", parent=LazyList (A))
7 lazy val A = Person (name="A", child=LazyList (C))
8 lazy val C = Person (name="C", parent=LazyList (D))
9 lazy val D = Person (name="D")

10

11 // (c) Circular instances with two objects (a negative example)
12 lazy val Bob: Person = Person (name="Bob", parent=LazyList(Alice))
13 lazy val Alice = Person (name="Alice", parent=LazyList (Bob))
14

15 // (d) A circular instance with a single object (negative)
16 lazy val E: Person =
17 Person (name="E", parent=LazyList (E), child=LazyList (E))

source: person.scala/src/test/scala/PersonSpec.scala

lambdas, bringing the experience closer to a lazy programming language
like Haskell.2 We also add default values for the parent/child properties, so
that it is easy to construct objects without parents or children.

Figure 5.6 shows example instances of this “lazy” design. All values in
this figure type check and, thanks to laziness, can be explored at runtime
without causing stack overflows. The instance (a) demonstrates that we can
now represent both parent–child references that are opposite of each other
like in Ecore. The Mom object is the parent of the Son object, and the Son
object is a child of the Mom object. This was impossible to represent in the
eager design of Fig. 5.4. This relaxation allows modeling cyclic structures,
but it is too weak to control them. We still lack facilities to enforce that some
references are inverses of each other while others remain acyclic. Instances
(b)–(d) show Scala encodings of the unreasonable Ecore instances from
Fig. 5.2. You will experience similar problems, whatever modeling or
programming language you are using. The real-world invariably calls for

2The convenience constructor is needed, because class constructors in Scala can only have
by-value arguments. In a lazy programming language, like Haskell, Fig. 5.5 could be reduced
to lines 1–3.

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.person.scala/src/main/scala/Person.scala
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.person.scala/src/test/scala/PersonSpec.scala

Chapter 5. Static Semantics 157

more intricate restrictions than modeling languages and type systems are
able to express. We shall best give up the delusion of a faithful and direct
representation of domain constraints in the abstract syntax itself.

Domain-specific models have to adhere to domain constraints. The
kind of requirements regarding references and cardinalities we discussed
above should have been uncovered during domain analysis; see Sect. 3.2,
especially question Q4 on page 54. Repeat the analysis if it fell short.
New constraints typically appear throughout the language implementation
process, even during construction of the back-ends. It would be naive to
expect that you can discover all of them in the initial conversation with your
users. Expect the set of domain constraints to grow throughout a project.

Example 15. During meetings with subject matter experts, it is both efficient
and effective to capture domain constraints in natural language. For instance,
the following constraints might have been collected during domain analysis
for the finite state machine language:

C1 All machines must have distinct names.
C2 All states within the same machine must have distinct names.
C3 For each state machine m, the state designated as the initial state of m is

also a member of the collection of states contained in M.
C4 Transitions cannot cross machine boundaries (target and source are in the

same state machine).
C5 Each state must be reachable from the initial state in each state machine.

The limitations of the implementation of the modeling language will impose
further constraints. For instance, the code generator implemented by the
authors for the finite state machine language does not handle non-determinism.
If you called the generator on a model with non-determinism, it would produce
code that fails to compile. Consequently, the example of Fig. 4.5 is not a valid
input model for this generator. The non-determinism is present in state S0
(lines 4–5 both respond to the same input) and in state S1. This leads us to for-
mulating an additional constraint, at least until a better generator is developed:

C6 Every two transitions originating in the same state must have different
input labels.

Constraints written in English have limited utility. While they are often
easier to understand than constraints written in a formal language, they need
to be checked and analyzed manually. They are also prone to misinterpreta-
tion, as natural language is often ambiguous. To use domain constraints in
an automated language processing tool we need to write them in a machine-
processable form, unambiguous, executable, decidable, and testable.

There are two established ways to enforce domain constraints in modeling
languages: formal structural first-order constraints and type systems. We
discuss both methods in this chapter, but emphasize structural constraints
over type systems. Structural constraints, or constraints for short, are a

158 Andrzej Wąsowski. Thorsten Berger

Figure 5.7: Meta-modeling
and two common methods of
defining static semantics for
modeling and programming

languages. The set of
statically valid instances in

the center is the static
semantics of the language.

Instances
conforming

to a meta-model
or abstract-syntax
types (Chapter 3)

Instances
satisfying
textual
domain
constraints
(Section 5.2)

Statically
valid

instances

Type-correct
instances

(Section 5.6)

cheaper and simpler method, suitable for small languages used commonly
in model-driven development (Sections 5.2–5.5). In Sect. 6.8 we present
a simple type system and explain when constraints are insufficient and type
systems should be used. Of course, the two techniques can be combined
in an implementation of a single language to address different problems.

The structural constraints and a type system define the static semantics
of a language.

Definition 5.1. Static semantics defines what models are well-formed (valid)
by constraining structural connections in the model syntax, so that the
model elements are related in a meaningful manner.

Definition 5.2. A well-formed (valid) model instance is an instance that
conforms to the meta-model (it satisfies the diagrammatic constraints) and
satisfies the domain constraints that have been formulated either using
structural constraints or in a type system, or using both means. If a type-
system is used, then a well-formed instance is also called well-typed.

Well-formedness should be established right after parsing and the con-
formance checks performed by the front-end of a tool, the parser. The
early enforcement of well-formedness allows to greatly simplify other
components of a tool chain. An explicit definition of static semantics
also leads to a desirable separation of concerns: the validation and the
interpretation of an input are not mixed. It also allows better code reuse in
the tool chain, as all tools can reuse the same validator.

5.2 Static Semantics with First-Order Structural Constraints

The easiest way to represent domain constraints is to use logical predicates
restricting the connections between model elements. Consider the constraint
C4 above: target and source states are in the same state machine. For
a transition object t, we can specify C4 as a Boolean expression in a
programming language:

t.source.machine == t.target.machine

Chapter 5. Static Semantics 159

Such executable constraints can be used by tools to automatically validate
input models. To program such constraints, a language tool developer needs
to be able to reason about restrictions of structures of abstract syntax trees,
to choose the best formulation and the most effective implementation. We
devote a few pages to a mathematical interpretation of first-order predicates
over models, in order to facilitate development of these reasoning skills.

Definition 5.3. A constraint is a pure (side-effect free) Boolean expression
declared over elements of a meta-model, but interpreted over its instances.
Its purpose is to restrict the set of valid instances of a meta-model.

Constraints are declared over meta-model elements, but their semantics
impose restrictions on the elements of instances. A constraint’s value
decides whether an instance is valid or not. In that, constraints resemble
meta-models, which also restrict the set of valid instances (cf. Fig. 5.7).
If we define the semantics of class diagrams in the same formalism as
constraints, we can obtain a unified understanding of the instance space as an
intersection of the diagram and the constraints. Table 5.1 defines the core se-
mantics of class diagrams by translation to first-order predicate logics. Once
we have interpreted diagrams as first-order formulae, it is straightforward
to conjoin more first-order sentences formulating the domain constraints.

Diagrammatic constraints. Let us discuss the formalization in Table 5.1
row-by-row, just enough to develop a logics-based intuition for reading dia-
grams. For each class C in the meta-model we introduce a unary predicate
of the same name C(·) that holds precisely for the instance objects x that

Table 5.1: Mapping core concepts of class diagrams to first-order predicate logic. Notation: ∀ = for all (universal quantification),
→ = implies, ∧ = and, | · | = the number of elements in a set, [a;b] = an interval of integers between a and b including both
endpoints, ≡ is logical equivalence (equality of logical values). Variables x and y range over objects and values in an instance
model. A conforming instance must satisfy all generated constraints simultaneously. For simplicity we assume that names of all
references and attributes are globally unique in the meta-model.

Class C A unary predicate C(x) true iff the type of object x is C

Class D generalizes class C A constraint ∀x.C(x)→D(x)

Non-containment reference r from
class C to D, C.r : D

 A binary predicate r(x,y) true if reference r from x points to y
and a constraint ∀x,y. r(x,y)→ C(x)∧D(y)

Containment reference from class C
to D, C.r : D

 Same as the non-containment reference plus a constraint that
∀x,y. r(x,y)→ owns(x,y), where owns(x,y) is a special pred-
icated shared between all references in the diagram such that
∀y. |{x | owns(x,y)}| ≤ 1.

Cardinality constraint [a..b] on ref-
erence r in class C

 A constraint ∀x.C(x)→ |{y | r(x,y)}| ∈ [a;b]

Attribute a of type T in a class C,
C.a : T

 Formally the same as non-containment reference: a binary pred-
icate a(x,y) true if the value of a in x is y and a constraint
∀x,y.a(x,y)→ C(x)∧T(y), where T(y) holds iff T is the type of
y

References r1, r2 are opposite A constraint ∀x,y. r1(x,y)≡ r2(y,x)

160 Andrzej Wąsowski. Thorsten Berger

belong to class C. Here, “unary” means that the predicate has one argument.
For the finite state machine meta-model of Fig. 3.1 we create predicates
Model, FiniteStateMachine, State, Transition, and NamedElement.
If a class D generalizes a class C, we require that the predicate C implies
the predicate D: every object of class C is also an object of class D, or, in
other words, the set of instances of C is a subset of the set of instances of D.
Class D is larger, more general. See the second row in Table 5.1. For our
example, this yields the following implications:

∀x.Model(x)→ NamedElement(x) (5.4)

∀x.FiniteStateMachine(x)→ NamedElement(x) (5.5)

∀x.State(x)→ NamedElement(x) (5.6)

There is no corresponding implication for Transition because this class
is not generalized by any other class; transitions are not named-elements.
Since implication is transitive, so is the generalization relation. This cannot
be seen in our example, as the hierarchy of generalization is only one-
level deep. If State had subclasses, they would also be subclasses of
NamedElement. This scheme handles multiple-inheritance, too: a class
can be generalized by more than one super-class. Its instances are simply
instances of all the generalizing classes.

We interpret references as two-argument predicates (binary predicates),
as shown in row 3 of Table 5.1. For each reference r we introduce a
predicate r(·, ·) relating the referencing and the referenced objects. For
instance, for the reference FiniteStateMachine.states in Fig. 3.1 we add a
predicate states(x,y) with the following type restriction:

∀x.∀y.states(x,y)→ FiniteStateMachine(x)∧State(y) (5.7)

Recall that Ecore only supports uni-directional references, and the machine–
states line in Fig. 3.1 is in fact two references, related by a constraint that
the two references are dual (opposite). This means that we also have a
constraint for the opposite direction (5.8) and a constraint relating the two
references (below, cf. the last row in Table 5.1).

∀x.∀y.machine(x,y)→ State(x)∧FiniteStateMachine(y) (5.8)

∀x.∀y.machine(x,y)≡ states(y,x) (5.9)

Moreover a machine is composed of states, so it owns them all, and this
ownership cannot be shared with any other class, as indicated by the black
diamond symbol on the reference arrow in Fig. 3.1. Thus, following the
fourth row of the table, we require that belonging to a collection of states
implies ownership (5.10), and that there is at most one owner for each
object in the model:

Chapter 5. Static Semantics 161

∀x.∀y.states(x,y)→ owns(x,y) (5.10)

∀y. |{x | owns(x,y)}| ≤ 1 (5.11)

A cardinality constraints limits the number of objects that can be referenced.
It can be turned into a restriction on the size of the sets that it defines on
each end of a reference. For the states and machine collections of Fig. 3.1
we have the following constraints (cr. row 5 in Table 5.1):

∀x.Machine(x)→ |{y | states(x,y)}| ≥ 1 (5.12)

∀x.State(x)→ |{y |machine(x,y)}|= 1 (5.13)

The first constraint states that if x is a machine, then it has to contain at
least one state. The second states that if x is a state, then it has to be owned
by precisely one machine.

The set of all constraints describing a diagram fully characterize its set
of instances. It is instructive to compare the following definition with the
definition Def. 4.19 on p. 102.

Definition 5.14. Let M be a meta-model, and ΦM be the characteristic first-
order formula for M derived using the rules of Table 5.1. The set of all
instances (object models) that satisfy the formula ΦM are the semantics of
a meta-model: JMK = {m |ΦM(m)} .

Exercise 5.3. Write out the characteristic first-order formula (the diagrammatic
constraint) for the meta-model in Fig. 5.1. Then consider two rightmost instances
in Fig. 5.2 and convince yourself that it satisfies the constraints. For each con-
straint ensure that you know which objects are bound to x and y in the quantifiers.

Additional textual domain constraints. Now we can use the logical pred-
icates as a vocabulary to talk formally about instances of a meta-model,
to write domain constraints in logic even if they are not expressible dia-
grammatically. But how do we translate requirement constraints to formal
logics? How do we take a constraint, like C1 “all machines must have
distinct names,” and make it formal? In short, we bind all mentioned entities
using quantifiers and split the body in half using an implication.

While this is not always explicit in English, most constraints take a
form of logical implication from a precondition (the antecedent) to a
post-condition (the consequent). You can see it in C1 if rewritten to “all
objects that are machines must have distinct names,” or to “if an object
is a machine, then it has different name from all other machines.” We
assume a convention here that the preconditions are underlined and the
post-conditions follow directly after. Words represented by predicates
in the meta-model formalization are bold. This rewrite also makes the
binding of machines to quantifiers clearer. We now explicitly use phrases

162 Andrzej Wąsowski. Thorsten Berger

like all objects, an object, but we are still somewhat loose about names—
has name—not making it clear that names are instances of a type as
well. In a formalization, all entities mentioned in a constraint need to be
bound with quantifiers and linked to particular sets representing properties.
Consequently, the final formulation of C1 is even more verbose: “For all
quadruples of objects, where the first two are machines and the last two
are their names, the names must differ.”

∀m1.∀m2.∀n1.∀n2. m1 6= m2 ∧
FiniteStateMachine(m1)∧FiniteStateMachine(m2) ∧

name(m1,n1)∧name(m2,n2) → n1 6= n2 (5.15)

Typically, a meta-model constraint in first-order logic starts with quantifiers
naming all the objects involved, followed by a precondition involving types
of objects and any structural assumptions about them. The precondition
implies the post-condition, so what should hold. The implication is the
central structuring element. Recall that an implication holds vacuously if
the antecedent is violated. This way the quantifiers range only over values
that satisfy the precondition, so over the objects of the correct types that
participate in the selected relations.

Another notable pattern visible in C1 is the inequality condition, m1 6=
m2, in the precondition. If m1 and m2 are equal then their names will also
be equal. Indeed, we are interested in the constraint being enforced only for
two different machines. The word different is, however, typically omitted
in English. It is a common mistake from novice constraint writers to forget
it also in logical formalizations. Be careful about that!

Recall constraint C2: “all states within the same machine must have
distinct names”. This is how it reads in the verbose style: “for all 5-tuples
of objects, where one represents a machine, two represent its two different
states, and two represent their names, the names must be different in every
valid instance.” This is how it looks as a sentence in logic:

∀m.∀s1.∀s2.∀n1.∀n2.

s1 6= s2∧ states(m,s1)∧ states(m,s2) ∧name(s1,n1)∧name(s2,n2)

→ n1 6= n2 (5.16)

A careful reader will notice a slight difference between Eq. (5.16) and our
encoding of constraint C1. The latter does not mention the unary type predi-
cates FiniteStateMachine and State, despite references from the constraint
text. These are omitted, because the predicate states is unique in the meta-
model and it enforces the types of its arguments, cf. Eq. (5.7). We have
implicitly used this trick also for the second argument of predicate name,
both for C1 and C2—names enforces the second argument to be a name.
However, this predicate does not help restricting the first argument’s type

Chapter 5. Static Semantics 163

beyond NamedElement. Since many elements in the model are named, we
had to explicitly restrict m1 and m2 to be machines in Eq. (5.15). Remember
that all our constraints are interpreted in conjunction with the diagrammatic
constraints. This can save a lot of typing, but, most importantly, it improves
the readability of constraints considerably. When we switch from logic to
computer languages for writing constraints, many of these redundant types
predicates will become implicit navigations. Constraint C3 demonstrates
the benefits of conciseness particularly clearly:

∀m.∀s. initial(m,s)→ states(m,s) (5.17)

We have used four quantifiers in Eq. (5.15) to introduce four variables.
Equation (5.16) had as many as five quantifiers. In logics, a quantifier binds
a variable. A correct constraint in logics should have no free variables
(variables which are not bound). When writing constraints always check
whether they contain no free variables—these are invariably a sign of
a logical mistake. All variables need to be introduced by quantifiers,
otherwise we do not know how to interpret them. Are they arbitrary?
Is a single value fixed? Are multiple values possible?

The universal quantification (∀) is much more common in domain con-
straints than the existential quantification (∃), because we typically enforce
domain properties on all instances of a type. Often, the universal quantifier
is implicit in English, it is implied, or hidden in an indefinite article, espe-
cially in formal writing, like requirements documents: “A state must have
a machine it belongs to” is likely meant to say that “Every state shall be
owned by some machine.” However existential quantification is also used.
It is often used to express lower bound restrictions that there is at least one
entity of some kind or that some sets are not empty. For the sake of an exam-
ple, let us reformulate Eq. (5.13) using existential quantification. Convince
yourself that this and the original formulations are equivalent in our context:

∀x. State(x) → ∃y.Machine(y)∧ states(y,x) (5.18)

Recall constraint C4 from p. 157: “Transitions cannot cross machine bound-
aries. Target and source states must be in the same state machine.” Here
is how we can detail this constraint taking the concept of transition as the
starting point: “For any transition with a target state s2 and a source state
s1 that belongs to machine m, the target state also belongs to m.” Formally:

∀t.∀s1.∀s2.∀m. source(t,s1)∧ target(t,s2)∧machine(s1,m)

→machine(s2,m) (5.19)

There are many ways to write the same constraint equivalently. We could
have started from a model object, not from a transition: “In every model,
and in each machine of that model, if you take a transition belonging
to this machine (that is a transition sourced in some state belonging to
this machine), its target state also needs to belong to the same machine.”

164 Andrzej Wąsowski. Thorsten Berger

You probably appreciate that the English formulation is much simpler in
the original. The formulation in first-order logic is correspondingly more
complex as well:

∀M.∀m.∀t.
(machines(M,m)∧∃s1. states(m,s1)∧ leavingTransitions(s1, t))

→ (∀s2. target(t,s2)→machines(m,s2)) (5.20)

Writing constraints, like writing code, is an art and a craft. You either
are a genius that can produce optimal formulations instantly, or you must
be a craftsman that can predictably refactor proposed constraints towards
better formulations. An important goal of this chapter is to help you learn
this craft. We can already see above, that it helps to (i) wisely choose the
starting type (the context class), (ii) avoid using more than one implication,
and (iii) maintain a simple quantification scheme. The universal quantifiers,
all in front of the constraint, are often the simplest form to read, but some
constraints require more complex schemes.

These considerations are independent of the concrete programming lan-
guage used to write constraints. First-order logics is probably the most
generic specification language, the basis of most of the languages used in
practice. We used it to introduce constraints, to ensure that your intuition is
robust with respect to idiosyncrasies of more practical programming and
modeling languages. Having said so, the software-oriented specification
languages do offer a lot of devices to make your life easier and the con-
straints more readable. Just compare our best bid for C4, Eq. (5.19), with
the formulation that opened this section:

t.source.machine == t.target.machine.

While this example lacks a quantifier (just one!), the constraint is clearly
made simpler by using navigation instead of predicates and multiple in-
termediate variables. For this reason, we will switch to using realistic
constraint languages in Sect. 5.3.

Exercise 5.4. Recall the determinism constraint C6 from Example 15 on p. 157:
For any two transitions sourced in the same state, the input labels must be different.
Formulate this constraint in first-order logic using the predicates following the
encoding of Table 5.1.

Even though the first-order logics can capture most of the properties we
need, it falls short for some specific but important cases. In particular,
connectedness properties for the model graph, that commonly appear in
modeling languages cannot be captured in first-order logics. One such
constraint is C5 from our example: “Each state must be reachable from the
initial state.” Reachability in a finite state machine means that the directed
graph of transitions must be connected. There must be a directed path

Chapter 5. Static Semantics 165

from the initial state to any other state.3 A state that cannot be reached
appears useless. Connectedness properties are not limited to contrived
mathematical models like finite state machines. They appear in quite many
domain-specific languages that aim to describe processes or physical layout.
A stage in a business process that cannot be activated is useless. A room in
a building that cannot be reached from the main entrance is likely useless.
A track that cannot be entered by a train is useless.

A similar property to connectedness is acyclicity. A graph of arrows
is acyclic if it is impossible to reach each node from its successors. Thus
acyclicity often requires the same expressive power as connectedness. For
instance, if you are building an abstract syntax for spreadsheets, each of
your instances is a particular sheet containing cells. Typically spreadsheet
applications require that there are no dependency cycles between cells.
Otherwise calculations cannot be done. If you are modeling Ethernet
connections, you may disallow cycles in the node graph. When modeling
electric circuits you might want to require them.

Connectivity properties are common, yet first-order logics cannot express
them. The problem is that connectedness properties are global properties
of a graph, while in first-order logics we can only use predicates that relate
a finite number of objects to each other—finite arity predicates capture
only local connections in a graph. To talk about connectedness we need
to be able to express transitive closures of relations induced by predicates.
This cannot be done in classic first-order logics.4 It requires a second-order
logic, where we can constraint not only objects, but also predicates. Below
we present a simple formalization of constraint C5 that uses a transitive
closure, so technically it is written in the second-order logics:

∀m.∀s1.∀s2. initial(m,s1)∧ states(m,s2) → successor∗(s1,s2) , (5.21)

where successor(s1,s2) = ∃t.source(t,s1)∧ target(t,s2) and successor∗ is
the reflexive transitive closure of successor.

In verbose English Eq. (5.21) says: If s1 is an initial state of machine
m, and if s2 is its other state, then s1 and s2 should be related by (possibly
multiple applications) of the successor relation. A state s2 is considered a
successor of a state s1 if there exists a transition sourced in s1 with s2 state
as the target. Notice, that since successor is not defined in our meta-model,
so it is not part of our basic vocabulary, we had to define it in addition.

The introduction of a helper predicate successor is merely a convenience
here. On the other hand, the use of the reflexive transitive closure of a predi-
cate, denoted by the asterisk in C5 is key. Let us define it semi-formally first:

3The direction of a transition in this case is from its source to target, as in concrete syntax.
This direction for connectedness properties does not necessarily have to be the same as the
direction of references in the meta-model (and in the instance), but it very often is the same.

4For the interested reader, this follows from the compactness theorem for first-order logics

166 Andrzej Wąsowski. Thorsten Berger

successor∗(s1,sn) ≡ (s1 = sn) ∨ (5.22)

(∃s2 · · ·∃sn−1.successor(s1,s2)∧ successor(s2,s3)∧·· ·∧ successor(sn−1,sn))

A reflexive transitive closure of a binary predicate is a new binary predicate
that is reflexive—so that sucessor∗(s,s) holds, as enforced by the first
disjunct—and it holds for direct and indirect successors of the left argument
s1–as enforced by the second disjunct. At the definition time we do not
know what are the states s2, . . . , sn−1. The intermediate states and even
their number n are different for each pair of arguments. This is in stark
contrast with a fixed arity of predicates in first-order logics. Equation (5.22)
cannot be written in the first order logics without the informal dots in the
quantification.

More precisely, we define the reflexive transitive closure operator as the
smallest predicate successor∗ satisfying the following equation:

successor∗(s1,sn) ≡ (5.23)

(s1 = sn)∨∃s2. successor(s1,s2)∧ successor∗(s2,sn)

In this context, the smallest predicate means the predicate satisfied for the
smallest number of pairs of states, but still satisfying the equation above. A
curious reader, will notice, that without the minimality requirement, many
predicates satisfy Eq. (5.23). In particular, the always-true predicate that
holds for any two states satisfies it, too. But the always-true predicate
does not capture the connections in the graph at all! It turns out that the
smallest solution to Eq. (5.23) is what we want, as it captures just enough
states, to allow traveling over the successor relation, and not more. It is this
definition of a predicate as a minimal solution of an equation that cannot be
formalized in the first-order logics.

Exercise 5.5. Prove that the predicate successor∗(s1,sn)≡ true satisfies Eq. (5.23).

A minimum reflexive transitive closure is uniquely defined, and captures all
reachable nodes in a graph. Thus if you do not work in logics, but have the
power of a programming language at your disposal, the transitive closure
operator is naturally replaced by using a depth-first-search (or a breadth-
first-search) graph traversal. Therefore, it is important to develop enough
intuition, to realize when a property needs transitive closure, in order to stop
writing quantified sentences and switch to a graph exploration algorithm.

5.3 Writing Constraints in GPLs

The primary use of static semantics, including first-order constraints, is def-
initional: to specify the language precisely, to disambiguate what instances
of the abstract syntax are valid. If this was the only goal, we could formulate

Chapter 5. Static Semantics 167

C1. All machines must have distinct names.
∀m1.∀m2.∀n1.∀n2. m1 6= m2 ∧

FiniteStateMachine(m1) ∧
FiniteStateMachine(m2) ∧
name(m1,n1)∧name(m2,n2)→ n1 6= n2

inv[Model] { M =>
M.getMachines.asScala.forall { m1 =>

M.getMachines.asScala.forall { m2 =>
m1!=m2 implies m1.getName!=m2.getName } } }

The quantifications over machines turn into iterations over collection properties. In order to iterate over machines, we
shift the context to models (the argument of inv). There is no need to bind the name objects as we can navigate to the
values. We use our own implies operator for readability.

C2. All states within the same machine must have distinct names.
∀m.∀s1.∀s2.∀n1.∀n2. s1 6= s2 ∧

states(m,s1)∧ states(m,s2) ∧
name(s1,n1)∧name(s2,n2)→ n1 6= n2

inv[FiniteStateMachine] { m =>
m.getStates.asScala.forall { s1 =>

m.getStates.asScala.forall { s2 =>
s1!=s2 implies s1.getName!=s2.getName } } }

The first quantification shifted to the context type in inv[_]. Otherwise analogous to C1.

C3. For each state machine m, the state designated as the initial state of m is also a member of the collection of states
contained in M.
∀m.∀s. initial(m,s)→ states(m,s) inv[FiniteStateMachine] { m =>

m.getStates.contains (m.getInitial) }

Implications P(x)→ Q(x) are conveniently turned into membership and inclusion tests (P ⊆ Q) if sets of objects
characterized by P and Q are available (contains in Scala). The implication disappears when the precondition is
eliminated (as true→ φ ≡ φ).

C4. Transitions cannot cross machine boundaries (target and source are in the same state machine).
∀t.∀s1.∀s2.∀m. source(t,s1) ∧

target(t,s2)∧machine(s1,m)

→machine(s2,m)

inv[Transition] { t =>
t.getSource.getMachine == t.getTarget.getMachine }

All quantifiers disappear thanks to the use of a suitable context type and navigation.

C5. Each state must be reachable from the initial state in each state machine.
∀m.∀s1.∀s2.

initial(m,s1)∧ states(m,s2)

→ successor∗(s1,s2)
where
successor∗(s1,sn) ≡ (s1 = sn) ∨
∃s2. successor(s1,s2) ∧

successor∗(s2,sn)

inv[State] {s => reachable (s.getMachine.getInitial,s)}
def reachable (s1: State, s2: State): Boolean =

BFS (Set(s1), Set()) contains s2
def BFS (toSee:Set[State],seen:Set[State]):Set[State]={

val seen1 = seen union toSee
if (toSee.isEmpty) seen1
else BFS (toSee.flatMap {succ _}.diff (seen1), seen1)

}
def succ (s: State): Seq[State] =

s.getLeavingTransitions
.asScala.map { _.getTarget }.toSeq

The transitive closure operation is implemented as a custom recursive algorithm (reachable), but not that the main
constraint (line 1), which is still kept in a simple declarative sentential form.

source: fsm.scala/src/main/scala/mdsebook/fsm/scala/Constraints.scala

Table 5.2: Mathematical logics (left) vs implementations of constraints in a programming language (Scala, right). We use our
Scala-Ecore integration layer scala/src/main/scala/mdsebook/scala/EMFScala.scala

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/mdsebook/fsm/scala/Constraints.scala
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.scala/src/main/scala/mdsebook/scala/EMFScala.scala

168 Andrzej Wąsowski. Thorsten Berger

the semantics just in logic, like above. Logic is precise and unambiguous
enough. But static semantics also needs to be enforced by tools; a code
generator, a simulator, a visualizer, an editor. In fact, any tool that processes
models needs to check whether its input is valid. Thus we need a way to
execute constraints, to check whether they hold for each instance.

Constraints written in a general purpose programming language are
executable by definition. We would like to program the constraints, while
maintaining the declarative sentential flavor. A low-level imperative pro-
gramming style, multiple functions, loops, and variable updates, would turn
what should be a concise sentence into a long story. Based on the analysis of
the previous section, we need a fairly high level language in which we can
navigate references, force types of objects, and quantify over sets and types.
Finally, we need a way to access models, or to link the syntax of models,
to a programming language. So far, we used the predicates representing
the meta-model to access a model from constraints. In a programming
language, the abstract syntax framework provides these facilities. Instead of
predicates, we use types, references, and attributes, exposed by Ecore, MPS,
algebraic data types, or whatever other abstract syntax mechanism you use.

Table 5.2 aggregates the constraints discussed in Sect. 5.2 together with
their translations to Scala. We developed a small Scala library that makes
interaction with Eclipse Modeling Framework slightly easier and enforces a
few conventions.5 In Table 5.2, constraints are implemented as anonymous
functions (lambda expressions) returning a Boolean value. The context ob-
ject is bound to the sole argument. The function expression is wrapped in a
factory call inv[T] that represents constraints pertaining to objects of type T.
The created wrapper object provides simple validation logics that can check
whether the constraint holds for all elements of type T in a given model.

The omnipresent collection conversions (asScala) in Table 5.2 are slightly
disturbing. Every time we access an Ecore collection we convert it to Scala.
These inessential conversions are caused merely by impedance of two
collection libraries. Ecore uses the Java collection library. We inject the
necessary casts to access the modern declarative API of the Scala standard
library, including the quantifier functions.

In Constraint C1, the four logical quantifiers are replaced by just two
collection iterations in Scala, one introducing m1 and one introducing m2.
The names of machines are no longer bound using quantifiers. Instead, we
navigate to their values: m1.getName. The shift from universal quantifiers to
collection iteration is deceivingly obvious, not least because the collection
iterators use the same names as the logical quantifiers. This shift, however,
has significant practical implications. We restrict the logic’s ability to
quantify over an entire universe of values satisfying a precondition, to
quantifying over values reachable from the context object via navigation.
While this limits what we can express, it makes constraint checking decid-

5See source: scala/src/main/scala/mdsebook/scala/EMFScala.scala. You can recreate a similar facility
for any mainstream programming language in a few hours.

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.scala/src/main/scala/mdsebook/scala/EMFScala.scala

Chapter 5. Static Semantics 169

able. Now the constraints can be executed. If we follow good practices
of meta-modeling, all model elements are reachable from the root object
anyway. Thanks to the single-partonomy principle (p. 60), the root object
can be used as the context for a constraint in the worst-case.

Constraint C1 uses the implies operator provided by our library. Implica-
tion is a commonly used logical connective in logics, but rarely implemented
in programming languages. It is always easily introduced by the logical
tautology: a→ b ≡ ¬a∨ b. This is how the operator is injected as an
extension method on a Boolean type in our library:

implicit class ImpliesExtension (a: Boolean) {
def implies(b : => Boolean) = !a || b

}

Figure 5.8: A Scala
extension adding the implies
operator to the Boolean
class

The Boolean value is implicitly converted to an ImpliesExtension object,
which provides the new implies method. In Scala, methods can be called
using infix notation, so the new method works very well as an operator. Any
language equipped with an extension mechanism will allow adding a new
operator in a similar manner. It is worth the effort, as logical constraints writ-
ten using implication tend to be more concise, and more readable, than those
written using ternary if-then-else expressions. The latter get overly verbose,
when, without implication, one of their decision branches becomes constant:

inv[Model] { M =>
M.getMachines.asScala.forall { m1 =>

M.getMachines.asScala.forall { m2 =>
if (m1!=m2)

m1.getName!=m2.getName
else

true } } }

Figure 5.9: An example of
an overly verbose
if-then-else expression with a
constant branch

In some languages (Scala, Python and JavaScript among them), the com-
parison operator is extended to Boolean values, enforcing the ordering that
false is smaller than true. This ordering coincides with the implication:
a ≤ b ≡ a→ b. Thus the less-than operator may provide a cheap way
to formulate implication: a <= b. Unfortunately, the ASCII symbol for
less-than resembles the implication arrow in the opposite direction. It is
fairly easy to misread the above as b implies a, while it really means
a implies b. Thus we find it hard to recommend this practice, unless
consistently enforced by all developers involved in a project.

Sometimes, we may be able to eliminate an implication entirely. In
Constraint C3 the implication between predicates has been replaced by a
set membership test. In general implication between predicates can be re-
placed by inclusion of sets they characterize, if these are accessible through
navigation, or through the available API. As soon as the precondition has
been entirely captured by other means, the implication from a precondition

170 Andrzej Wąsowski. Thorsten Berger

to the post-condition can be removed. This happens if we found other ways
of expressing the precondition, for instance filtering by types or navigation
(also in C4).

Exercise 5.6. Implement constraint C6 in a programming language of your
choice.

Constraint C4 is a very simple example of what is often called a commutativ-
ity constraint. Two ways to navigate from the context object to some target
objects should be consistent. This is much easier to see in a GPL than in the
logical formulation, because of explicit navigation. If a transition does not
cross machine boundaries then navigating from a transition to a machine
results in the same machine object whether via the source or via the target
link. Many meta-models contain cycles that should be commuting when
navigating. Systematically inspecting cycles in the meta-model to identify
commutativity (sometimes called diagram chasing) is an established way to
identify validation constraints for instances. Indeed, a careful reader will
notice that commutativity constraints are a generalization of EOpposite
duality in Ecore diagrams (Why?).

Constraint C5 is a special case in our table. Recall from Sect. 5.2
that this constraint is not first-order. It needs to compute a transitive
closure, implemented here using a breadth-first-search. The recursion
breaks the sentential style of the constraint. We wrap the computation
into a Boolean function reachable to nevertheless be able to state the
main constraint declaratively. It is useful to separate sentential constraints
from computationally heavy aspects in such cases, implementing helper
functions that serve as derived attributes of objects. Think of reachable
and succ as if these were new properties of State that might be reused in
other hypothetical constraints that themselves can be written in a sentential
form. If we add a type system or type inference mechanism to a DSL
(Sect. 6.8) we can also integrate the inferred type of an object, or whether
an object type checks against a given type annotation as a derived property
into declarative first-order constraints.

Exercise 5.7. The implementation of Constraint C5 in Table 5.2 is potentially very
inefficient. The reachable state space of the automaton is computed from scratch
every time a constraint is checked. Discuss how to redesign this implementation
to only compute the reachable state space once per machine, which should save
computation time if the constraint is checked on many states.

Everything we said above, applies not only to validating abstract syntax
defined in Ecore, but to any abstract syntax that is exposed to a programming
language as values and types. This includes abstract syntax ADTs in
functional programming languages. The only thing that changes is that you
are using different types and functions to express the constraint. Consider
the following exercise.

Chapter 5. Static Semantics 171

Exercise 5.8. Implement the constraints C1–C6 for the abstract syntax pre-
sented in Fig. 3.5 on page 64. The abstract syntax ADT code is available at
fsm.scala/src/main/scala/dsldesign/fsm/scala/adt/Pure.scala

Obviously, Scala is not the only language, in which one can write validity
constraints. Most modern general purpose programming languages are
perfectly suitable for the task. To illustrate the point, we formulated
Constraint C2 in nine mainstream languages. Table 5.3 explores various
presentation styles, while maintaining the same computational intention.
We do not seek a smarter or a more idiomatic formulation. We display
differences between languages, not between different ways to write a
constraint. And the differences turn out to be minor. Consequently, we
recommend that, in typical projects, where a DSL implementation is a just
a task in a larger system endeavour, you write static semantics constraints in
the language determined by other system requirements. This is likely going
to decrease the maintenance cost, ensuring that developers familiar with the
implementation language are available around to evolve the DSL. Using a
specialized constraint language makes sense if you are developing many
languages (for example a language engineering consultant). Otherwise, the
investment is probably not justifiable.

The book code repository contains not only the source code of all the
nine constraints from Table 5.3, but also the driver code that initializes
the relevant Ecore library, loads the model, and executes the test of the
constraint on several instances. You can use these examples to scaffold
your own projects interacting with the Eclipse Modeling Framework, in
any of the nine programming languages. That we can write this example
in nine different programming languages is a testimony to how recognized
Ecore is as a technology. All the nine programs are using the same Finite
State Machine meta-model, and the same test instances stored in the XMI
format. This also means, that you can use XMI and Ecore as an interchange
platform for language-oriented data. You can write and reuse language
tools implemented in various programming languages, and protect yourself
from being captured by a single vendor.

In the table, all the examples in JVM languages (Scala, Java, Groovy,
Kotlin, and Xtend) use the code generated by the main implementation
of Ecore from the Eclipse Modeling Framework.6 EMF generates an
implementation of a meta-model as Java classes and interfaces. Any JVM
language can interact with these classes. The only problem, as seen for
Scala, might be inefficiencies related to differences in the standard libraries.
In Table 5.3, Scala and Java (sic!) use conversions between legacy collec-
tions and other types. In Scala, as mentioned above, the standard library
provides suitable higher-order API. In Java, the standard lists lack such
API, so it is useful to convert lists to streams, which have a more modern
functional interface. Groovy, Kotlin, and Xtend, all provide extension
methods that enrich Java APIs suitably, so the code is less cluttered.

6https://www.eclipse.org/modeling/emf/

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/dsldesign/fsm/scala/adt/Pure.scala
https://www.eclipse.org/modeling/emf/

172 Andrzej Wąsowski. Thorsten Berger

Scala: Constraint C2 repeated from Table 5.2.
We use asScala to convert from Java collec-
tions used in the EMF API. The implies and
inv functions are implemented in the book’s
library.

fsm.scala/src/main/scala/mdsebook/fsm/scala/Constraints.scala
val C2 = inv[FiniteStateMachine] { m =>

m.getStates.asScala.forall { s1 =>
m.getStates.asScala.forall { s2 =>

s1!=s2 implies s1.getName!=s2.getName } } }

Python: Very concise thanks to the dedicated
comprehension/query syntax. The quantifiers
come first, a precondition at the end. Type
checking only at runtime. PyEcore helps
to bring DSLs to robotics and data science
projects.

fsm.py/constraints.py with pyecore
C2 = lambda m: all (s1.name != s2.name

for s1 in m.states for s2 in m.states if s1 != s2)

JavaScript: No type-checking, not even at
runtime; C2 might hold on any object that
has ‘states’ and ‘name.’ We cast lists to
array as the standard list API is too weak.
Note the quirky use of less-than operator as
implication, in a “wrong” direction. Ecore.js
helps development of DSLs for the web,
server- and browser-side.

fsm.js/constraints.js with ecore.js
var C2 = m =>

m.get(’states’).array().every (s1 =>
m.get(’states’).array().every (s2 =>

(s1!=s2) <= (s1.get(’name’)!=s2.get(’name’))))

Java is the most verbose of the used languages.
Its collection API is rather underdeveloped.
We cast lists to streams, in order to access quan-
tifier functions. The constraint could be made
more concise using a functional programming
library.

fsm.java/src/main/java/mdsebook/fsm/java/Constraints.java
Function<FiniteStateMachine, Boolean> C2 = m ->
m.getStates().stream().allMatch (s1 ->
m.getStates().stream().allMatch (s2 ->
s1==s2||!Objects.equals(s1.getName(),s2.getName())));

Groovy and Kotlin conveniently extend Java col-
lections (using extension methods) with higher
order functions. The default argument “it” in
anonymous functions simplifies the constraints
slightly. Both examples access the Java API
generated by EMF. Kotlin is interesting if your
DSL is to operate on Android devices.

fsm.groovy/src/main/groovy/mdsebook/fsm/groovy/Constraints.groovy
def C2 = {
it.states.every { s1 ->
it.states.every { s2 -> s1==s2 || s1.name!=s2.name }}}

fsm.kt/src/main/kotlin/mdsebook/fsm/kotlin/Constraints.kt
val C2: (FiniteStateMachine) -> Boolean = {

it.states.all { s1 ->
it.states.all { s2 -> s1==s2 || s1.name!=s2.name }}}

Xtend makes the “it” argument even more ex-
pressive, opening its namespace like Java does
for this. You can’t even see “it” in the exam-
ple, where states really means it.states.

fsm.xtend/src/main/xtend/mdsebook/fsm/xtend/Constraints.xtend
val (FiniteStateMachine) => Boolean C2 = [

states.forall [s1 |
states.forall [s2 | s1==s2 || s1.name!=s2.name]]]

C#: A Java-like shape of C2 is possible in C#,
but we show LINQ syntax to demonstrate a
different style, aiming at programmers experi-
enced with database queries.

fsm.cs/Program.cs with .NETModelingFramework
Func<IFiniteStateMachine,bool> C2 = m => (

from s1 in m.States from s2 in m.States
where s1!=s2 select s1.Name==s2.Name).All (x => !x);

F#: We show both the LINQ (first) and the
functional (second) form for C2. Note that
the F# LINQ interface includes a universal
quantifier, which makes C2 less cryptic than in
C#. The functional formulation suffers from
type-impedance between collection libraries
(Seq.toList) like many other languages.

fsm.fs/Program.fs with .NETModelingFramework
let C2: IFiniteStateMachine -> bool = fun m -> query {

for s1 in m.States do for s2 in m.States do
where (s1 <> s2) all (s1.Name <> s2.Name) }

let C2a: IFiniteStateMachine -> bool = fun m ->
m.States |> Seq.toList |> List.forall (fun s1 ->
m.States |> Seq.toList |> List.forall (fun s2 ->

s1 = s2 || s1.Name <> s2.Name))

Table 5.3: Constraint C2 from Table 5.2 implemented in nine programming languages for comparison.

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.scala/src/main/scala/mdsebook/fsm/scala/Constraints.scala
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.py/constraints.py
https://github.com/pyecore/pyecore
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.js/constraints.js
https://github.com/emfjson/ecore.js
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.java/src/main/java/mdsebook/fsm/java/Constraints.java
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.groovy/src/main/groovy/mdsebook/fsm/groovy/Constraints.groovy
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.kt/src/main/kotlin/mdsebook/fsm/kotlin/Constraints.kt
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.xtend/src/main/xtend/mdsebook/fsm/xtend/Constraints.xtend
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.cs/Program.cs
https://github.com/NMFCode/NMF
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.fs/Program.fs
https://github.com/NMFCode/NMF

Chapter 5. Static Semantics 173

The Python implementation is based on the pyecore library.7 The
JavaScript implementation is based on the ecore.js library.8 What is inter-
esting about both of these implementations, is that no code is generated.
The interpretation of meta-models happens entirely at runtime, which can
be conveniently done in dynamic languages. The C# and F# examples
use the .NET Modeling Framework (NMF),9 which technically is not a
reimplementation of Ecore, but a similar independent modeling framework
that can import Ecore meta-models. It uses the same XMI format for
instances as EMF.

Importantly, whatever programming language we use the constraints
remain written in pure declarative style. The structure of the model and
the values of properties are not modified during validation, observing a
standard contract between the validator and other components in the tool
chain. This contract is important, as the validation logics might be executed
multiple times, not always under your control. For instance, if the validator
is integrated into an Eclipse editor, constraints are executed every time a
file is saved, sometimes every keystroke a user is typing. Obviously, the
user creating a model should not see her model changed by the validation
logics while typing.

In all nine languages, we have used anonymous functions to represent
constraints, with the context element is bound to the sole argument. Several
languages (Groovy, Kotlin, and Xtend) provide a special variable named
‘it’ that serves as an implicit formal argument to a lambda expression, and
makes writing constraints slightly more concise. In Scala, the underscore
can be used similarly, but it only works well, if you have to refer to the
context object once. (This is why we do not use it.) Furthermore, several
languages, support properties for objects that allow for dropping the set/get
prefixes on accessor methods; hereunder Python, Groovy, Kotlin, Xtend,
C#, and F#. Technically, Scala also supports such syntax, but this would
require an extension to the code generated by Ecore for Java, whereas
Groovy, Kotlin, and Xtend achieve this without any additional code, as their
property implementation is based on conventions.

More interestingly, Python, C#, and F# provide a query-like syntax,
which brings the first order constraints to resemble database queries. When
a first order property is written as a query, three components are distinguish-
able: (i) a binding of an iterator variable name to a set (for/from/for),
combined with (ii) a filter expression that serves as a precondition (whe-
re/select/if), (iii) and a quantifier to establish the result (all/All/all).
The relational encoding exploits a classic result from data-base theory due
to Codd (1972) that relational queries and first-order predicates over data

7https://github.com/pyecore/pyecore
8https://github.com/emfjson/ecore.js, at the time of writing the implementation does not enforce
EOpposite constraints between references. You may need to maintain or check them yourself.

9https://github.com/NMFCode/NMF

https://github.com/pyecore/pyecore
https://github.com/emfjson/ecore.js
https://github.com/NMFCode/NMF

174 Andrzej Wąsowski. Thorsten Berger

elements are equally expressive and sufficiently rich to specify many practi-
cal data restrictions. Programmers with extensive database experience may
find it easier to read and write constraints that resemble database queries.

Equality tests are common in constraints, both in pre- and post-conditions,
so you need a very good understanding of the semantics of equality in the
used programming language. Equality testing with complex objects and
null values easily gets subtle. For example in Java, a test a.equals (b) can
only be made if a is not null, thus you need to test for a == null separately.
On the other hand, the test a == b might be misleading. For instance, two
identical String objects are not equal in Java if they are not physically
at the same memory location. Exactly, for this reason we are using a
helper function Object.equals in our example for Java. Consider how
your language executes equality on complex objects that might potentially
be null. Remember to test these cases, to rule out possible misconceptions.
A mistake here easily flips a constraint value between true and false.

Exercise 5.9. Implement all constraints from Table 5.2 in your favourite pro-
gramming language. Test Ecore instances can be found under fsm/test-files/ in
the book code repository. Alternatively, create your own definition of abstract
syntax and program against it. How well the abstract syntax model supports
establishing constraints? Are there any design issues with it? How well does your
programming language support writing constraints? Consider size and readability
of your constraints against the examples in tables 5.2 and 5.3.

Exercise 5.10. The constraint C2 could be equivalently formulated in English
as follows: “In every finite state machine, the set of states of this machine has
to be the same cardinality (size) as the set of names of these states.” This
basically means that there are no duplicate state names. Implement C2 using
this formulation in your language of choice. Discuss the difference in compu-
tational complexity of the original and the new formulation. Which of the two
formulations is more readable in your opinion? Why?

5.4 Specialized Constraint Languages for Modeling

General purpose languages are hard to beat where it comes to ease of
integration with the rest of your project, the accessibility and familiarity of
the basic tooling. Install an interpreter or a compiler—and you are ready to
go! Almost no setup and no configuration pains. However, sometimes it is
practical to integrate constraints with a meta-model, not with the processing
tools. This is where specialized constraint languages and tools can help.
Using specialized languages may also help to provide more functionality
than just evaluation of constraints—the only functionality that programming
languages provide. For instance, we can use automatic instance generation
to create ad hoc instances for testing tools.

Object Constraint Language. If you are meta-modeling in Ecore or UML
then The Object Constraint Language (OCL) is a natural choice of a
specialized constraint language, as it is particularly well integrated with

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm/test-files/

Chapter 5. Static Semantics 175

these host languages. OCL is a formal language originally designed to
write expressions associated with UML models, including well-formedness
constraints and other formal specifications. It has been later integrated with
Ecore and with several other languages including model-transformation
languages such as QVT and ATL discussed in later chapters. OCL is a
strongly typed declarative language, based on first-order predicate logics
given a programmer-friendly syntax. For example, quantifiers are disguised
as collection operations, and native navigation in object graphs is provided,
so that we do not have to write awkward navigations using predicates
like in Sect. 5.2. OCL allows defining new functions, including recursive
functions. It is, thus, more expressive than first-order logics. OCL can
express transitive closure.

OCL specifications are meant to define invariant conditions that must
hold for the system being modeled or queries over objects described in a
model. Each OCL expression is related to an instance of a model element,
called a context, in line with how we used the term above. The keyword
self returns a reference to the context object. OCL expressions are pure,
i.e., their evaluation cannot alter the instance over which they are evaluated.
Thus OCL is a very good match for our definition of static semantics
constraints (cf. Def. 5.3 p. 159).

Figure 5.10 presents the running example using OCL. More precisely
it presents both the finite state machine meta-model and the associated
constraints using the Eclipse OCLinEcore textual syntax. The figure shows
the same model, the very same file, as in Fig. 3.1 on p. 58, but opened in a
different editor, using a different textual concrete syntax, not the graphical
syntax of Fig. 3.1. Note the same concrete and abstract classes, the same
generalization hierarchy, the same properties, and the same cardinality con-
straints. The textual syntax allows to conveniently show OCL constraints
inline. Each constraint is introduced with the keyword invariant and a
label.

Constraint C1 is found in Line 8. Observe two interesting features: a
binary universal quantifier forAll that iterates over pairs of objects, and the
built-in implication operator. Both of these extensions contribute positively
to simplicity of the formulation. The same advantages are observed in Line
14 for C2. Compare how these constraints have been written in general
purpose programming languages in Table 5.3.

The OCL standard library provides a rich set of logical and set operations,
the usual collection manipulation operations, and all Ecore meta-model
types are directly accessible. We gather the operations used in our examples
along with a few extras in Table 5.4. The closure operation deserves a
longer discussion. We used closure in the implementation of C5 in Line 18.
It computes reflexive transitive closure of a binary relation provided as a
lambda expression. We run closure on a collection of elements of some
type T. As an argument, we provide a function f that given an element of
type T computes a new collection containing more elements of the same

176 Andrzej Wąsowski. Thorsten Berger

1 package fsm : _’mdsebook.fsm’ = ’http://www.mdsebook.org/mdsebook.fsm’ {
2 abstract class NamedElement {
3 attribute name: String[1];
4 }
5

6 class Model extends NamedElement {
7 property machines: FiniteStateMachine[*|1] { ordered composes };
8 invariant C1: machines->forAll (m1, m2 | m1 <> m2 implies m1.name <> m2.name);
9 }

10

11 class FiniteStateMachine extends NamedElement {
12 property states#machine : State[+|1] { ordered composes };
13 property initial : State[1];
14 invariant C2: states->forAll (s1,s2 | s1 <> s2 implies s1.name <> s2.name);
15 invariant C3: states->includes (initial);
16 invariant C5:
17 let reachable: Set(State) =
18 initial->closure (s | s.leavingTransitions->collect (t: Transition|t.target))
19 in states->forAll (s | reachable->includes(s));
20 }
21

22 class Transition {
23 property target: State[1];
24 property source#leavingTransitions : State[1];
25 attribute input: String[1];
26 attribute output: String[?];
27 invariant C4: source.machine = target.machine;
28 }
29

30 class State extends NamedElement {
31 property leavingTransitions#source : Transition[*|1] { ordered composes };
32 property machine#states : FiniteStateMachine[1];
33 }
34 }

Figure 5.10: Constraints C1-C5 in OCL embedded in a textual representation of the meta-model of Fig. 3.1.

type. The closure computation will obtain a new collection by applying f
to each element in the input, and then union the result with the input. This
will be repeated until a fixed point is reached, so until applying the function
f no longer gives any new elements. We encourage the reader to compare
this definition, and the formulation of the constraint, to our discussion of
computing transitive closure to find the set of reachable states in Sect. 5.2.

Exercise 5.11. Implement Constraint C6 from page 157 in OCL.

Exercise 5.12. The binary universal quantifier in Line 8 (Fig. 5.10) is quite
convenient for writing constraints relating multiple elements of the same type.
Most programming languages only provide unary quantifiers in standard li-
braries, but it is rather straightforward to implement more quantifiers on your
own. Implement binary and ternary universal and existential quantifiers in a
programming language of your choice. The book source code provides Scala
implementations in scala/src/main/scala/mdsebook/scala/EMFScala.scala as an
example. Reimplement constraints C1 and C2 using the new quantifiers.

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.scala/src/main/scala/mdsebook/scala/EMFScala.scala

Chapter 5. Static Semantics 177

and or xor not implies The essential Boolean connectives.

let f (x: T1): T2 = ...
in ... e ... end

Introduce a new function f (or a new value) accessible in
expression e.

if ... then ... else ... endif Ternary conditional expression (if-then-else expression).
Corresponds to “... ? ... : ...” in C-like languages.

ss->includes (s) True iff the collection ss contains element s.

ss->includesAll (tt) True iff the collection ss contains all elements from the
collection tt.

ss->isEmpty (); ss->notEmpty () True iff the collection ss is empty (respectively not empty).

ss->size () Return the number of elements in collection ss.

ss->intersection (tt) A collection of elements shared by collections ss and tt.

ss->including (s) A collection containing the element s and all elements of
collection ss.

ss->forAll (s1, ..., sn |
f (s1, ..., sn))

True iff f holds for all selections of n element tuples from a
collection ss.

ss->exists (s1, ..., sn |
f (s1, ..., sn))

True iff f holds for at least one of n element tuples from a
collection ss.

ss->select (s | f (s)) Filter ss so that it contains only elements on which f is true.
This function is known as ‘filter’ in some other languages.

ss->collect (e | f (e)) Computes a collection of elements derived from ss using f.
The function f returns a collection itself. In other languages
this is known as flatMap or a bind.

ss->closure (s | f (s)) Compute the reflexive transitive closure of f by applying it
repeatedly (starting with ss) until a fixed point is reached.

ss->iterate (e, z = ini |
f (e, z))

Iterate f over ss, where z is the current state of the iteration
(initially ini), and e binds to consecutive elements. The
function f computes a new value of z. The last one is
returned. Known as ‘fold’ or ‘reduce’ in other languages.

ss->isUnique (s | f(s)) Holds iff f evaluates to a different value for each element in
the source collection ss.

T.allInstances () A collection of all instances of a given type T (discouraged;
better use context, or navigate to the right subset).

s.oclIsTypeOf (T) True iff the actual type of s is T (ignores generalization).

s.oclIsKindOf (T) True iff the type of s is T or its subtype (observes generaliza-
tion).

Table 5.4: An abridged reference of OCL operations and expressions. The argument in lambda expressions can be omitted. It
defaults to self. A complete reference of the Eclipse implementation of OCL is available at
http:// help.eclipse.org/ oxygen/ topic/ org.eclipse.ocl.doc/ help/ GettingStarted.html

http://help.eclipse.org/oxygen/topic/org.eclipse.ocl.doc/help/GettingStarted.html

178 Andrzej Wąsowski. Thorsten Berger

Figure 5.11: An example of
a new derived property

isInitial added to the
State class using OCL.

1 class State extends NamedElement {
2 ...
3 property machine#states : FiniteStateMachine[1];
4 property isInitial: Boolean [1] { derived, volatile }
5 { derivation: self.machine.initial = self; }
6 }

Often when writing constraints, you discover the meta-model designers
have not included object properties that would be useful when programming
against the model. If these properties are derivable from the other existing
properties in the model, we could use a let expression to introduce a func-
tion computing the new derived property. We did exactly this in lines 17–19
in Fig. 5.10. Unfortunately, a let expression introduces a new name only in
the scope of a single constraint (in our case C5). What if the new property
should be accessible from many places? Also from other constraints?

OCL allows defining derived properties, to address this use case. Derived
properties are injected in all instance models and computed when needed.
Figure 5.11 shows an example. In the present meta-model, the initial state
is a property of a state machine object (initial). There is no easy way to
check for a given state whether it is an initial one. One needs to navigate
upwards to the containing machine object, and compare the self reference
with its initial state. This operation can be automated and linked to a derived
property (Lines 4–5 in the figure). Now we can simply check s.isInitial
on any state s. OCL’s derived properties resemble extension methods
from general purpose programming languages. Exercise 5.23 explores this
connection.

Exercise 5.13. Rewrite constraints C3 in the context of State class using the
isInitial property.

There are several independent implementations of OCL. To write this chap-
ter we used the so called Pivot OCL implementation from the Eclipse MDT
project.10 However the differences between OCL dialects are relatively
minor, and you should use the variant that integrates best with the rest
of your tool chain. There are also derivative languages, that offer added
functionality and usability. For example, EVL is a validation language with
very similar constraint syntax to OCL.11 It adds support for modeling de-
pendencies between constraints (e.g. if a constraint fails, another one should
be ignored), customizable error messages, and inter-model constraints.

OCL provides the ability to attach constraints to models, instead of
committing to a particular programming language. A standard specification
(Object Management Group, 2010) and several implementations define how
constraints are evaluated. Fundamentally though, this is comparable to
what any general purpose programming language offers for defining static
semantics, as we have seen in Sect. 5.3. Alloy, and a few related languages,

10https://wiki.eclipse.org/OCL/Pivot_Model, seen 2020/05/11
11https://www.eclipse.org/epsilon/doc/evl/

https://wiki.eclipse.org/OCL/Pivot_Model
https://www.eclipse.org/epsilon/doc/evl/

Chapter 5. Static Semantics 179

add other interesting abilities: to check whether a set of constraints is
consistent, to check what properties they entail, and to generate instances
of various shapes. These in turn can be employed to automatically create
test cases, or even synthesize programs.

Alloy. Syntactically, Alloy (D. Jackson, 2006) is a textual structural
modeling language that corresponds (roughly!) to the class diagrams
combined with OCL constraints, but unified in a single syntax. The first
user experience resembles the OCL-in-Ecore editor (whose syntax was used
in Fig. 5.10). Alloy’s semantics is, however, more restricted than OCL.
Arbitrary recursion is not allowed, and any execution is of finite bounded
size. It does support a transitive closure though. This allows Alloy tools
to provide all the additional computational support.

Figure 5.12 presents the finite state machine example in Alloy. Alloy
is a relational modeling language. The main building blocks are signa-
tures defining sets of objects that can enter in relations with other objects.
Signatures resemble classes in object-oriented languages. More precisely
they model single column database relations and are close relatives to
unary predicates used for types in Sect. 5.2. We have seven signatures
in Fig. 5.12: Name, Label, NamedElement, Model, FiniteStateMachine,
State, and Transition. The first two, Name and Label, are introducing
names and labels as types. Alloy supports limited modeling with strings.
For our purposes, it is more practical to create two sets (names and labels)
that have no further structure, no contents except their own identity, and
use them to label named elements and transitions. This will allow to write
constraints about uniqueness of names and labels without concern for the
character contents of strings. This will also help Alloy tools to work more
efficiently with our model.

In Line 4, we introduce a signature for named elements. Similarly
to Ecore and Java, we mark it “abstract,” telling Alloy to never directly
instantiate it, but to instantiate its specializations only. A named element
has a single property of type Name. The keyword one in Line 4 means,
that there is exactly one name assigned to every instance of NamedElement,
corresponding to a cardinality constraint 1 or 1..1 in class modeling. To
build an efficient mental model of Alloy, it is important to understand, that
even though name is written syntactically as if this was a field property
contained in NamedElement it really denotes a binary relation, a subset of
the Cartesian product NamedElement×Name. It relates named elements to
their names. Later, when we write constraints in Alloy, we can use property
names as first class binary relations (sets of pairs), which allows to use set
theory algebra to write constraints, making them very compact and easier
to handle for tools.

In Line 6, the document root is declared, as a singleton signature (one).
A singleton, referring to the singleton pattern (Gamma et al., 1995), means
that Alloy tools will always create exactly one instance of the Model, as we
intended for our use case—so far we always considered one model at a time.

180 Andrzej Wąsowski. Thorsten Berger

Figure 5.12: The FSM
meta-model in Alloy, with

explicit partonomy
constraints and the initial

state constraint.

1 sig Name { }
2 sig Label { }
3

4 abstract sig NamedElement { name: one Name }
5

6 one sig Model extends NamedElement {
7 machines: some FiniteStateMachine }
8

9 sig FiniteStateMachine extends NamedElement {
10 states : set State,
11 initial: one State }
12

13 sig State extends NamedElement {
14 leavingTransitions: set Transition,
15 machine : one FiniteStateMachine }
16

17 sig Transition { target: one State,
18 input : one Label,
19 output: lone Label,
20 source: one State }
21

22 fact { Model.machines = FiniteStateMachine }
23 fact { FiniteStateMachine.states = State }
24 fact { State.leavingTransitions = Transition }
25 fact { machine = ~states }
26 fact { source = ~leavingTransitions }
27

28 fact C1 { #FiniteStateMachine.name = #FiniteStateMachine }
29 fact C2 { all m: FiniteStateMachine |
30 #m.states.name = #m.states }
31 fact C3 { initial in states }
32 fact C4 { source.machine = target.machine }
33 fact C5 { all m: FiniteStateMachine |
34 m.states in m.initial.*(leavingTransitions.target) }

source: fsm.als/fsm.als

The signature has a property machines relating the single Model instance
to at least one FiniteStateMachine instance. The some keyword on the
FiniteStateMachine type is a cardinality constraint. It means “more than
one” (1..*). Observe that Model extends NamedElement, so it also has the
property name inherited from NamedElement. The other signature definitions
follow analogously. The keyword set (lines 10 and 14) means “any number,”
same as “*”, “n”, or “-1” in class modeling. The cardinality one means
“exactly one” (1..1) and lone means “at most one” (0..1).

Being a relational language, Alloy has no first-class support for contain-
ment and partonomy constraints. Nesting of properties does not guarantee
that containment is enforced. Intuitively, all Alloy properties are like
references in UML without the black diamond. The signatures in our
example allow for the same state to be shared by two state machines. This
happens by relating both to the same state instance in the states relation.
Figure 5.13 shows an instance generated for the model consisting of the
first twenty lines of Fig. 5.12. Notice, that a single state is shared by two

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.fsm.als/fsm.als

Chapter 5. Static Semantics 181

Figure 5.13: An instance of
a FSM with two machines
sharing a single state. This
instance has been generated
by Alloy analyzer for the first
twenty lines of the model in
Fig. 5.12

machines in the instance. Similarly, because cardinality is only restricted
on the far end of references, it is possible to create instances of machines,
states, and transitions, that are not contained in any other objects.

In lines 22–26, we establish the containment constraints explicitly. We
first require that that all finite state machines are related to a model, that
all states are related to a finite state machine, and all transitions are leav-
ing some state. This together disallows objects that float free, outside
a partonomy. To understand the syntax of these constraints, note that
Model.machines computes (database-like) join of the set of models with
the machines relation, ultimately resulting in a set of all machines that
are related to a model. The constraint requires that this set is the same
as the set of all finite state machines (l. 22). Constraints in lines 23–24
follow the same pattern. To restore the requirements that objects are not
shared by more than one container in a partonomy, we enforce the duality of
navigation (lines 25–26). The first constraint says that the machine relation
is the inverse of the states relation. The second line imposes that the
source relation is the opposite of the leavingTransitions relation. This
not only enforces synchronization of references in the style of Ecore’s
EOpposite, but also disallows sharing. Consider the example: since each
state can point to exactly one machine, its inverse, states, cannot link the
same state to multiple machines. It is easy to build a similar argument for
transition sources. There is no corresponding constraints for containment of
machines in a model—this one is not needed, because the model signature
defines a singleton.

In lines 1–26 we have represented the FSM meta-model in Alloy. Now we
can, finally(!), write the static semantics constraints. Constraint C1 is shown
in Line 28. The formulation uses set cardinality. The statement that all
machines have unique names is equivalent to the sets of machines and the set
of their names being equal size. In Alloy the operator #x returns the size of
the set x. Constraint C2 is implemented in the same manner, just restricted
to a subset of states pertaining to a single machine, using a quantifier.

In Line 31, we require that the initial state is an own state of a machine
(C3). More precisely, initial is a relation (a set of pairs) linking each
machine to exactly one state, and states is also a relation with a higher

182 Andrzej Wąsowski. Thorsten Berger

cardinality of the image. The constraint states that the former (seen as a set
of tuples) is a subset of the latter: if a machine is related to a state in the
initial relation, then it is also related in the states relation.

Constraint C4 (transitions cannot cross machine boundaries) is imple-
mented using the same principle. We require that the relation created by
joining the transition objects with machine objects via source states and
via target states is the same. Both relations pair transitions and machines
in tuples (ti,m j). Because there is only one entry in each set for each
transition ti (why?), the equality of the relations entails that for each single
transition its source and target must be the same (m j). If these two relations
differed, there would be at least one transition which would be paired with
a different machine via source than via the target state. Constraints C1–C4
demonstrate that when working with relations like with sets, we can often
drop quantifiers. In relational languages, this is an additional instrument
for making constraints concise (on top of choosing the right context type).

Finally, in the reachability constraint C5 we want to use Alloy’s transitive
closure construction. See lines 33–34 in Fig. 5.12. This is the most concise
and the most direct presentation of this constraint so far, but it requires
familiarity with transitive closure. In order to compute a transitive closure,
we need a relation that has the same set as a domain and image. This is
intuitively expected: we are supposed to explore the successor relation for
states, which defines how to advance from a state to a state; a binary relation
on states, a subset of the Cartesian product State×State. There is no such
relation in the model, where connections between states always go via a
transition object.

In order to derive the successor relation we need two combine two
relations together: first choose a transition (leavingTransitions), then go
to a target state (target). Recall that leavingTransitions relates states
and transitions. It is a subset of State×Transition. Similarly, target is
a relation between transitions and states, a subset of Transition×State.
The navigation dot operator in Alloy, as in leavingTransitions.target,
is implemented as a relational join that “forgets” the internal columns. A
standard relational join of these two relations would give a subset of

State×Transition×State . (5.24)

In Alloy, the middle column is erased when composing joins, so we obtain
a relation, which is a subset of the product State×State. The navigation
join gives a relation that is suitable for computing a transitive closure. The
intermediate transition objects have disappeared.

We shall formalize this. Let the bow tie symbol (./) denote a “forgetting”
join:

R ./Q ≡ {(r,q) | there exists p such that (r, p) ∈ R and (p,q) ∈ Q} . (5.25)

Chapter 5. Static Semantics 183

Then the reflexive transitive closure of leavingTransitions.target can
be described as:

*(leavingTransitions.target) =
∞⋃

i=0
leavingTransitions.target ./ · · · ./ leavingTransitions.target︸ ︷︷ ︸

i times, forget internal columns

.

(5.26)

The joint product of zero components above (i = 0) is interpreted as the
identity relation, the smallest reflexive relation on State. Compare the defi-
nition in Eq. (5.26) with the definition of transitive closure using predicates
in Eq. (5.23), p. 166. The infinity in the definition should not scare you. For
finite relations (instances in Alloy are always finite and bounded), the union
will stabilize (reach a fixed point) after a finite number of iterations.

As you guessed from the above, in Alloy, *R denotes a reflexive transitive
closure of relation R. We can finally read lines 33–34 in Fig. 5.12. The
constraint states that the set of all states is a set of all reachable states,
so states that can be reached from m.initial by transitive closure of the
relation leavingTransitions.target.

There is more to Alloy than a brief section can show. We have only
used the universal quantifier all in our examples. Alloy provides several
other quantifiers, including some (existential), one (exists precisely one),
lone (at most one), none (exist no). There is also a host of set and relation
operations. Constraints can be placed in the context of signatures (like
with OCLinEcore), which allows to eliminate some quantifiers and shorten
navigations. All these contribute to extreme brevity of relational constraints.
Clearly, Alloy offers the most concise notation of all those discussed above.

Exercise 5.14. To appreciate how context changes formulation, move Constraint
C5 to the context of FiniteStateMachine and eliminate the use of quantifier.
To add a constraint to context of a signature place a Boolean predicate in its
own braces directly after the closing the signature, without any keyword, as in:
sig ... { properties here } { constraints here }.

Exercise 5.15. Implement Constraint C6 in Alloy. Hint: Since all navigations in
Alloy compute sets, this can be done by comparing the size of the set of transitions
leaving a state with the size of the set of the labels on these transitions.

Alloy tools provide automatic instance generation and visualization. Au-
tomatic generation of diverse instances of the model can be used to debug
your designs interactively. D. Jackson (2006) recommends generating and
reviewing instances for partial designs every time you make changes in a
model. Analyzing them often uncovers misconceptions and omissions in
the model. For example, the instance in Fig. 5.13 demonstrates that the
containment constraints in the first 20 lines of our model are not sufficient.
A designer discovering this instance would be compelled to add additional

184 Andrzej Wąsowski. Thorsten Berger

partonomy constraints, as we indeed did in lines 22–26. If no instance
can be generated, then this means that our model is over-constrained. The
constraints are inconsistent with each other and need to be corrected.

Alloy’s analyzer establishes global consistency of the model (cf. Def. 3.4).
However, we can also use Alloy to establish element consistency. In such
case, just add an instantiation constraint for the type of the tested element.
For example, if you need to generate a model with at least one transition
we add the following new constraint to the set of constraints:

{ some Transition }

Technically, Alloy’s tools do not solve the general consistency problem but
a bounded variant:

Definition 5.27. A model is consistent up to a bound k, (k-consistent) for
short, if and only if there exists a valid instance of size at most k. A model
is k-inconsistent if it is not k-consistent.

There exist k-inconsistent models that are consistent in general. Thus Alloy
tools can report inconsistency even for valid models. However, Alloy’s
designers hypothesize that lots of modeling problems can be debugged on
very small instances. This is also our experience. In practice, one typically
configures Alloy tools with rather small bounds (small k) and increases
them by need. This also makes the tools faster. The bound is specified as
part of the query to the analyzer.

The limitation of Alloy to bounded problems follows from the underlying
reasoning technology: predominantly SAT-solving. Variants of Alloy and
similar languages based on Constraint Programming (CP) and Satisfiability
Modulo Theory (SMT) solvers also exist. However, all these reasoners,
even though very fast, can only represent fixed size problems.

Alloy tools present instances as graphs (Fig. 5.13) or tables. The table
presentation sometimes helps to understand the relational nature of the
language. The left column in Fig. 5.14 shows the tables for a small instance
containing one model object, with one state machine that contains a single
state with a single loop transition. The example instantiates each class of
the partonomy in Fig. 3.4 once. The format uses one table per signature.
The first column in each table is the primary key. The remaining columns
are foreign keys referring to other tables. We encourage the reader to
reconstruct the structure of the instance on paper, from this representation.
Tables for names and labels (both single column) are omitted for brevity.

Clearly, Alloy is not a static semantics definition language in the same
way as OCL, or any of the GPLs we used earlier in this chapter. There is no
way to attach its constraints to syntax trees in Ecore or to types in program-
ming languages. Only meta-models written in Alloy can be constrained,
and there is no easy way to develop languages on top of these meta-models.
However, one can translate models from other languages to Alloy syntax,
and use Alloy tools to evaluate constraints on them. Once instances are

Chapter 5. Static Semantics 185

1 univ={FiniteStateMachine$0, Label$0, Model$0,
2 Name$0, Name$1, State$0, Transition$0}
3 none={}
4 this/Name={ Name$0, Name$1 }
5 this/Label={ Label$0 }
6 this/NamedElement={
7 FiniteStateMachine$0, Model$0, State$0 }
8 this/NamedElement<: name={
9 FiniteStateMachine$0->Name$1,

10 Model$0->Name$1, State$0->Name$0 }
11 this/Model={ Model$0 }
12 this/Model<: machines={Model$0->FiniteStateMachine$0}
13 this/FiniteStateMachine={FiniteStateMachine$0}
14 this/FiniteStateMachine<: states={
15 FiniteStateMachine$0->State$0 }
16 this/FiniteStateMachine<: initial={
17 FiniteStateMachine$0->State$0 }
18 this/State={ State$0 }
19 this/State<: leavingTransitions={
20 State$0->Transition$0 }
21 this/State<: machine={State$0->FiniteStateMachine$0}
22 this/Transition={ Transition$0 }
23 this/Transition<: target={ Transition$0->State$0 }
24 this/Transition<: input={ Transition$0->Label$0 }
25 this/Transition<: output={ }
26 this/Transition<: source={ Transition$0->State$0 }

Figure 5.14: An example instance generated by Alloy tools for the model in Fig. 5.12. Presented as relations in the left column,
and using Alloy’s textual instance syntax in the right column

found, the Alloy output can be parsed and translated to whatever technical
space you need. Since Alloy is a solver, not an evaluator, a whole range of
more powerful checks can be implemented than using other languages.

The right panel in Fig. 5.14 shows the same example as in the left panel,
but in Alloy’s textual syntax for instances. This format is rather easy to
parse. If we translated it to XMI, Scala, or our concrete syntax for state
machines, we could use the automatically generated instances to test the
tool chain of our language, including generators and interpreters. If we
had built a different Alloy model capturing the execution traces of a state
machine, then the instances could represent sequences of inputs for the
machine. After loading these sequences in a Java program, we could use
them to drive automatic testing tools for an FSM interpreter.

Finally, we can also use Alloy for simple program or model synthesis.
One needs to build a model that describes programs of interest with con-
straints. For our example, if we add the following constraint in Alloy, the
tools will synthesize a simple state machine of the shape resembling a
coffee machine, entirely automatically.

A model with a single state machine that owns two states
connected with exactly two transitions in a cycle labeled by
’coin’ and ’coffee’.

186 Andrzej Wąsowski. Thorsten Berger

Constraints as a Modeling Paradigm

Edgar Frank Codd
(1923–2003)

Constraints are the basis of a very useful paradigm in modeling, exercised at its
full in tools from the Constraint Programming community (Dechter, 2003; Rossi,
Beek, and Walsh, 2006). Many constraint languages derive from first-order logics
and relational algebras, exploiting the result of Edgar Codd that first-order logics
adequately capture relational (so structural) modeling. The modeling mindset
is to restrict the infinite set of graphs to only those of interest. Alternatively, we
think in terms of graphs that should be generate-able by an instance generator.
Constraint modeling is a strong form of declarative programming: you state
requirements (the “what”) and delegate finding solutions, proving consistency,
or verifying facts that hold in a model to a solver (the “how” and “why”).

In this chapter, you have seen constraints written in English, in first order logics, in a range of
programming languages, in OCL, and in Alloy. We hope that this exposed you to the constraint
modeling paradigm sufficiently to recognize constraint writing as a specialized but useful modeling skill
that can help to solve a range of problems, even outside static semantics. A skill, a mental model even,
that carries beyond the concrete languages used as examples here.

Exercises Exercise 3.34 (p. 91) and 4.57 (p. 150) explore parsing of Alloy
outputs.

This method has been used in research for extremely many DSLs. Over
years, researchers have been exploiting the expressive and clean Alloy
syntax to built tools supporting specialized constraint languages beyond
instance finding and consistency checking. The applications include test-
ing, synthesis, diagnostics and repair, simplification, model merging, etc.
Targeting Alloy as a solver (instead of the more basic formats of SAT, SMT,
and CP solvers) speeds up tool development considerably. If you have a
constraint modeling and solving mindset, and know Alloy, you will easily
find tasks around your language that can be automated.

5.5 Guidelines for Writing Constraints

Constraints can be tricky to write. Let us discuss good practices in con-
straining syntax.

General Hints for Writing Static Semantics Constraints

Consider not-defining the static semantics at all! This may sound crazy,
especially after reading four sections arguing exactly the opposite! However,
side stepping constraints and type system definition (Sect. 6.8) is often a
natural choice. In agile development, it is important to scaffold a working
tool chain as early as possible, in very few sprints. This way your users
can start to experiment with it. You can receive early feedback. They can
start advancing their projects. Early on, it is less important how the tools
will behave on ill-defined inputs. Early iterations of language tools do not
need to be tested on invalid models. Good diagnostics, error detection and

Chapter 5. Static Semantics 187

switch (input) {
case COFFEE:

next_state = BREWING;
break;

case COFFEE:
next_state = PAYMENT;
break;

Figure 5.15: Left: A hypothetical code generated from a non-deterministic state machine violating Constraint C6. Right: A
compiler error from GCC that can serve as “piggy-backing.”

reporting, are often nice-to-have features that can be designed much later,
when the scope and design of the language are stabilizing, and the rest of
the tool chain is maturing.

For some minimalistic languages, developed on a tight resource budget,
it may make sense to never develop a static semantics validator. If your
language is based on code generation you may be able to piggy-back on your
target language (Lämmel, 2018). Imagine, for instance, that we generate
C code from finite state machine models (we will indeed generate such
code in later chapters). If our machine has non-deterministic transitions,
violating Constraint C6, we might produce code like the one presented in
the left part of Fig. 5.15: a switch statement with a duplicate entry. This in
turn can cause the C compiler to complain, as shown in the right part of the
figure. If this kind of error is acceptable for your users, you may choose
not to implement the constraint validation at all!

A general purpose or a specialized constraint language? Should I follow
the advice of Sect. 5.3 or of Sect. 5.4? Should I use an external tool like
Alloy? Shall I design all constraints in basic mathematics first, like in
Sect. 5.2, and only then rewrite to a programming language?

The decision between specialized and general purpose languages hinges
on the trade-off between the easy access to programming experts and the
need to use specialized reasoning tools. If the goal is to validate inputs, and
there is no need for instance generation, choose the language which will be
easy to use for you and for others around you. This way the constraints can
easily change ownership to new programmers and the project can live longer.
This will typically be the same language in which you implement the rest
of your DSL tools. Do not work on paper, or not too long. Implement
constraints in a programming language and start running and testing them
iteratively as soon as you can, even before a constraint formulation is final-
ized. (We did not endorse mathematical logics as a software development
mechanism, but as a way to introduce you to constraints thinking.)

Specialized constraint languages are useful in two scenarios: if reasoners
are needed for specialized applications, and if you are planning to develop
many languages. In the former case, you have little alternative. In the

188 Andrzej Wąsowski. Thorsten Berger

latter, for example if you work for a language consultancy, the increased
conciseness and readability of constraints will pay over time for the steeper
learning curve and more cranky tools.
Maximize the diagram, minimize the constraints. A class diagram is a
constraint system itself, just of limited expressiveness. As already discussed
in Sect. 5.2, many of the same constraints can be stated both in the constraint
language and in the diagram language. When the partonomy constraints
(black diamond) turned out not to be supported in Alloy, we expressed
the same semantics using relational constraints (lines 22–26 in Fig. 5.12).
Conversely, instead of using diagram annotations in Ecore, we could have
written textual constraints to limit cardinalities of associations, or to bind
two unidirectional references into a bidirectional one.

Exercise 5.16. For the following constraints discuss how they could be enforced
using an appropriate construct in an Ecore meta-model instead:

a) A constraint written in Scala for the meta-model in Fig. 5.1:
inv[Person] { _.getChild.size <=2 }

b) A constraint written in OCL for the finite state machine meta-model:
invariant: self.name.notEmpty ()

Whenever there is choice, it is advisable to express syntactic restrictions
in the meta-model, leaving only the impossible to the textual constraints.
Diagrammatic idioms are easier to recognize and to explain to other de-
velopers. Recognizable diagrammatic patterns may appear very cryptic in
a textual language (compare use of black diamonds in Fig. 3.1 with the
corresponding five constraints in Alloy in Fig. 5.12). If you incorporate
diagrammatic idioms into a meta-model, you can expect better diagnostics
of instances from the modeling framework, and better type checking and
run-time checking of your language implementation code. This is because
the generated meta-model code that you are programming against will be
aware of these constraints, and reflect them in types and runtime checks as
appropriate.

This guideline should be applied pragmatically. Sometimes, maximizing
a diagram is not the best strategy. If expressing a constraint in the diagram
required significant refactoring, introducing auxiliary classes, or splitting
classes into sub-concepts that do not reflect the concepts in the domain,
then declaring constraints outside the diagram is preferable. The bottom
line is that you should try to use structural notations, such as class diagrams
or ADTs, primarily for representing fundamental intuitive structural con-
straints. Non-standard intricate restrictions should be specified separately
in logics-based formalism.
Static semantics depends on abstract syntax alone. Refer only to the
model properties in a constraint. Even if written in a GPL, constraints are
conceptually a part of the meta-model. The only data that you can refer
to from constraints are model properties. Nothing else. Constraints are
used to enforce integrity of the model itself. It is a common encapsulation

Chapter 5. Static Semantics 189

failure to bring other concerns to constraints. This makes them difficult to
test in isolation from the rest of the system, and hard to reuse in new tools
for the DSL. None of our examples, even in Scala or C#, has violated this
assumption (cf. Tables 5.2 and 5.3 and Figs. 5.10 and 5.12).

A common violation of this guideline is an introduction of dependencies
between the Eclipse IDE platform (or another editor) and the validity
checker; for instance when producing error messages. A static checker that
depends on an IDE platform is extremely difficult to use in a standalone
command line or server-side tool, which you will presumably need sooner
or later. Even if you succeed embedding the IDE with the static checker,
the executable will be far from lean and nimble. The large dependency will
make it brittle, susceptible to co-evolution problems with the related big
piece of software. A careful reader noticed that the example code for this
book has been carefully designed to avoid such dependencies, even in the
parts where we use the Eclipse Modeling Framework and Xtext.

If you absolutely need to refer to other parts of the system, if the model
needs to be validated for consistency with other files, for instance database
entries or configuration files, do this validation in another pass. Encapsulate
the meta-model constraints in a self-contained module, only dependent on
the abstract syntax, and interface to that module from a bigger checker.

Programming Constraints and Avoiding Bad Smells

Keep constraints declarative, as close to natural language as possible.
There is clearly a correspondence between requirements written in English
and in formal logics and programming languages. To void obfuscating
this correspondance, keep your constraints as declarative as possible, as
close to natural language as possible, devoid of low-level computational
primitives such as variable assignments, loops, or return statements. Imple-
ment iteration with higher order functions instead. Extend your constraint
language with needed operators and iterators (implication, n-ary quantifiers,
all-different, etc.). You will quickly accumulate a useful vocabulary of
primitives. Finally, if you really need recursion or loops (for instance to
implement transitive closure), encapsulate the necessary computations in
Boolean predicates, to be able to use them in other declarative constraints.

190 Andrzej Wąsowski. Thorsten Berger

Figure 5.16: Top: (l. 1–2)
Our favourite declarative

formulation of C2 in Scala.
Bottom: (l. 4–18) A

purposefully verbose and
lengthy imperative

formulation of C2, typical of
inexperienced constraint
writers. Avoid this! Both
examples are written in

Scala, but the problem is
easily exemplified in most

languages.

1 val C2_GOOD = inv[FiniteStateMachine] { self =>
2 self.getStates.forAllDifferent { _.getName != _.getName } }
3

4 def C2_BAD (m: FiniteStateMachine): Boolean = {
5 var it1 = m.getStates.iterator
6

7 while (it1.hasNext) {
8 var s1: State = it1.next
9 var it2 = m.getStates.iterator

10

11 while (it2.hasNext) {
12 var s2: State = it2.next
13 if (s1 != s2 && s1.getName == s2.getName)
14 return false
15 }
16 }
17 return true
18 }

Do not modify the model from the constraint code. We argued already
against side effects in constraints. Constraints can be checked multiple
times from within the modeling environment, and in other tools. They can
be constantly evaluated by the modeling editor to provide live feedback.
The user may not control these checks explicitly. So these executions should
not have any visible side effects on the model for the user. Specialized
constraint languages are designed to avoid such mistakes. Exercise extra
care when using a GPL.

The only exemption from this guideline is when a static semantics device
(most typically, but not only, a type system) infers new information about
the model. It might be practical to augment (decorate) the model with new
values, but never change the existing ones. For instances, we may want to
annotate sub-expressions with inferred types. In any case, this should be
done in such a way that the checkers can be run multiple times without harm.

Avoid top-level conjunction. It might be tempting to combine several
different aspects in a single constraint using logical conjunction at the top
level. This should be avoided. One constraint should capture one English
sentence, as simple as possible. There is rarely advantage to creating
compound constraints. Small atomic independent constraints map to precise
and informative error messages for the users. If a compound constraint
fails, it is difficult to see which part of the conjunction is invalid, leading to
vague error messages.

Chapter 5. Static Semantics 191

inv[Student] { self =>
!self.getName.isEmpty && self.getAge >= 18 }

Error: An empty name or the age below 18!

inv[Student] { !_.getName.isEmpty }
Error: An empty student name.
inv[Student] { _.getAge >=18 }
Error: The age is below 18.

Figure 5.17: Top: a
compound constraint that
mixes age and name aspects
that are otherwise unrelated.
Bottom: The same
constraint split into two
separate ones. Observe how
the error message for the
user becomes more precise
with the split.

Avoid quantifications over all instances of a type. In OCL, T.allInstances ()
evaluates to all objects of type T. GPL libraries for computing over abstract
syntax also provide a similar reflection capabilities. The figure below shows
an example of a constraint on finite state machines forbidding self-loop
transitions (so transitions with source and target in the same state). The
first variant, uses iteration over all instances of a type. The second variant
eliminates the use of this very general construct by placing the transition in
the context of a Transition object. The bottom part of the example shows
Constraint C3 written in the context of class FiniteStateMachine (like our
original example), but using iteration over all instances of type State. This
formulation is much more complex than our original proposal in Fig. 5.10.

context Model
invariant: Transition.allInstances->forAll (t|t.source<>t.target)

context Transition
invariant: source <> target

context FiniteStateMachine
invariant C3: State.allInstances ()->exists (s |

self.states->includes (s) and self.initial=s)

Figure 5.18: Top: Using
OCL’s allInstances to
forbid self-loop transitions
(Transition). Center:
Replace allInstances with
a better context. Bottom: A
needlessly convoluted
formulation of Constraint C3
using allInstances.
Contrast with Fig. 5.10

The use of allInstances should be avoided in favor of a good context
class for the constraint. The iteration over all objects of a type tends to be
computationally expensive and lowers understandability of the constraints—
it escapes from the instances to the meta-level. The method allInstances
is static, so it belongs to the meta-class, not to the instances. If you need
to get all instances of more than one class, you will be able to do it by
navigating from the document root (or any closer class), as discussed below.

Refactor constraints to the optimal context. Constraints written in a subop-
timal context tend to contain long navigations and (too many) quantifiers.
In the following example, the class Model is a much worse choice for the
context of Constraint C3 than the FiniteStateMachine, which we have
chosen originally. Shifting the context a level upwards along the partonomy
costs an additional universal quantifier:

192 Andrzej Wąsowski. Thorsten Berger

Figure 5.19: Top:
Constraint C3 in the optimal

context of a machine.
Bottom: C3 in the context of

a Model. See also another
example in Eq. (5.20) on

p. 164

inv[FiniteStateMachine] { self =>
self.getStates.contains (self.getInitial) }

inv[Model] { self =>
self.getMachines.forall { fsm =>

fsm.getStates.contains (fsm.getInitial) }
}

Exercise 5.17. Besides long navigations and excess quantifiers, inability to navi-
gate to the set of instances needed in a constraint is also an indicator of a possible
mistake in selection of the context type. If, you need to resort to tricks like using
allInstances (in OCL) to work around such problems, there is good chance the
context is incorrect. To appreciate this issue attempt to re-write the Constraint C3
to the context of class NamedElement of the meta-model in Fig. 3.1.

It takes experience to select the right context. Check sequences of universal
quantifiers if any prefix of them can possibly be avoided, by shifting the
context to the type one of them is ranging over. If long navigations descend
down the partonomy, especially starting with the same prefix, you are likely
using a context too high in the partonomy hierarchy. Check if any objects
down in the navigation prefix would not be a better candidate. Dually, if
long navigations go upwards in the partonomy, it might be that the context
needs to be moved higher. Beware though that these rules are not strict. You
will meet long navigations in constraints that are inherently non-local. There
is not much you can do about this, except perhaps revisiting the meta-model
design adding explicit or derived associations. A constraint relating very
remote classes is an indicator that there is a missing association in the model.

Avoid verbose Boolean constructs, especially using true and false. Pro-
grammers inexperienced in functional style, that is so strongly exercised
in constraints, tend to write expressions that are suboptimal in subtle but
annoying ways. Table 5.5 lists some common examples. Chiefly, an appear-
ance of a constant true or false in a Boolean expression is a bad-smell.
Most often the constant can be eliminated in favor of applying a simpler
operator that more directly states the intention. This way the constraint’s
intention is more easily available to the prospective reader of the code.

Chapter 5. Static Semantics 193

Do not write Write instead
if (e) true else false e
if (e) false else true !e
if (e1) e2 else false e1 && e2
if (e1) true else e2 e1 || e2
if (e1) e2 else true e1 implies e2
if (e1) true else e2 !e1 implies e2
e && true e
false || e e
!e1 || e2 e1 implies e2
!(!e) e
return e; e

Table 5.5: Several examples
of eyebrow-raising
expressions that should be
simplified in static semantics
constraints (and pretty much
in any other kinds of
computer programming).
Examples are presented in
Scala syntax, but most apply
to other languages

5.6 Quality Assurance and Testing for Static Semantics

Ratiu, Voelter, and Pavletic (2018) report that they found many errors
in their extensive collection of DSLs, despite being relatively sure that
the front-end is solid (front-end errors are very visible to the users of
the language, so developers spot them quickly and fix them early.) The
importance of testing is growing while we proceed into the later stages of
the language implementation, as the bugs get more intricate and harder to
spot for the developers. They literally reported that the automated random
machinery has found dozens of problems immediately.
2. Scenario based testing (consistency, stability, coverage)

Exercise 5.18. Create an instance of the meta-model in Fig. 3.1 that violates the
constraint in Fig. 5.18 (for simplicity, focus on either the first or the second variant
of the constraint). Test that you indeed violate the constraint, by validating it on
the created instance, using your favourite constraint language infrastructure.

Show constraint C2 (all state within the same machine must have distinct
names). We show the scala version again (and we may recall that the
other table has shown this in XXX langagues.)
positive test-cases: test-00, test-07, test-09 negative test-case: test-08
(they are all in mdsebook.fsm/testfiles)
In the section we might show how these are called (one positive, one
negative), extracted from ConstraintsSpec.scala

Figure 5.20: A positive and
a negative test case for a
constraint. Different than the
exercise, one of our 6
constraints

Fig. 5.20 uses test cases in abstract syntax (stored as xmi files). We
drawn them as instance specification diagrams, so that it is easier for you
to read them. But link to the xmi file for the real thing. Show how to load.
It is important that we can test both on concrete and abstract syntax. It
is quite common in language implementation that the static semantics is
implemented before (or in parallel) to the parser. By using abstract syntax
to test static semantics we decouple the two modules in the implementation.

194 Andrzej Wąsowski. Thorsten Berger

Figure: generators for state machines #code They are in mdse-
book.fsm.scala/src/main/scala/mdsebook/fsm/scala/Generators.scala I
think we should show both kinds, but not the convenience methods (one
should be enough). So likely we are ending with two figures. Shorten
drammaticaly. Also we can mention in the text that the first thing we do
with this is fuzzing generators and fuzzing constraints. This already finds
a lot of basic structural problems, especially good for generators that
may violate ecore constraints, and for constraints that might navigate
over null references.

5.7 Static Semantics in the Language Conformance Hierar-
chy

OCL is a DSL itself. Its concrete syntax is specified using a context-free
grammar, and its abstract syntax is specified using a meta-model. The core
part of this meta-model is shown in Fig. 5.22. Fig. 5.23b shows how this
metamodel fits the general layered architecture of meta-modeling that we
have shown previously.

Fig. 5.23a explains another point: that OCL Language and OCL con-
straints semantically are similar to Ecore itself, so one can also draw them
one level higher. This is because the constraints written at a given level
constrain instances one level below. Thus, meta-model constraints have a
similar semantic effect to the meta-models (M2), and therefore OCL is a
specification language at M3, similarly to Ecore.

Further Reading
Our formalization of class diagrams using logics was arguably a bit hasty. For
example, we have not formalized the link between instances of a formula and the
logical constraints. There are many research papers on this topic. We mention a
few that we know first hand, as authors. A small and very concise definition can
be found in the work of Fahrenberg et al. (2014), or in the definition of formal
semantics for Clafer (Juodisius et al., 2019). Semantically, Clafer can be seen as
a simple class-diagramming language, with a few syntactic devices to keep the
models concise. A graph-oriented perspective, as opposed to a logical view on the
same problem of classes vs instances, is often found in categorical approaches, for
instance in the work of Bak et al. (2016).

The transitive reduction of a binary relation is a concept dual to the transitive
closure. Instead of inferring new indirect binary connections in a graph, the transitive
reduction removes them from a relation. Much less known than the closure, the
transitive reduction is uniquely defined and well described in the graph algorithms,
see for example the book of Valiente (2002). It can be used to uncover the core
dependence structure from a logical description, for example in model synthesis
(She et al., 2014; Czarnecki and Wąsowski, 2007).

The standard reference on of OCL is the book of Warmer and Kleppe (2003).
Chapter 3 presents guidelines for writing constraints (see esp. Section 3.10 on tips
and tricks). A more concise, but still comprehensive, presentation can be found in
a 30 page long tutorial paper of Cabot and Gogolla (2012). Another tutorial-like re-

Chapter 5. Static Semantics 195

This is the coverage of scenario tests (but the coverage for fuzzing is
the same). The remaining 30% we have simply not tested (all sorts
of examples that we do not consider) and the 25% branch coverage is
misleading, because there are very few branches in the file (and then they
are mostly in the code we are actually not testing - branching coverage
does not measure the branching induced by functional expressions).
It is probably not useful to compare fuzzing from scenario on these
small constraints (although this is telling us that our scenarios are well
sellected, for a larger project, it is hard to manually reach this level).

Figure 5.21: TODO: Figure:
Show a coverage screenshot
for our constraints in Scala.
#code

Figure: consistency/validity laws. The code is in ConstraintsFuz-
zSpec.scala in the bottom, and everything works fine now.

196 Andrzej Wąsowski. Thorsten Berger

Figure 5.22: Core OCL
Meta-Model from the OCL

Specification (Object
Management Group, 2010)

Figure 5.23: Two views on
OCL in the meta-modeling

hierarchy

lecture-notes.mindmap

mindmap.ecore
mindmap.ecore

constrains instances at M2

mindmap.ecore

ecore.ecore
M3

M2

M1
lecture-notes.mindmap

lecture-notes.mindmap

constrains instances at M1

OCL Constraints

constrains instances at M1

&&

(a) OCL constrains instances in the same way as
Ecore does

conforms to

OCL Meta-Model

ecore.ecore
M3

M2

M1 OCL Constraints

M0 Set of Model Instances

conforms to

conforms to

(b) OCL as a language in the
meta-modeling hierarchy

source are the slides of a course on OCL by Demuth (2009). The current official OCL
specification can always be found at http://www.omg.org/spec/OCL/Current/. The
specification is not particularly useful for learning OCL. It serves as a reference def-
inition. Chapter 7 (The OCL Language Description) is certainly worth looking into.

The most concise overview text about Alloy is Jackson’s recent ACM Commu-
nications article (D. Jackson, 2019). His book (D. Jackson, 2006) and the journal
paper on Alloy (D. Jackson, 2002) contain short and interesting critiques of OCL.
He contrasts OCL with Alloy, emphasizing the difference between the relational
and logical style. Besides Alloy, other modeling languages take constraints to the
extreme, most notably Formula (E. K. Jackson and Schulte, 2013) and Clafer (Bak
et al., 2016). The main distinguishing feature of Formula, is the semantics based on
SMT solving, which allows first class treatment of numbers (instead of just simple
entities like in Alloy). The main advantage of Clafer is its concise economical
syntax exploiting the strengths of feature modeling. Unlike Alloy, Clafer allows to
specify part-of relationships directly like in class diagrams.

Additional Exercises

http://www.omg.org/spec/OCL/Current/

Chapter 5. Static Semantics 197

Figure 5.24: An example
generalization hierarchy of
car engine designs

Exercise 5.19. Which of the following first-order sentences hold for the general-
ization hierarchy shown in Fig. A.3?

a) ∀x.HybridEngine(x)→ CombustionEngine(x)∧ElectricMotor(x) ?
b) ∀x.DieselEngine(x)→ ElectricMotor(x) ?
c) ∀x.DieselEngine(x)→ CombustionEngine(x)∧ElectricMotor(x) ?
d) ∀x.CombustionEngine(x)∧HybridEngine(x)→ ElectricMotor(x) ?

Exercise 5.20. Recall the OCL higher order function isUnique (see Table 5.4).
Does the programming language you use for DSL implementations support this
function? If yes, what is its name and type? Are there differences from OCL? If
no, implement the function yourself, and use to solve Exercise 5.25c.

Exercise 5.21. Another common pattern of binary universal quantification is
the so called all-different quantifier, where a property is enforced for all pairs
of different elements in a collection. Both Constraint C1 and C2 are of this
form. Implement forAllDifferent in a language of your choice and use it to
simplify C1 and C2 further, by eliminating the precondition and implication. Our
code repository shows Scala implementations in scala/src/main/scala/mdsebook/s-
cala/EMFScala.scala as an example.

Exercise 5.22. Recall the closure operation from OCL that computes a reflexive
transitive closure of a binary relation specified as a lambda expression. In Scala
the type of the operation would be approximately the following:

def closure[A] (self: Seq[A]) (R: A => Seq[A]): Seq[A]

Implement this operation in Scala or in another language of your choice. Refactor
the implementation of Constraint C5 in Table 5.2 to use the new operation.

Exercise 5.23. Derived properties can be implemented using extension methods
in general purpose programming languages, including Scala, Kotlin, Groovy,
Xtend, C#, and F#. Implement isInitial (Fig. 5.11) as an extension method

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.scala/src/main/scala/mdsebook/scala/EMFScala.scala
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.scala/src/main/scala/mdsebook/scala/EMFScala.scala

198 Andrzej Wąsowski. Thorsten Berger

Figure 5.25: A trip
meta-model: describing

simple travel arrangements
for friends, see

trip/model/trip.ecore

in a programming language of your choice. Consider using value caching (for
instance lazy val in Scala), to compute the derived value only the first time it is
accessed. Retrieve it from a cache all the subsequent times.

Exercise 5.24. Recall the class types in the diagram of Fig. 5.1 in p. 153. Write
the following commutativity constraints for this diagram (in logics, or in a
programming language, or in a constraint language):

a) Each person is listed in the set of parents of each of its children.
b) Each person should be included in the set of children of its own parents.

Exercise 5.25. Consider a simple model describing organization of trips Fig. 5.25.
Write the following constraints for this meta-model:

a) The vehicle associated with the trip needs to be large enough to accommodate
all the involved passengers: for each trip, the number of passengers must be
smaller or equal than the number of seats in the involved vehicle.

b) The driver is included on the passenger list.
c) Every car is uniquely identified by its registration plate. Write the constraint

first in the context of the Trip class, then in the context of TripModel class,
avoiding use of allInstances (if using OCL).

Exercise 5.26. Consider the naive meta-model in Fig. 5.26 describing a car.

a) For this meta-model, write the following constraint: The driver seat in a car
must be a seat in the same car in the formalism of your choice.

b) Refactor the meta-model to make driverSeat a property in the Seat class
(an attribute). How can you enforce the above constraint now?

c) Refactor the model of Fig. 5.26 to split the passenger seats (3..6) and the
driver seat to two separate containments, passengerSeats and driverSeat.
How can you now access the set of all seats? Implement a derived property
seats that is a union of values of the two new attributes. Use derived
properties if writing in OCL; extension methods, or protected code blocks in
other languages.

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.trip/model/trip.ecore

Chapter 5. Static Semantics 199

Figure 5.26: A simple model
of structural components of a
passenger car.

Figure 5.27: A meta-model
for the core part of a
flow-based web composition
language.

Exercise 5.27. Figure 5.27 presents a simple meta-model of a flow language for
creating web mash-ups.a A model consists of nodes, which are further divided
into sources (where the flow starts), internal nodes (processing nodes), and sinks
(rendering nodes, where the flow ends). Figure 5.29 shows a constraint for this
meta-model. Does the instance shown in Fig. 5.28 satisfy this constraint? Does it
satisfy the meta-model constraints? If yes, argue how each constraint is satisfied.
If not, point to the violating model element(s).

Exercise 5.28. For the model of Fig. 5.1 write the constraint that if person A is
a parent of B then the two persons are distinct. Test the constraint on a negative
example (a violating instance) of your design.

aOne such language was Yahoo! Pipes, now defunct, cf. https://en.wikipedia.org/wiki/Yahoo!
_Pipes. Other services use similar languages, for instance: http://www.pipes.digital. The meta-
model is available from the book’s source project pipes with some constraints in pipes.scala.

https://en.wikipedia.org/wiki/Yahoo!_Pipes
https://en.wikipedia.org/wiki/Yahoo!_Pipes
http://www.pipes.digital
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.pipes
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.pipes.scala

200 Andrzej Wąsowski. Thorsten Berger

Figure 5.28: An example
instance for the meta-model

of Fig. 5.27

:PipesModel
name = "model"

:Source
name="readTwitter"

:InternalNode
name="EnToDa"

:InternalNode
name="toHTML"

:Sink
input = "toXML"

nodes

nodes

nodes

nodes

predecessors

sucessors

Figure 5.29: A class
cardinality constraint for

Pipes in Xtend and Scala

1 // Xtend
2 def boolean constraint (PipesModel it) {
3 nodes.filter [it | it instanceof Source].size == 1
4 && nodes.filter [it | it instanceof Sink].size == 1
5 }

1 // Scala
2 m :PipesModel =>
3 m.getNodes.filter { _.isInstanceOf[Source] }.size == 1 &&
4 m.getNodes.filter { _.isInstanceOf[Sink] }.size == 1

Exercise 5.29. This and several following exercises use the same running ex-
ample of a printing infrastructure in an office. The first meta-model is shown
in Fig. 5.30.a The models are available in Ecore XMI format from the book
repository in the project named printers. Some constraints are shown in the
project printers.scala. Write the following constraints for the meta-model in
Fig. 5.30:

a) Every printer pool that has a fax, also has a printer.
Write the constraint in the context of the PrinterPool class. Create an
instance satisfies the constraint and verify by running the validation to see if
this is indeed the case. Create an instance that violates it and verify that this
is indeed the case.

b) Write the constraint from the previous point in the context of class Fax. Use
the same positive and negative instances to test it. These two constraints are
not identical. Can you explain the differences?

Exercise 5.30. Consider a new meta-model T2.ecore in Fig. 5.31. Write the
following constraint in the context of the printer pool: Each Printer pool with a
fax, must have a printer, and each printer pool with a copier must have a scanner
and a printer.

aThe printing example and the exercises are inspired by the submission for the standardization
process of Common Variability Language within the Object Management Group (Submitters
and supporters, 2012). This part of the standard proposal have been prepared by Krzysztof
Czarnecki and Kacper Bąk.

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.printers
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.printers.scala

Chapter 5. Static Semantics 201

Figure 5.30: An example
printer pool model T1

Figure 5.31: Class diagram
T2 showing a printer pool
with scanners and copiers

Create an instance of the above model that satisfies the constraint and test if
this is indeed the case. Create an instance of the above model that violates this
constraint and verify that this is indeed the case, by running the constraint and
checking that it fails.

Exercise 5.31. Consider the class diagram T3 in Fig. 5.32. Write the following
constraint in the context of the class PrinterPool: PrinterPool’s minimum speed
must be 300 lower than its regular speed. Validate the constraint with a positive
and a negative instance.

Exercise 5.32. Consider the class diagram T4 in Fig. 5.33. Write the follow-
ing constraint in the context of the class Printer: Every color printer has a
colorPrinterHead. Validate the constraint with a positive and a negative instance.

Exercise 5.33. Consider the class diagram T5 in Fig. 5.34. Write the following
constraint in the context of the class Printer: A color capable printer pool
contains at least one color capable printer. Validate the result using a positive
and a negative instance.

Exercise 5.34. Consider the class diagram T6 presented in Fig. 5.35. Write the
following constraints in the context of the class PrinterPool. Test both of these
constraints using a negative and a positive instance for each.

a) If a printer pool contains a color scanner, then all its printers must be color
printers.

b) If a Printer pool contains a color scanner, then it must contain a color printer.

Now write both of these constraints first in the context of Scanner and then in the
context of Printer (so four new constraints in total). The last case is particularly
nasty (second constraint in the context of Printer). Test all four cases with the
same negative and positive instances as before. Discuss the differences that
context changes introduce to constraints.

202 Andrzej Wąsowski. Thorsten Berger

Figure 5.32: A class
diagram T3 with attributes

Figure 5.33: A class
diagram T4 with

ColorPrinterHead

Exercise 5.35. For the diagram of Fig. 5.35 assert that there is at most one color
printer in any pool. Test the constraint on a positive and a negative instance.

Exercise 5.36. Consider the over-simplified meta-model for SQL queries pre-
sented in Fig. 5.36 (projects sql and sql.scala).

a) Write a constraint that every SelectQuery selects from exactly one table, and
all columns come from the same table. Write this constraint in the context of
SelectQuery.

b) Write the same constraint in the context of the Model class.
c) Forget the above points–now a query can draw from several tables, but the

tables used in a query must not have columns with the same names. Context:
SelectQuery.

d) Forget the previous constraint. Write a constraint that all column names
accessed in a single query are unambigous. So in a query using several tables,
if a column is used then exactly one of the used tables has a column with the
same name. Context: SelectQuery.

Exercise 5.37. In the meta-model of Fig. 3.20 (p. 87) sub-features are contained
in the subfeatures collection of the parent feature. If features are part of a group,
an object of type Group1 is placed under the feature object with references to the
features that are group members.

a) Write a constraint enforcing that a group can only contain sub-features of its
parent, and not of other features. Figure 5.37 shows a positive and a negative
instance. The latter should be prevented by the constraint.

b) Write a constraint stating that any two groups nested under the same feature,
cannot overlap (they have disjoint sets of members).

Exercise 5.38. Write the following constraints over the instances of the Pascal’s
triangle meta-model of Fig. 3.18.

a) The value of each internal entry is equal to the sum of the parent values
(internal entries are defined as the entries that have two parents).

b) For every row n, the parents of all the nodes in the row, are at row n−1.

Exercise 5.39. Figure 5.38 shows a simplistic meta-model for relational schema.
The instances of this meta-model store primary keys in the primaryKeys collec-
tion, and the foreign keys in the refersTo collection.

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.sql
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.sql.scala

Chapter 5. Static Semantics 203

Figure 5.34: Class diagram
T5 with color printer pools
and color printers

Figure 5.35: Colored
scanners and printers in
class diagram T6

Write a constraint enforcing that a primary key column cannot also be a foreign
key and vice-versa. Note that a column is a primary key and a foreign key at the
same time if it is both pointed from a table, and itself refers to a table. Test your
constraint on a positive and a negative instance.

Exercise 5.40. Constraint the meta-model of Fig. 5.27 so that that from each
Source instance one can reach a Sink instance via a series of succesors links.
Warning: depending on your constraint language this may require implementing
a depth first search in the graph (if transitive closure is not supported explicitly).
Also, note that we need to arrive at a properly a Sink node, not in an InternalNode
instance.

Exercise 5.41. For each of the following constraints indicate the preferred context
class in the Pipes meta-model of Fig. 5.27.

a) Every source has exactly one successor
b) An internal node has at least two successors or its name is an empty string
c) There is exactly one node whose name is “abrakadabra”

Exercise 5.42. We would like to constrain the instances of the pipes meta-model
(Fig. 5.27) so that each instance has at most one source, at least one sink and at
least one internal node using the following constraint:
1 // Xtend
2 def boolean constraint (PipesModel it) {
3 nodes.exists [it | it instanceof Source]
4 || nodes.exists [it | it instanceof Sink]
5 || nodes.exists [it | it instanceof InternalNode]
6 }

Unfortunately, testing shows that this constraint is incorrect. Analyze it and
propose an improvement. Write the constraint in your chosen constraint language
and validate it with a positive and a negative instance.

Exercise 5.43. We would like to constrain the instances of the pipes meta-model
(Fig. 5.27), so that each sink has at least one predecessor. We do this using the
following constraint written in the context of class Sink:
1 // (Xtend) Each sink has a non empty set of predecessors
2 def boolean constraint (Sink it)
3 { ! predecessors.empty }

204 Andrzej Wąsowski. Thorsten Berger

Figure 5.36: A meta-model
for a very simple core of

select queries in SQL

Figure 5.37: Examples of a
good (left) and a bad (right)

instance for Exercise 5.37
question A. The right one

should be prevented by
constraints.

Rewrite this constraint in the context of the PipesModel class in a constraint
language of your choice.

Exercise 5.44. The pipes meta-model in Fig. 5.27 contains a flaw. It allows sinks
to be predecessors (while sinks should have no outgoing edges), and sources to be
successors (while sources should have no incoming edges). Fix this by changing
the meta-model.

For the repaired meta-model write a constraint enforcing that successors and
predecessors are opposite associations, i.e. if a node a is a predecessor of a node
b then b is a successor of the node a, and vice-versa (so formalize in a constraint
language the EMF EOpposite mechanism).

Exercise 5.45. We want to constrain the Pipes meta-model of Fig. 5.27 with the
two following constraints (enforced for all sinks and all sources, written in Xtend):

def public dispatch boolean constraint(Sink it) {

! predecessors.empty
}

def public dispatch boolean constraint(Source it) {

! successors.empty
}

Chapter 5. Static Semantics 205

Figure 5.38: A simple
meta-model for relational
schema with tables and
integer columns, primary
keys, and foreign keys

Apparently these constraints are not needed, as they could be incorporated into
the meta-model. Revise the meta-model to contain these constraints in the class
diagram.

Exercise 5.46. We want to constraint the Pipes meta-model of Fig. 5.27 so that
each instance model has exactly one source and exactly one sink:

// each model has exactly one source and exactly one sink
def public dispatch boolean constraint(PipesModel it) {

nodes.exists [it | it instanceof Source]
&&
nodes.exists [it | it instanceof Sink]

}

Is this implementation correct? If so, explain why. If not, specify an example
instance on which the English specification and the Xtend constraint differ. To
test this, you may need to translate the constraint to the constraint language used
in your modeling environment.

Exercise 5.47. Recall the constraint presented in Fig. 5.29 for the model of
Fig. 5.27. What are the suitable test-cases for testing the constraint? Discuss how
would you select test-cases for this constraint (including example test-cases).

Exercise 5.48. Formulate the constraints from Exercise 5.34 in Java (say in the
context of the class PrinterPool), without using anonymous and higher order
functions. Comment on the difference in writing constraints using functional
(declarative) and imperative style. Which version of the constraint is more
readable? Why?

Exercise 5.49. Recall the key fragment of the Ecore meta-model presented in
Fig. 3.25. Write a constraint that restricts this model’s instances to only allow
generalization of EClasses (eSuperTypes) by other EClass instances in the same
EPackage. It should not be allowed to generalize EClasses across package
boundaries. For simplicity, do not use the full Ecore meta-model, just the one
presented in Fig. 3.25.

206 Andrzej Wąsowski. Thorsten Berger

Exercise 5.50. The micro Ecore meta-model of Fig. 3.25 allows that an EClass is
a super type of itself. Write a constraint that disallows that. Only disallow direct
(non-transitive) generalization of an EClass by itself.

Now, strengthen the constraint to also disallow for an EClass to be an indirect
(transitive) generalization of itself. You can use the provided helper function
allSuperTypes formulated in Xtend:

1 // Get the set of all super types of c, including c and classes in r
2 def static private Set<EClass> allSuperTypes(EClass c, Set<EClass> r) {
3 if (r.contains(c)) return r
4 r.add (c)
5 c.ESuperTypes.toSet.fold(r, [r2, t| allSuperTypes(t, r2)])
6 }

Exercise 5.51. Recreate the model of Fig. 5.26 in Alloy. Use Alloy analyzer to
count how many possible configurations are possible. Then add the constraint
from the Exercise 5.26a and repeat the counting. Reflect on this result. Has the
number changed? Why?

References
Bak, Kacper et al. (2016). “Clafer: unifying class and feature modeling”. In: Soft-

ware and System Modeling 15.3, pp. 811–845. DOI: 10.1007/s10270-014-0441-1.
URL: http://dx.doi.org/10.1007/s10270-014-0441-1.

Cabot, Jordi and Martin Gogolla (2012). “Object Constraint Language (OCL): A
Definitive Guide”. In: Formal Methods for Model-Driven Engineering - 12th
International School on Formal Methods for the Design of Computer, Commu-
nication, and Software Systems, SFM 2012, Bertinoro, Italy, June 18-23, 2012.
Advanced Lectures. Ed. by Marco Bernardo, Vittorio Cortellessa, and Alfonso
Pierantonio. Vol. 7320. Lecture Notes in Computer Science. Springer, pp. 58–90.
DOI: 10.1007/978-3-642-30982-3_3. URL: https://doi.org/10.1007/978-3-642-
30982-3_3.

Codd, E. F. (1972). “Relational Completeness of Data Base Sublanguages”. In:
Research Report / RJ / IBM / San Jose, California RJ987.

Czarnecki, Krzysztof and Andrzej Wąsowski (2007). “Feature Diagrams and Log-
ics: There and Back Again”. In: Software Product Lines, 11th International
Conference, SPLC 2007, Kyoto, Japan, September 10-14, 2007, Proceedings.
IEEE Computer Society, pp. 23–34. DOI: 10 . 1109 / SPLINE . 2007 . 24. URL:
https://doi.org/10.1109/SPLINE.2007.24.

Dechter, Rina (2003). Constraint Processing. Morgan-Kauffman.
Demuth, Birgit (2009). OCL (Object Constraint Language) by Example. http://st.inf.

tu-dresden.de/files/general/OCLByExampleLecture.pdf.
Fahrenberg, Uli et al. (2014). “Sound Merging and Differencing for Class Diagrams”.

In: Fundamental Approaches to Software Engineering - 17th International Con-
ference, FASE 2014, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014,
Proceedings. Ed. by Stefania Gnesi and Arend Rensink. Vol. 8411. Lecture Notes
in Computer Science. Springer, pp. 63–78. DOI: 10.1007/978-3-642-54804-8_5.
URL: https://doi.org/10.1007/978-3-642-54804-8%5C_5.

Gamma, E. et al. (1995). Design patterns: elements of reusable object-oriented
software. Addison-Wesley Professional.

https://doi.org/10.1007/s10270-014-0441-1
http://dx.doi.org/10.1007/s10270-014-0441-1
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1109/SPLINE.2007.24
https://doi.org/10.1109/SPLINE.2007.24
http://st.inf.tu-dresden.de/files/general/OCLByExampleLecture.pdf
http://st.inf.tu-dresden.de/files/general/OCLByExampleLecture.pdf
https://doi.org/10.1007/978-3-642-54804-8_5
https://doi.org/10.1007/978-3-642-54804-8%5C_5

Chapter 5. Static Semantics 207

Jackson, Daniel (2002). “Alloy: a lightweight object modelling notation”. In: ACM
Trans. Softw. Eng. Methodol. 11.2. http://doi.acm.org/10.1145/505145.505149,
pp. 256–290.

– (2006). Software Abstractions. MIT Press.
– (2019). “Alloy: a language and tool for exploring software designs”. In: Commun.

ACM 62.9, pp. 66–76. DOI: 10.1145/3338843. URL: https://doi.org/10.1145/
3338843.

Jackson, Ethan K. and Wolfram Schulte (2013). “FORMULA 2.0: A Language
for Formal Specifications”. In: Unifying Theories of Programming and Formal
Engineering Methods - International Training School on Software Engineering,
Held at ICTAC 2013, Shanghai, China, August 26-30, 2013, Advanced Lectures.
Ed. by Zhiming Liu, Jim Woodcock, and Huibiao Zhu. Vol. 8050. Lecture Notes
in Computer Science. Springer, pp. 156–206. DOI: 10.1007/978-3-642-39721-
9_4. URL: https://doi.org/10.1007/978-3-642-39721-9%5C_4.

Juodisius, Paulius et al. (2019). “Clafer: Lightweight Modeling of Structure, Be-
haviour, and Variability”. In: Art Sci. Eng. Program. 3.1, p. 2. DOI: 10.22152/
programming-journal.org/2019/3/2. URL: https://doi.org/10.22152/programming-
journal.org/2019/3/2.

Lämmel, Ralf (2018). Software Languages: Syntax, Semantics, and Metaprogram-
ming. Springer.

Lem, Stanisław (1967). The Cyberiad: Fables for the Cybernetic Age. Trans. by
Michael Kandel. ISBN: 0156027593.

Object Management Group (2010). OCL Specification version 2.2. http://www.omg.
org/spec/OCL/2.2/.

Ratiu, Daniel, Markus Voelter, and Domenik Pavletic (2018). “Automated testing of
DSL implementations—experiences from building mbeddr”. In: Software Quality
Journal 26.4, pp. 1483–1518.

Rossi, Francesca, Peter van Beek, and Toby Walsh, eds. (2006). Handbook of
Constraint Programming. Elsevier.

She, Steven et al. (2014). “Efficient synthesis of feature models”. In: Information
and Software Technology 56.9. ISSN: 0950-5849. DOI: http://dx.doi.org/10.1016/
j . infsof.2014.01.012. URL: http: / /www.sciencedirect .com/science/article/pii /
S0950584914000238.

Submitters and supporters (2012). Common Variability Language. OMG Revised
Submission. URL: http://www.variabilitymodeling.org.

Valiente, Gabriel (2002). Algorithms on Trees and Graphs. Springer.
Warmer, Jos and Anneke Kleppe (2003). The Object Constraint Language. Addison-

Wesley.

http://doi.acm.org/10.1145/505145.505149
https://doi.org/10.1145/3338843
https://doi.org/10.1145/3338843
https://doi.org/10.1145/3338843
https://doi.org/10.1007/978-3-642-39721-9_4
https://doi.org/10.1007/978-3-642-39721-9_4
https://doi.org/10.1007/978-3-642-39721-9%5C_4
https://doi.org/10.22152/programming-journal.org/2019/3/2
https://doi.org/10.22152/programming-journal.org/2019/3/2
https://doi.org/10.22152/programming-journal.org/2019/3/2
https://doi.org/10.22152/programming-journal.org/2019/3/2
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/OCL/2.2/
https://doi.org/http://dx.doi.org/10.1016/j.infsof.2014.01.012
https://doi.org/http://dx.doi.org/10.1016/j.infsof.2014.01.012
http://www.sciencedirect.com/science/article/pii/S0950584914000238
http://www.sciencedirect.com/science/article/pii/S0950584914000238
http://www.variabilitymodeling.org

208 Andrzej Wąsowski. Thorsten Berger

6 Static Semantics with Type Systems

You won’t find a lemon
in the vegetable container

(the spouse to one of the authors)

Type systems are a common complement to structural constraints in enforc-
ing static semantics on a program text, that is particularly useful if you need
to track recursive properties on inductive syntax types (meta-models with cy-
cles over containment relations). In this chapter, our goal is to explain what
types and type systems are, to show how to build a simple one, and to discuss
when it is practical to use a type system instead of structural constraints.

Types are labels decorating an abstract syntax tree with limited infor-
mation about the meaning (semantics) of the individual syntax nodes. A
type checker does two things simultaneously: (i) it infers the decorations
summarizing non-local properties in a syntax tree and (ii) enforces structural
constraints on the inferred decorations. This effectively constrains elements
and properties placed arbitrarily far from each other in the syntax graph.

Type systems are particularly useful when types are not a direct property
of a syntax object, but rather emerge from properties of an entire sub-tree of
syntax objects. Thus type systems are a natural generalization of structural
constraints. They add a step of additional information inference before
enforcing structural constraints on the inferred labels. Just like in Sect. 5.3,
in type systems we tend to use constraints that are directly executable
(unlike the constraints in Alloy, which need to be solved). Consequently,
the executable structural constraints, presented in the previous chapter,
are the simplest possible type system—the one which infers no additional
properties beyond what is found directly in the syntax.

Example 16. Prpro is an example language loosely inspired by the probabilis-
tic programming framework PyMC3.1 PyMC3’s interface can be seen as an
internal domain-specific language (??) for describing Bayesian probabilistic
models. In contrast, prpro, developed partly in this chapter, is an external
DSL but with similar goals.

In the first example model in prpro, we declare two named constants, x and
y, followed by a normal distribution with the mean parameter µ equal to x+ z
and the standard deviation σ = y.

x = 0

y = 0

N (µ = x+ z,σ = y)

A type checker for prpro should flag an error above: the name z is used,
but undeclared. If z was declared, but had an incompatible type instead

209

210 Andrzej Wąsowski. Thorsten Berger

(say a string of characters), an error should be raised as well. Importantly,
discovering the type of z may require bringing information from far away.
The variable z could have been declared very far in a large model, with many
other declarations placed before the use. In a complex language, it is typically
impossible to write a static navigation expression over the abstract syntax tree
that finds the declaration of z and constrains it to exist, exactly because of
this unbounded distance. A type system must perform work that resembles a
transitive closure: traversing and collecting information from the entire model.

In probabilistic programming, parameters of a distribution do not have to
be fixed values. In the example below, x is itself govern by a, so called, prior
distribution.2 We do not know what is the value of x but we do know that it
is a floating point number selected from the interval (−1;1) with a uniform
probability density:

x = U (−1,1)

y = 1

N (µ = x+ y,σ = y)

This flexibility influences how we think about types in prpro. It turns out that
µ does not have to be a floating point number, but can also be a probability
distribution over numbers. In the above model, not only x is a distribution, but
also x+ y and µ . The expression x+ y represents the distribution of x shifted
by a constant y. This also means that the normal distribution, in the last line,
is not a pure normal distribution, but a distribution that arises from averaging
normal distributions with means (µ) selected from the distribution x+ y. To
perform a reasoning of this kind, we need to traverse the entire slice of the
model that is involved in calculating µ , including declarations of all involved
variables—a perfect task for a type checker.

We assume the following definition of a type system after Pierce (2002):

Definition 6.1. A type system is a tractable syntactic method for proving
the absence of selected errors in the construction of a model (program) by
classifying syntax elements according to their relevant properties.

This abstract definition calls for a few explanations. First, a type system
shall be tractable. The algorithm for establishing type correctness should
be efficient, typically polynomial in the size of the input model. This is
why we want to use only executable constraints. Theoretically, we could
encode type correctness as constraints with free variables in a sufficiently
rich logics, but solving them would be undecidable; far from polynomial-
time. Type checkers typically use algorithms that infer types inductively by
traversing the syntax tree (see the infobox on page 211).

A type checker is not a universal verification tool. It is constructed to
prove limited concrete properties, to detect selected errors. These could be

1https://docs.pymc.io/
2Do not worry about Bayesian models, priors, density functions, etc. if you do not know them.
They do not have major importance in the rest of the book.

https://docs.pymc.io/

Chapter 6. Static Semantics with Type Systems 211

What are inductive properties?

Exploring a local fragment of a model instance to check
a parent-child property.

In Chapter 5, we focused on requirements (restric-
tions) that could be expressed directly in terms of
meta-model types, through a localized inspection.
For example: A person object should be included
among its child object’s parents. This property is
directly expressible as a computation over a fixed
number of objects, without navigating arbitrarily far
from the context object in the syntax graph.

In contrast, the type of an arithmetic expression is not directly computable by just examining the instance
object in question (an expression node) and a small number of its neighbours. Consider the rule for
typing a binary addition expression: The result of binary addition is an integer if both of its arguments
are integers. This rule, similarly to the other constraints we considered before, can be split into two parts:

Premises (inductive): Both sub-expressions evaluate to an integer number
Conclusion (structural): The result of binary addition is an integer

To establish that the conclusion holds, we first need to establish the premises. Often, and also in this
case, enforcing the premises may require exploration of an arbitrary large abstract syntax tree, using the
same rule applied to a smaller part of the model. What if the left operand is an addition expression itself?
And what if the left operand of the left operand is an addition again? You can see that we might be
dealing with an arbitrary large sub-tree whose type is not directly known. We shall apply the same typing
rule to smaller and smaller sub-expressions, until we hit the leaves (constants and variable references),
where we can decide with certainty that their type is integer, without invoking the rule recursively.

An inductive property is a property which requires multiple recur-
sive checks of itself on decreasing pieces of syntax. In language
implementation, we usually encounter mutually recursive induc-
tive properties—sets of rules that recursively invoke each other.
Establishing that they hold requires exploring arbitrary large
parts of the instance. This resembles reflexive transitive closure.
Indeed, transitive closure is an example of an inductive property.

We use structural induction, which differs from mathematical
induction you may recall from high school. Mathematical
induction derives facts for natural numbers if they hold for
smaller numbers. Structural induction establishes that a
property holds for a syntax tree if it holds for smaller sub-trees.
The process terminates, since at every inductive step we are
considering smaller trees, until we arrive at basic terms, which
can be typed non-inductively (without further recursion).

Establishing an inductive property may
require exploration of arbitrary large sub-
trees of an AST.

errors in computation (like memory safety), but could also be errors in how
the model instance is structured—most useful for non-behavioral languages.
For instance, for a modeling language of electrical circuits we could imagine
a type system which ensures that alternating current (AC) is not connected
to direct current (DC) ports, or two AC ports with wrong voltage.

212 Andrzej Wąsowski. Thorsten Berger

Type checking is a syntactic method that operates directly on the syn-
tax tree, or an instance of a meta-model, without building complex and
expensive representations. It works by classifying syntax elements, labeling
them with discrete information representing a property, for instance: “this
expression will produce an integer value,” or “this wire carries DC current.”

Type checking is most used for algebraic DSLs and languages with
expressions. In expression languages, a model fragment is built from hier-
archies of atoms and operators, and then an inductive definition is natural:
we can locally reason about the types of larger expressions based on types
of smaller expressions. In contrast, the structural first-order constraints
discussed in Chapter 5 are best suited for properties that are local, and
related to types of direct connections in the abstract syntax. If a property
is natural to write as an executable constraint over abstract syntax without
types then avoid constructing a type system altogether.

In this chapter, we develop and reflect upon the basics of a type system for
prpro, our small Bayesian modeling language. Once you have an abstract
syntax for your language, there are three parts of a type system that need
to be developed: (i) the language of types, (ii) the typing hierarchy, for
languages that need sub-typing, and (iii) the type checking algorithm. We
go through all of them in order below, using examples in Scala and Java
with Ecore. The examples are easy to recast in any other modern GPL.

6.1 Abstract Syntax
We develop the running example in two styles: object-oriented (using
Ecore and Java) and functional (using Scala and its algebraic data types).
Figure 6.1 shows a Scala implementation of an abstract syntax for prpro
while Fig. 6.2 shows the corresponding meta-model in Ecore. Both defi-
nitions use the same type names and relations. A Model is an ordered list
of Declarations binding values to names. A declaration is an abstract
type, with two concrete realizations. Either we declare (Let) a binding
of a name to an expression value, or we declare a named data set (Data).
To keep the example small, prpro lacks a mechanism to acquire the data,
such as a URI or a path to a file. We only specify the type. Expressions,
used in let-bindings, are divided into: Distribution expressions, binary
expressions (BExpr), and simple expressions. In prpro we can combine
distributions: so we can use distributions as elements in expressions. For
example, we can compute a sum of distributions, or use distributions as
values for parameters of other distributions (so called prior distributions).
The simple expressions are constant literals (both integer and floating point)
and variable references, which refer to the expression or data set bound to a
name. We expect that a variable is bound before it is referenced.

6.2 The Language of Types
Types are typically defined inductively. Complex values have complex types,
complex types are created from simpler types. Thus types are themselves

Chapter 6. Static Semantics with Type Systems 213

1 abstract trait NamedElement { val name: String }
2 trait Typeable {
3 def getTy: Ty
4 private[adt] def setTy (ty: Ty): Ty }
5

6 type Model = List[Declaration]
7 sealed abstract trait Declaration extends NamedElement
8 case class Let (name: String, value: Expression) extends Declaration
9 case class Data (name: String, ty: Ty) extends Declaration

10

11 sealed abstract trait Expression extends Typeable
12 sealed abstract trait Distribution extends Expression
13

14 case class Uniform (
15 lo: Expression,
16 hi: Expression,
17 observed: Option[Expression] = None) extends Distribution
18

19 case class Normal (
20 mu: Expression,
21 sigma: Expression,
22 observed: Option[Expression] = None) extends Distribution
23

24 case class BExpr (
25 left: Expression,
26 operator: Operator,
27 right: Expression) extends Expression
28

29 case class VarRef (name: String) extends NamedElement with Expression
30 case class CstI (value: Int) extends Expression
31 case class CstF (value: Double) extends Expression
32

33 sealed abstract trait Operator
34 case object Plus extends Operator
35 case object Minus extends Operator
36 case object Mult extends Operator
37 case object Div extends Operator

source: prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/Pure.scala

Figure 6.1: Algebraic data
types representing the
abstract syntax of prpro, a
simple probabilistic modeling
language. See also Fig. 6.2

expressions! Indeed, they are instances of another language—the type
language. A type language is an abstraction of the typed language, here
prpro. It follows the same core structure, but leaves out many details
inessential for the property tracked by the type system. The process of
typing is the processes of abstracting model syntax elements by the type
language elements. Designing a type language amounts to a systematic
inspection of the meta-classes of the typed language, asking what should
be inferred about them, and what could be left out.

Since types are a language, we specify their syntax like for any other
language: using a meta-model or algebraic data types. Figures 6.3 and 6.4
show the abstract syntax for prpro types. Prpro has integer and floating
point values. In a probabilistic modeling language, we may want to control
the ranges of numeric values and constants, so that we can distinguish
distributions that generate positive values only, or parameters (like standard

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/Pure.scala

214 Andrzej Wąsowski. Thorsten Berger

Figure 6.2: An Ecore
meta-model for prpro that

follows a similar design to the
ADTs in Fig. 6.1

Model

Declaration

NamedElement

name : EString

Typeable

 ty : Ty

Expression

Distribution

Let Data

Uniform Normal

BExpr

operator : Operator = Plus

VarRef CstI

value : EInt

CstF

value : EDouble = 0.0

Operator

Plus

Minus

Mult

Div

[0..*] decls

[1..1] value [1..1] lo

[1..1] hi

[1..1] mu

[1..1] sigma

[1..1] left

[1..1] right

[0..1] referencedVar

[0..1] observed

source: prpro.scala/src/main/scala/dsldesign/prpro/model/prpro.ecore

Figure 6.3: An ADT
representing a type language

for prpro, a simple
probabilistic modeling

language. See also an Ecore
definition of the type
language in Fig. 6.4

1 sealed abstract trait Ty
2

3 sealed abstract trait SimpleTy extends Ty
4 case object IntTy extends SimpleTy
5 case object NonNegIntTy extends SimpleTy
6 case object NatTy extends SimpleTy
7 case object FloatTy extends SimpleTy
8 case object NonNegFloatTy extends SimpleTy
9 case object PosFloatTy extends SimpleTy

10 case object ProbTy extends SimpleTy
11 case object PosProbTy extends SimpleTy
12

13 sealed abstract trait CompositeTy extends Ty
14 case class VectorTy (len: Int, elemTy: SimpleTy) extends CompositeTy
15 case class DistribTy (outcomeTy: SimpleTy) extends CompositeTy

source: prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/Types.scala

deviation) which only take non-negative values. Also, we might want to
pay special attention to numbers between zero and one (probabilities), and
whether a probability of zero is allowed for a given expression location.
This leads to the following set of simple numeric types: integers, non-
negative integers, naturals, floats, non-negative floats, probabilities, and
positive probabilities. In Fig. 6.3, these are defined in lines 3–11, in Fig. 6.4
in the enumeration SimpleTyTag.

Composite types are defined as case classes in Scala (lines 13–15 in
Fig. 6.3) and as concrete classes in Ecore (the bottom part of the diagram in
Fig. 6.4). Prpro includes binary expressions, distribution expressions, and

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/model/prpro.ecore
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/Types.scala

Chapter 6. Static Semantics with Type Systems 215

Ty

SimpleTy

tag : SimpleTyTag = INT

SimpleTyTag

INT

NON_NEG_INT

NAT

FLOAT

NON_NEG_FLOAT

POS_FLOAT

PROB

POS_PROB

CompositeTy

VectorTy

len : EInt

DistribTy

[1..1] outcomeTy[1..1] elemTy

source: prpro.scala/src/main/scala/dsldesign/prpro/model/types.ecore

Figure 6.4: An Ecore
meta-model for the language
of types for prpro that
follows a similar design to the
ADTs in Fig. 6.3

declarations of named variables bound to distributions and data sets. What
types of values can arise from these constructs? Binary expressions will
have types arising from the combined sub-expressions. Obviously, if the
sub-expressions have simple types (for instance they are integer constants),
then the expression can inherit a simple type. What if we combine two
distribution expressions? We shall obtain a distribution! What if we refer to
a named data set? It is convenient to interpret data sets as vectors (VectorTy)
of data elements. We want to track how long the vectors are, and what is the
type of elements. For simplicity, we only admit vectors of simple types. In
the developments below, we assume that vector’s length is greater than one.

A prpro interpreter needs to distinguish distributions from simple val-
ues, as a different execution machinery is needed for them. Expressions
involving distributions may exhibit several typing errors. For instance, we
require that all vectors in prpro have constant fixed size, so we cannot
use a distribution to specify a vector length. Similarly, we cannot add a
distribution and a vector. We add another composite type: DistributionTy,
which encapsulates the type of the elements a distribution generates. To
keep the language simple we only allow distributions over simple types.

To summarize, we construct a type language as a simplification (ab-
straction) of the typed language, considering what properties of the input
elements we want to track. In our example, we track value ranges and
lengths of vectors. The type language is implemented using the same
mechanism as the abstract syntax of the typed language. In many simple
languages, types do not have to be part of the language syntax. For statically
typed languages however, we need to allow users to include type annotations
in models and programs. We typically also need to be able to print error
messages, which may require pretty printing type expressions. This means
that we also need a concrete syntax for types. One just includes them in
the grammar definition of the typed language. Since defining the concrete
syntax for types is not different from defining it for any other parts of the
language, we skip the details of that step in this chapter.

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/model/types.ecore

216 Andrzej Wąsowski. Thorsten Berger

Figure 6.5: Sub-typing
hierarchy for simple types in

prpro. There is an edge
from type t1 to type t2 in the

graph iff t1 is a direct
sub-type of t2, written t1 v t2

Float

Int

NonNegInt

Nat

NonNegFloat

PosFloatProb

PosProb

6.3 Type Hierarchy

Most type systems define a notion of refinement or substitutability. Sub-
stitutability means that when a program (or a model) expects a value of
a type t1 at a certain syntactic location, it will also work correctly (or be
meaningful) for any value of a sub-type t2 of t1 at this location (Liskov and
Wing, 1994). For example, a probabilistic model written in prpro shall
allow to assign an integer number where a floating point is required. More
interestingly, we can use a probability distribution over values instead of
a simple value in an arithmetic expression.

The simple types of prpro are organized in a hierarchy by inclusion
between the sets of values they represent; a common, but not the only
possible, criterion. See Fig. 6.5. Smaller types (like Prob representing
probability) are below larger types (like NonNegFloat representing non-
negative floating point values). In the graph, we move downwards to
sub-types and upwards to super-types. The lines going upwards connect
types representing increasing sets of values. The largest simple type in our
hierarchy is Float, and it includes Int as a subtype, written Intv Float. In
prpro, we will allow an integer at any position when a floating point number
is required. Similarly, positive probability is a more precise type than both
probability (Prob) and positive floating point numbers (PosFloat).

Formally, we interpret Fig. 6.5 as a partial order on simple types. The
nodes positioned higher are bigger in the order, and thev symbol means “di-
rectly below in the graph.” We generalize this for nodes that are not directly
adjacent in the graph. We write v∗ for the reflexive transitive closure of the
relation v. Thus t1 v∗ t2 means that t1 and t2 are connected by a directed
path in the graph and the former lies below the latter, t1 begins and t2 ends a
directed path. Types that are not connected by a directed path are incompara-
ble and their values cannot be substituted, for instance Prob and PosFloat.

After defining a sub-typing hierarchy for simple types, we need to do the
same for composite types: distributions and vectors. The main idea in prpro

Chapter 6. Static Semantics with Type Systems 217

is that we can refine (substitute) values of simple types by distributions (to
change usual calculations into calculations on random variables). Let us
formalize these intuitions as sub-typing rules.

Each of the rules below has three parts: a name (in parentheses to the
left), the premise (above the line) and the conclusion (below the line).
The premise defines the condition that must be satisfied for the rule to
be applicable. Multiple terms in a premise are interpreted conjunctively—
they must all be satisfied. For instance, the premise of the very first rule,
SSIMPLE, requires that two types, t1 and t2, are simple and that the former
is a sub-type of the latter. Then the conclusion is that t1 is a sub-type of
t2 also in our general sub-typing relation. We use the slanted inequality
symbol (6) for the sub-typing ordering between arbitrary types, not just
simple types. Do not confuse this symbol with the usual inequality symbol
(≤) representing the less-than-or-equal ordering on numbers. Here, are all
the sub-typing rules, with more commentary below:

(SSIMPLE)
t1, t2 simple t1 v∗ t2

t1 6 t2
(SDIST-1)

t1 v∗ t2
Distrib(t1)6 Distrib(t2)

(SVECT)
l1 ≥ l2 t1 v∗ t2

Vector(l1, t1)6 Vector(l2, t2)
(SDIST-2)

t1 v∗ t2
Distrib(t1)6 t2

The rule SVECT relates vector types. We refine a vector type by sub-typing
its element type and by ensuring that the refining type does not admit shorter
vectors. This means that if a context in a model needs l2 values of type t2,
then it will be able to operate on a prefix of a longer data set of l1 elements,
where each of the elements is also of type t2 (because t1 v∗ t2). It might just
ignore the excessive data elements. Note that the ordering on element types
is consistent (in the same direction) as the ordering on vector types, while
the ordering on lengths is inverted. The formal name for this phenomenon
is type parameter variance. We say that element type here is a co-variant
parameter of vector type (it refines in the same direction as the containing
type), while lengths is contra-variant (it changes in the opposite direction).

A distribution type refines another distribution type if their element types
are also sub-types (SDIST-1, co-variant). A distribution over elements of
type t1 cannot produce any values that a distribution of type t2 would not
be able to produce.3 The SDIST-2 rule handles the most controversial case
in the type system of prpro: it admits refinement of a simple type by a
distribtion type. We want to allow a probability distribution in a location
where a simple value is normally used in an expression. A probability

3Here we are ignoring the fact that some values may have probability zero, so even if admitted
by the type, might not actually be effectively realizable by the distribution.

218 Andrzej Wąsowski. Thorsten Berger

Figure 6.6: A Scala
implementation of the

inductive definition of the
sub-typing relation

from p. 217

1 def isSubTypeOf (t: Ty): Boolean = (this, t) match {
2 case (t1: SimpleTy, t2: SimpleTy) => // (SSimple)
3 t1.superTys.contains (t2)
4 case (VectorTy (l1, t1), VectorTy (l2, t2)) => // (SVect)
5 l1 >= l2 && (t1 isSubTypeOf t2)
6 case (DistribTy (t1), DistribTy (t2)) => // (SDist-1)
7 t1 isSubTypeOf t2
8 case (DistribTy (t1), t2: SimpleTy) => // (SDist-2)
9 t1 isSubTypeOf t2

10 case _ => false
11 } source: prpro.scala/src/main/scala/adt/Types.scala

Figure 6.7: A fragment of
the Java implementation of a

sub-typing relation, rules
SSimple and SVect

from p. 217

1 public static Boolean isSubTypeOf (Ty t1, Ty t2)
2 {
3 class SubTypeSwitch extends PrproTypesSwitch<Boolean> {
4 public Boolean defaultCase (EObject t) { return false; }
5 }
6 return new SubTypeSwitch () {
7 public Boolean caseSimpleTy (SimpleTy t1) { // (SSimple)
8 return new SubTypeSwitch () {
9 public Boolean caseSimpleTy (SimpleTy t2)

10 { return superTyTags (t1).contains (t2.getTag ()); }
11 }.doSwitch (t2);
12 }
13 public Boolean caseVectorTy (VectorTy t1) { // (SVect)
14 return new SubTypeSwitch () {
15 public Boolean caseVectorTy (VectorTy t2) {
16 return t2.getLen () <= t1.getLen ()
17 && isSubTypeOf (t1.getElemTy (), t2.getElemTy ());
18 }
19 }.doSwitch (t2);
20 }
21 ...
22 }.doSwitch (t1);
23 } source: prpro.java/src/main/java/dsldesign/prpro/java/Types.java

distribution instead of a simple value expresses uncertainty about this value.
What does it mean for the type system? We allow to refine any simple type
t1 by a distribution generating values of any of its sub-type (SDIST-2).4

Exercise 6.1. Is Float the top type in the sub-typing hierarchy? In other words, is
any other type in prpro a subtype of Float? Analyze the sub-typing rules above
to answer the question, and provide a proof, or a counterexample.

Exercise 6.2. Does there exist a single maximal type in the type hierarchy for
prpro defined above? What is this type? If not, give examples of two types, and
argue that they do not have a common super-type.

Implementation. Figure 6.6 shows the implementation of the above rules
in Scala, following the same order as in the formalization above. In Line 3,

4One can argue that distributions are a super-type of simple values, and organize this type
system “upside-down.” We feel that this results in a more complex type system, and does not
follow the intuitions of Python’s frameworks that inspired this example. See also Exercise 6.16

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/adt/Types.scala
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.java/src/main/java/dsldesign/prpro/java/Types.java

Chapter 6. Static Semantics with Type Systems 219

we query a simple type for the set of its super types to test v. Since the set
of simple types is small and finite in prpro, we hard-coded their sub-typing
relation as a property superTys of each simple type class. The remaining
cases closely follow the formal definition of the rules.

The Java implementation is more complex. We show a fragment of it in
Fig. 6.7. The structure and logics of the implementation is the same, but,
since Java does not have pattern matching expressions, we use a dynamic
dispatch pattern with a Switch class generated by Ecore’s infrastructure
from the meta-model of the type language. This pattern allows to split
computations based on the abstract syntax types. In lines 3–5, we define a
switch instantiation for the task of sub-type checking. The idea is that a call
to SubTypeSwitch.doSwitch produces a Boolean value: true if and only
if t1 is a sub-type of t2. The implementation of doSwitch is provided by
Ecore. We need to define how to handle the individual cases of switching.
We first override the method for the default case, stating that if none of
other rules has applied, then the sub-typing does not hold (Line 4). Then
we instantiate the switch (lines 6–23), defining pattern matching on type
t1. Since this pattern does not support matching on pairs of types, we
use nested instantiations, which makes things harder to read. Still the
traceability to formal rules is fairly direct. The full implementation is
available in prpro.java/src/main/java/dsldesign/prpro/java/Types.java.

6.4 Climbing the Type Hierarchy to Merge Compatible Types

We are typing an expression e1 + e2 where the sub-expressions are of types
t1 and t2. Can this types be added? What can we say about the type of
the resulting value? A type checker decides which types are allowed to
be combined. If the types are compatible, it computes their most precise
common super-type. For instance, when adding an integer and a floating
type value, the result should be a floating point number. The type describing
the combination of types t1, t2 is known as the join, the least upper bound,
or simply the lub of t1 and t2 in the sub-typing ordering. We write it as
t1t t2 in a formal notation.

Without going into the mathematical details, the least upper bound of
two simple types t1t t2 is the type located above both t1 and t2 in the graph
of Fig. 6.5, connected by directed path from both types, and the closest
such (no shorter path can be found to a shared ancestor). We basically start
climbing the hierarchy simultanously from t1 and t2, and continue until the
two paths meet. Figure 6.8 shows that the lub of PosProb and Nat is the
type of non-negative floats (NonNegFloat):

PosProbtNat= NonNegFloat (6.2)

A bigger question is: how shall we join composite types? For languages
with simple type systems, like most DSLs, we can read this almost directly
from the sub-typing rules. Since composite types are inductively defined,
this definition is going to be recursive. We are going to consider all possible

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.java/src/main/java/dsldesign/prpro/java/Types.java

220 Andrzej Wąsowski. Thorsten Berger

Figure 6.8: The least upper
bound of types Nat and

PosProb is NonNegFloat
(the proof construction

shown in black)

Float

Int

NonNegInt

Nat

NonNegFloat

PosFloatProb

PosProb

pairings of types t1 and t2 and discuss how they should be combined, if at
all. The definition is shown below in Eq. (6.3). We begin with simple types
as a special case of composite types—we already know how to join them.
We just delegate to Fig. 6.5.

t1t t2 =



t1t t2 in Fig. 6.5 if t1, t2 are simple
Vector(min(l′, l′′), t ′t t ′) if t1 = Vector(l′, t ′), t2 = Vector(l′′, t ′′)
Distrib(t ′1t t ′2) if t1 = Distrib(t ′1), t2 = Distrib(t ′2)

t ′t t ′′ if t1 = Distrib(t ′), t2 = t ′′ is simple

t ′t t ′′ if t1 = t ′ is simple, t2 = Distrib(t ′′)

(6.3)

The second case specifies how to unify two vector types. The length
of resulting vectors is the smaller of the lengths of the two joined types.
The element type is a super-type (lub) of the elements of joined vector
types. Compare these type transformations with the premises of rule
SVECT. Clearly, the shortest vector that is longer than both l′ and l′′

has min(l′, l′′) elements. The newly created vector type is a super-type for
the combined types, but still as low in the sub-typing hierarchy as possible.
This is consistent with the substitutability principle. We guarantee that
any vector value correctly typed will offer at least as many elements as its
type announces, perhaps more. Also, all the elements in the vector will be
typable with the inferred element type of the vector.

Similarly, when joining two distribution types (the third case), we to
join the element types and obtain a new distribution type that is the closest
super-type as per rule SDIST-1. The final two cases deal with sub-typing
along SDIST-2 and SSIMPLE (one side of the join is a distribution type,
and the other side is a simple type). The cases join a distribution type with
a simple type, resulting in the closest simple type above in the sub-typing
hierarchy. Compare this with rule SDIST-2, which says that a simple type
can be a super-type of a distribution, if it is a super-type of its element type.
Implementation. For a small known set of simple types, like in prpro, the
least upper bound can be precomputed for any pair of simple types. How-
ever, pre-computing might be annoying in early design stages, when types

Chapter 6. Static Semantics with Type Systems 221

1 private[adt] val topologicallySortedSimpleTys =
2 List (NatTy, PosProbTy, NonNegIntTy, PosFloatTy, ProbTy, IntTy,
3 NonNegFloatTy, FloatTy)

5 def lub (t1: SimpleTy, t2: SimpleTy): SimpleTy =
6 topologicallySortedSimpleTys
7 .find { t => (t isSuperTypeOf t1) && (t isSuperTypeOf t2) }
8 .getOrElse (null) // find always succeeds (an offensive null)

10 type Result[+T] = Either[ErrMessage,T]

12 def lub (t1: Ty, t2: Ty): Result[Ty] =
13 (t1, t2) match {
14 case (ty1: SimpleTy, ty2: SimpleTy) =>
15 Right (lub (ty1, ty2))
16 case (VectorTy (len1, ty1), VectorTy (len2, ty2)) =>
17 Right (VectorTy (len1 min len2, lub (ty1, ty2)))
18 case (DistribTy (ty1), DistribTy (ty2)) =>
19 Right (DistribTy (lub (ty1, ty2)))
20 case (DistribTy (ty1), ty2: SimpleTy) =>
21 Right (lub (ty1, ty2))
22 case (ty1: SimpleTy, DistribTy (ty2)) =>
23 Right (lub (ty1, ty2))
24 case _ =>
25 Left (s"An attempt to unify incompatible types: $t1, $t2")
26 }

source: prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/Types.scala

Figure 6.9: A Scala
implementation of join (the
least upper-bound) for simple
types (lines 5–8) and for
composite types (lines
10–24) of prpro

are changing a lot. Every time, you add or modify a type the precomputed
map needs to be updated. To avoid this problem, we sacrificied efficiency
of code for flexibility, and proceed like with sub-typing of simple types:
we sorted the types topologically and used a simple algorithm that walks
up the sorting until we find the first node that is a super-type of both types
combined. This way, we only needed to update the topological sorting in
one place, when updating the simple type hierarchy during development.

Figure 6.9 presents the implementation of type joining for both simple
and composite types for the abstract syntax as a Scala ADT. In lines 1–3,
we define a topologically sorted list of simple types. As expected, FloatTy
is the very last type on the list, as it is also the top type in the hierarchy
of simple types in Fig. 6.5. (Why is NatTy first?) Lines 5–8 show the
simplistic implementation of lub for simple types: find the first type on
the topologically sorted list that is a super-type of both t1 and t2. This
operation should never fail, so Line 8 never returns null. It is still needed
to satisfy Scala’s type checker, because the find function on lists returns
an option of the identified value, not the value directly.

Finally, the lub function for general types (including the composite types)
is shown from Line 12 onwards. The function attempts to compute a join
of two types. It can fail, so the return value is wrapped into a Result value,

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/Types.scala

222 Andrzej Wąsowski. Thorsten Berger

Figure 6.10: A Java
implementation of join for

simple and composite types
in prpro; Only the case

corresponding to SVect is
shown

1 protected static final List<SimpleTy> topologicallySortedSimpleTys =
2 List.of (natTy, posProbTy, nonNegIntTy, posFloatTy, probTy, intTy,
3 nonNegFloatTy, floatTy);

5 public static SimpleTy lub (SimpleTy t1, SimpleTy t2)
6 {
7 return topologicallySortedSimpleTys
8 .stream ()
9 .filter (t -> isSuperTypeOf (t,t1) && isSuperTypeOf (t,t2))

10 .findFirst ()
11 .orElse (null); // never used
12 }

14 public static Ty lub (Ty t1, Ty t2) throws TypeError
15 {
16 class LubSwitch extends PrproTypesSwitch<Ty> {
17 private EObject ty;
18 public LubSwitch (EObject t) { this.ty = t; }
19 public Ty get () { return this.doSwitch (ty); }
20 public Ty defaultCase (EObject t)
21 {
22 String msg = String.format (
23 "An attempt to unify incompatble types: %s, %s", t1, t2);
24 throw new TypeError (msg);
25 }
26 }

28 return new LubSwitch (t1) {
29 ...
30 public Ty caseVectorTy (VectorTy t1)
31 {
32 return new LubSwitch (t2) {
33 public Ty caseVectorTy (VectorTy t2)
34 {
35 SimpleTy ty = lub (t1.getElemTy (), t2.getElemTy ());
36 int len = Math.min (t1.getLen (), t2.getLen ());
37 return vectorTy (len, ty);
38 }
39 }.get ();
40 } ...

source: prpro.java/src/main/java/dsldesign/prpro/java/Types.java

representing a failure or success (Line 12). The result type is defined using
the standard library type Either (Line 10). It captures either a successful
result of joining as a type (a value of type Ty) or an error message.

Lines 14–23 correspond to the cases in Eq. (6.3); compare the code and
the mathematical definition case-by-case. In Line 15, we delegate to the
lub fuction for simple types. In lines 16–17, we apply the simple type join
to element types, and the minimum function to the vector sizes. The cases
for distrubution types follow Eq. (6.3) closely in the same fashion.

Figure 6.10 presents a small fragment of the corresponding Java imple-
mentation. Like in the Scala version, we first define the topological order of
simple types (lines 1–3). Then we implement least upper bound for them,

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.java/src/main/java/dsldesign/prpro/java/Types.java

Chapter 6. Static Semantics with Type Systems 223

by searching the topological sorting. Finally, in lines 14–40, we show a
fragment of lub for composite types. Like in Fig. 6.7, we use the switch
pattern classes generated by the Ecore infrastructure. First, we specialize
the switch class for the lub computation (16–25), with the most important
part being the definition of the default case, producing an error message.
Second, we instantiate it and show how to merge two vector types, with
the core operations in Lines 35–37. The entire implementation is available
from the book’s code repository.

6.5 Type Checking Algorithm for Prpro Expressions

We have discussed relations between types (sub-typing) and operations
on types (least upper bound). We are ready to talk about the actual type
checking—relating types not to each other but to values and expressions in
prpro models. We first assign basic numeric types to literals and constant
values. To assign the most precise type for a constant we find the lowest
positioned type containing the constant from the hierarchy of Fig. 6.5.
A positive integer literal (say 42) is assigned type Nat. Zero (0) is typed
NonNegInt, as non-negative integers are the smallest of our types that
include zero. All remaining integer literals (-42) are typed Int. Similarly,
a positive floating point literal (3.14) is typed as a positive float, unless it
is a zero (0.0) which is typed as probability. Any other number between
zero and one is typed as positive probability. Literals below zero (-3.14)
are typed as Float. This is summarized in the following definition:

type-of(c) =



Nat if c is a positive integer literal
NonNegInt if c = 0
Int for other integer literals
Prob if c = 0.0
PosProb for c ∈ (0;1]
PosFloat for floating-point literal c > 1.0
Float for other literals

(6.4)

We directly assigned types to literals and constants, because their meaning is
fixed and independent of the context. In contrast, an expression referring to
variables depends on properties of these variables for its type. A sum x+ y
gives an integer if both x and y are integers. It is a float if both x and y are
floating point variables. Consequently, we need to know the types of smaller
sub-expressions to type larger expressions. To capture this contextual
information, we will store types of known variables in a typing environment
denoted with the Greek letter Γ. An environment (Γ) is simply a map from
variable names to types. It carries the information about types declared at
various locations in the model to the places were the variables are used.

The typing rules assign a type (t) to each prpro expression (e) in a typing
environment (Γ). We will use the following ternary typing judgement to

224 Andrzej Wąsowski. Thorsten Berger

state this formally and concisely:

Γ ` e : t (6.5)

Like before, we will use this judgement in inference rules relating premises
(above the line) and conclusions (below the line). We begin introducing
the rules with the two simplest cases, the constant literals and variable
references. The first rule below, CONST, defines the type for a constant c
invoking Eq. (6.4). The second rule, VAR-REF, types a variable reference.
The premise checks what type has been assigned to the variable name in the
environment Γ and simply returns that type. There is no other way to type a
variable access in prpro. If a variable has not been typed (assigned) before
accessing we will not be able to type it, which will result in a type error:

(CONST)
c is a literal

Γ ` c : type-of(c)
(VAR-REF)

Γ(name) = t
Γ ` name : t

The type of a binary arithmetic expression is inferred from the types of its
sub-expressions. This means that a sum of floats will remain a float, and a
sum of integers will remain an integer:

(BEXPR)
Γ ` e1 : t1 Γ ` e2 : t2 t = t1t t2

Γ ` e1⊕ e2 : t

The typing rule BEXPR above is unsound for some of our simple types.
“Unsound” means that it can be used to conclude a type for a value that is
inconsistent with the meaning of that type. Two examples:

1. Since 1: Nat and 42: Nat then it allows us to conclude that
(1 - 42): Nat (the result should be Int)

2. Since 0.6: PosProb and 0.42: PosProb then it allows us to conclude
that (0.6 + 0.42): PosProb (the result should be NonNegFloat since
probability values cannot be larger than 1).

There are several ways to make this rule sound. Perhaps the easiest is to
assign a larger type than the least upper bound (respectively Int and Float)
for results of the expression. This will make a workable type system, but
we will loose all the fine granularity of numeric types that we so carefully
designed. A more complex, but a more precise solution, is to write a rule
for each operator and numeric type separately. For instance, we do know
that a sum of two natural numbers is a natural number, but for a difference
we can only promise that it is an integer.

Exercise 6.3. Design a solution for this problem, and sketch the typing rules to
return these types instead of the t1t t2 for the binary expression case.

Implementation. Figure 6.11 presents an implementation of the rules
CONST, VAR-REF, and BEXPR of the type-checker for expressions in
Scala (Lines 1–22). The signature of function tyCheck corresponds to the

Chapter 6. Static Semantics with Type Systems 225

1 def tyCheck (tenv: TypingEnvironment, expr: Expression): Result[Ty] =
2 expr match {
3 case BExpr (left, operator, right) =>
4 for {
5 t1 <- tyCheck (tenv, left)
6 t2 <- tyCheck (tenv, right)
7 t <- lub (t1,t2)
8 } yield expr.setTy (t)

10 case CstI (n) if n > 0 => Right (expr.setTy (NatTy))
11 case CstI (0) => Right (expr.setTy (NonNegIntTy))
12 case CstI (_) => Right (expr.setTy (IntTy))
13 case CstF (0.0) => Right (expr.setTy (ProbTy))
14 case CstF (x) if x > 0.0 && x <= 1.0 =>
15 Right (expr.setTy (PosProbTy))
16 case CstF (x) if x > 1.0 => Right (expr.setTy (PosFloatTy))
17 case CstF (_) => Right (expr.setTy (FloatTy))

19 case VarRef (name) =>
20 tenv.get (name)
21 .map (expr.setTy)
22 .toRight (s"Undeclared variable ’${name}’")

24 case Normal (mu, sigma, oobserved) =>
25 for {
26 _ <- tyCheck (tenv, mu).ensure (
27 t => t.isSubTypeOf (FloatTy),
28 t => s"Need a sub-type FloatTy for ’mu’ but got ’$t’"
29)
30 _ <- tyCheck (tenv, sigma).ensure (
31 t => t.isSubTypeOf (NonNegFloatTy),
32 t => s"Need a sub-type of NonNegFloatTy for ’sigma’, got ’$t’"
33)
34 _ <- oobserved
35 .map { observed =>
36 tyCheck (tenv, observed)
37 .ensure (
38 tob => tob.isSubTypeOf (VectorTy (1, FloatTy)),
39 tob => s"Need a vector of Floats for observed, got ’$tob’"
40)
41 }.getOrElse (Right (VectorTy (1, FloatTy)))
42 } yield expr.setTy (DistribTy (FloatTy)) ...

source: prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/TypeChecker.scala

Figure 6.11: The type
checking rules for simple
expressions (lines 3–22) of
prpro and for a normal
distribution node (lines
24–42) implemented in Scala

structure of the typing judgement in the rules: it relates a typing environment
(tyenv is Γ), an expression (expr) and a resulting type (Result[Ty]). Recall
that Result is a type that allows to represent a type value inferred for an
expression or a failure, including an error message. The first case, imple-
menting BEXPR, obtains the types of sub-expressions recursively. Then
it combines them using the least upper bound. The use of the for-yield
expression of Scala ensures that failures are propagated: if any of the type
check calls in lines 5–6 or the lub in line 8 fail, then the entire for-yield
fails and returns the error message.

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/TypeChecker.scala

226 Andrzej Wąsowski. Thorsten Berger

Figure 6.12: Selected type
checking rules for

expressions of prpro
implemented in Java, using
the switch pattern with the

infrastructure generated by
Ecore

1 static public Ty tyCheck (Map<String, Ty> tenv, Expression expr)
2 static class TyCheckExprSwitch extends TyCheckSwitch<Ty>
3 {
4 @Override public Ty caseCstI (CstI expr)
5 {
6 Ty result = Types.intTy;
7 if (expr.getValue () > 0) result = Types.natTy;
8 else if (expr.getValue () == 0) result = Types.nonNegIntTy;
9 expr.setTy (result);

10 return result;
11 }

13 @Override public Ty caseBExpr (BExpr expr) throws TypeError
14 {
15 Ty t1 = tyCheck (tenv, expr.getLeft ());
16 Ty t2 = tyCheck (tenv, expr.getLeft ());
17 expr.setTy (Types.lub (t1, t2));
18 return expr.getTy ();
19 }

21 @Override public Ty caseNormal (Normal expr) throws TypeError
22 {
23 Ty t1 = tyCheck (tenv, expr.getMu ());
24 if (!Types.isSubTypeOf (t1, Types.floatTy))
25 throw new TypeError (
26 "Need a subtype of FloatTy for ’mu’ but got ’" + t1 +"’");

28 Ty t2 = tyCheck (tenv, expr.getSigma ());
29 if (!Types.isSubTypeOf (t2, Types.nonNegFloatTy))
30 throw new TypeError (
31 "Need a subtype of NonNegFloatTy for ’sigma’ but got ’"
32 + t2 +"’");

34 if (expr.getObserved () != null) {
35 Ty tob = tyCheck (tenv, expr.getObserved ());
36 Ty stob = Types.vectorTy (1, Types.floatTy);
37 if (!Types.isSubTypeOf (tob, stob))
38 throw new TypeError (
39 "Need a vector of Floats for observed but got ’" + tob +"’");
40 }

42 expr.setTy (Types.distribTy (Types.floatTy));
43 return expr.getTy ();
44 }

source: prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/TypeChecker.scala

Lines 10–17 implement the typing of literals based on CONST rule and
Eq. (6.4). These cases cannot fail—a type has been defined for any literal.
This is why they wrap the resulting type in the Right case of the Result[Ty].
(The Left case represents a failure.) Finally, lines 19–22 implement the
VAR-REF rule. First, the typing environment, a Map[String, Ty], is
queried for the type of the variable referred with name. This results in
a value of type Option[Ty]. If succeeded the map invocation will store this
type in the annotation of the expression using a side effect for easy later
access (Line 21). Function setTy has been declared in Fig. 6.1. Finally,

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/main/scala/dsldesign/prpro/scala/adt/TypeChecker.scala

Chapter 6. Static Semantics with Type Systems 227

the option value is converted with toRight to a result of the Right[Ty]
if successful. If failed, toRight (slightly confusingly) creates a failing
instance of Left encapsulating the provided error message.

Figure 6.12 presents the key part of the corresponding Java implemen-
tation. The function signature resembles the Scala type checker: we have
a type environment (a map from names to types) and an expression to
type. The function returns the inferred type directly. Instead of propagating
errors using a special result type (in the functional style used in our Scala
example), we opt for using exceptions here, as a more natural Java idiom.
Consequently, a successfully inferred type is returned directly, while errors
are propagated through the exception handling control flow. Otherwise the
design is similar to Fig. 6.11. We use the switch pattern classes of Ecore
again, providing an inner class to define visitors for various types, letting
the Ecore generated machinery to handle the dispatching based on the types
of traversed syntax nodes. The implementation of BEXPR is in lines 13–19,
almost identical to the Scala version. The implementation of CONST is split
into two functions by the meta-model types, we only show one of them for
integers (lines 4–11). VAR-REF is not included for brevity, but the entire
implementation can be found in our source code repository.

Let us return to formal typing rules for prpro. The most domain specific
part of prpro expressions are the constructors of probability distribution.
Typing them is not very different from typing other expressions, only with
slightly more idiosyncratic shape of sub-expressions and type requirements.
The following rules formalize how to type them, both with and without
an observation property. Recall that in prpro we can write a distribution
expression just by invoking the name of the distribution, and providing the
parameters. We can additionally provide a vector of data, which then can
be used for probabilistic inference. From language design perspective (the
only perspective relevant here), this means that the probability distribution
expressions sometimes have an additional argument with data.

(NORM)
Γ ` eµ : Float Γ ` eσ : NonNegFloat

Γ ` Normal(eµ ,eσ) : Distrib(Float)

(NORM-O)
Γ ` eµ : Float Γ ` eσ : NonNegFloat Γ ` o : Vector(1,Float)

Γ ` Normal(eµ ,eσ ,o) : Distrib(Float)

(UNIF)
Γ ` e0 : t0 Γ ` e1 : t1 t0t t1 6 t t is simple

Γ ` Uniform(e0,e1) : Distrib(t)

(UNIF-O)
Γ ` e0 : t0 Γ ` e1 : t1 t0t t1 6 t t simple Γ ` o : Vector(1, t)

Γ ` Uniform(e0,e1,o) : Distrib(t)

228 Andrzej Wąsowski. Thorsten Berger

The first variant of the NORM rule states that a normal distribution expres-
sion always provides a distribution over floats. This is because a normal
distribution assigns non-zero density to any real value. However, for typing
to succeed, the type-checker should prove that the mean parameter (eµ) is
a float (or a sub-type) and the standard deviation parameter (eσ) is a non-
negative float. The second rule, NORM-O, adds an additional requirement
that the observed property (o) gives a vector of floats, which basically
means any vector of numbers here (why?). The last two rules follow the
similar patter, but for uniform distributions. The interesting part here is
that we first type the endpoints of the interval (e0,e1), obtaining types t0
and t1. Note that these can be two different types. For instance, if the
expressions are constant literals representing 0.42, and 42, then the first
type is PosProb and the second one is NonNegFloat. To infer a single type
of the elements generated by a uniform distribution over this interval, we
can find the smallest simple type that includes the entire interval; in this
case NonNegFloat. We use the merging (lub) described in the previous
section to find this type in the typing rules for uniform. Furthermore, when
observed data (o) is provided (UNIF-O), we require that all the elements in
this data set, also conform to this type.

Note that the UNIF-O rule is unsound: it is possible that the vector o con-
tains values outside of the interval delimited by e0 and e1. This is unsound,
since all such values are assigned probability zero, so either the uniform
distribution is wrongly formulated, or the provided data set is inconsistent
with it. For most applications this will be a problem. Unfortunately, this
problem is hard to eliminate, especially if the endpoints of the interval
are described by distributions themselves. In such case, we do not know
their precise values at type checking time. Even for constant end-points
of the intervals, we cannot enforce this rule without type checking data
simultaneously with the model, which would require extending the language
to provide some access path to the data set at the very least. In practice,
such extensions to the type system, that reach out of the model to other
connected data sources are very valuable, and help domain experts avoid
errors when designing models. This is one aspect of domain-specific typing
that is rarely seen in general-purpose programming languages, where the
type systems tend to focus just on the program text, and ignore the external
environment. We left this rules out of prpro for brevity reasons, though.

Finally, we need to include automatic up-casting in the typing rules
(which allows to promote any type to its super-type):

(UPCAST)
Γ ` e : t1 t1 6 t2

Γ ` e : t2

Practically, the Upcast rule allows using a distribution instead of a floating
point number for parameters of normal and uniform distributions. The
types t, NonNegFloat, and Float in probability rules are simple, but UPCAST

Chapter 6. Static Semantics with Type Systems 229

will allow to promote a distribution type to simple types exploiting the sub-
typing in SDIST-2 on page 217. This will allow to complete type checking
for distribution expressions even if they nest other distribution expressions.

Implementation. Our implementations of type checking of probabilistic
expressions have been shown in Fig. 6.11 (lines 24–42) and in Fig. 6.12
(lines 21–44). In Scala, we use a method ensure implemented in Result[T]
that takes a Boolean predicate on T and a function that formats an error
message (typically both lambda expressions). The ensure function does
nothing if applied to a result that is a failure (just propagates the left value).
Otherwise it checks if the predicate holds. If it does, ensure returns the
value received, otherwise it formats an error message using the second
argument and returns a failure (left) result with the same message.

We show the type checking for normal distributions in both figures. We
check the conditions one-by-one in the same order. Note that instead of sep-
arating NORM from NORM-O, like in our formal rules, we simply include
the latter in the former conditionally (lines 33-40 and 34–40 respectively).
This avoids some code repetition.

When we describe a type system formally, we tend to state properties
declaratively: we specify what values and what types can be matched
together. If you can prove using the inference rules that an expression
types with type t then you can prove the same for any super-type of t
(substitability). So the type system is non-deterministic.

Exercise 6.4. Study the formal typing rules and propose a small expression in
prpro that can be typed both by Vector(5,PosProb) and by Vector(7,Prob). Prove
both typings using our rules. Store your example for the next exercise.

In an implementation, the rules that update the typing environment have
been made deterministic. When implementing a type checker we seek an
algorithmic presentation, not a relational one. We achieve this by finding
the smallest (the most concrete) type possible for every expression. We
basically implement the most conservative interpretation of the typing rules
and avoid using up-casting whenever it is not strictly needed.

Exercise 6.5. Study the implementation of one of our type checkers for prpro.
What type will be actually returned for your example term from Exercise 6.4?

Finally, in our implementation there is nowhere a case corresponding to
the UPCAST rule. This rule always introduces non-determinism. In the
implementation, we basically replace type constraints (colon in the formal
rules) with sub-type constraints (6) to allow relaxation in premises. This is
still deterministic, because the sub-expressions are typed-deterministically,
and we just need to check whether their types are appropriate, directly or
indirectly. See calls to isSubTypeOf for example in Line 27 of Fig. 6.11
and Line 24 of Fig. 6.12.

230 Andrzej Wąsowski. Thorsten Berger

Figure 6.13: The type
checking rules for

declarations implemented in
Scala. This function has to

be put in a loop iterating over
the entire model to complete

the type checker.

1 def tyCheck (tenv: TypingEnvironment, decl: Declaration)
2 : Result[TypingEnvironment] =
3 decl match {

5 case Let (name, value) =>
6 tyCheck (tenv, value)
7 .ensure (
8 t1 => tenv.get (name).isEmpty,
9 t1 => s"’$name’ has already been defined!")

10 .map { t1 => tenv + (name -> t1) }

12 case Data (name, ty) =>
13 tenv.get (name) match {
14 case Some (_) =>
15 Left (s"Identifier ’$name’ has already been defined!")

17 case None =>
18 Right (tenv + (name -> ty))
19 }
20 }

6.6 Type Checking Prpro Models

Process the top-level declarations, and the typing of prpro will be complete.
This task is much easier than type checking expressions. Each let declara-
tion sets the type of a name to the type of the right-hand-side expression;
this type will be used for typing subsequent references to the variable.
Multiple declarations are checked sequentially. Type checking of the entire
model fails if any of them fails. In the formal rules below, LET updates the
type environment Γ0 with the type of a new variable name. The rule first
infers the type of the expression e bound to name. Then ensures that name
has not been previously defined. Finally, it captures the update in Γ1:

(LET)
Γ0 ` e : t Γ0(name) is undefined Γ1 = Γ0[name 7→ t]

Γ0 ` let name= e : Γ1

(DATA)
Γ0(name) is undefined Γ1 = Γ0[name 7→ t]

Γ0 ` data name of type t : Γ1

(MODEL)
Γ0 ` d1 : Γ1 · · · Γn−1 ` dn : Γn

Γ0 ` d1, · · · ,dn : Γn
di are declarations

The DATA rule, processing data set declarations, resembles LET, but,
instead of inferring the type from an expression, uses the type specified
directly in syntax. Finally, type checking the entire model requires that all
declarations type check correctly, accumulating the types and names on the
way (MODEL). A prpro model is well-typed if we can use the above rules
to type all the declarations according to the last rule.

Chapter 6. Static Semantics with Type Systems 231

1 @Override public Map<String,Ty> caseLet (Let let) throws TypeError
2 {
3 String name = let.getName ();
4 Ty t1 = tyCheck (tenv, let.getValue ());
5 if (tenv.containsKey (name))
6 throw new TypeError
7 ("Identifier ’" + name + "’ has already been defined!");
8 tenv.put (name, t1);
9 return tenv;

10 }

12 @Override public Map<String,Ty> caseData (Data decl) throws TypeError
13 {
14 String name = decl.getName ();
15 if (tenv.containsKey (name))
16 throw new TypeError
17 ("Identifier ’" + name + "’ has already been defined!");
18 tenv.put (name, decl.getTy ());
19 return tenv;
20 }

Figure 6.14: The type
checking rules for
declarations implemented in
Java. This function has to be
put in a loop iterating over
the entire model to complete
the type checker.

Implementation. Like before, the implementation of the above rules should
ensure determinism. Rule LET shall not be satisfied with any type compati-
ble with e, but should obtain the smallest, the most precise compatible type
according to the sub-typing ordering. This makes it easier to reuse variables
and expressions. If someone needs a Float and you give her a Prob, the
model will still make sense, but not if you give a Float when Prob is expected.
Fortunately, this is already guaranteed by the implementation of the type
checking rules for expressions. If the rules for expressions are made deter-
ministic, then the model-level rules are deterministic, too. In the three for-
mal rules above, only LET may introduce non-determinism, and only when
typing an expression. No new non-determinism is introduced at this level.
It is a good exercise to study the rules again to convince yourself about this.

The implementations of LET and DATA are shown in figures 6.13 (Scala)
and 6.14 (Java). The former shows the entire implementation, while the
latter only the overridden methods in the switch class for typing declarations.
The LET rule first obtains the type of the right-hand-side expression. If
successful, Line 8 (respectively 5) confirms that the variable had not been de-
fined before. Both a failure of typing the expression and a repeated declara-
tion of the same name cause the typing to stop with an error. Finally, the type
environment is extended with a new mapping and returned (lines 5–10 and 1–
10). The DATA rule, in both examples, just checks for repeated declaration,
and if no problem is found, records the declared type in the typing map.

The MODEL rule (not shown for brevity reasons) is implemented using
either a loop (imperative style) or a fold (functional style). It processes
the declarations one-by-one using the above defined functions to build the
typing environment. See the code repository for details.

232 Andrzej Wąsowski. Thorsten Berger

What do I need to build when implementing a type system?
The complexity of a type checker may overwhelm when compared to the terse constraints of Chapter 5.
The diagram below summarizes the components of a typical implementation. Unlike a typical constraint, a
type system examines the entire syntax instance, not just few related objects, to track non-local properties.

The left column, typed language, lists syntax (Chapter 3) and runtime
objects (??) related by terms in the typing language (right column). Types
replace values in an abstract interpretation, as if we computed on sets, not on concrete values.

typed language: x + y
typing lang.: Vector (200, Float)

Runtime is when a model is used computationally (not necessarily run).
At runtime, concrete values arise: simple (numbers, strings, enumerations)
and composite (objects, records, arrays, lists). Typically simple values are assigned simple types, and
composite values are assigned composite types. The structure of the value domain is reflected in types.

simple type: Float
composite type: Distrib (Float)

We organize types into a refinement hierarchy resembling inheritance
(sometimes exploited in implementations). If t ′ 6 t then any value of type
t should be substitutable by a value of t ′ without causing errors tracked by
the type system. This is often done by making the set of values of t ′ be a subset of values of t.

distribution of non-negative
floats is a float distrib.: Distrib
(NonNegFloat) 6 Distrib (Float)

When typing expressions, we often combine values of different types
by up-casting them to a common super-type. This operation is captured
by a join operation (least upper bound, LUB) on types, which has to be
consistent with the sub-typing ordering.

NonNegInt t Prob = NonNeg-
Float and Vector(2,NonNegInt)
t Vector(4,Prob) = Vector(2,
NonNegFloat)

Types of simple literals are described by a direct case split. Inductive rules
are needed if we have literals for composite values, and for expressions. A
judgement decides what is the type of the value returned by an expression
given the syntax of the expression and the context properties captured in a typing environment.

1.0: PosProb and 1: Nat,
x+Normal(0,5): Distrib(Float)
if Γ(x) = Float

Statements, declarations, etc. update a typing context without carrying a
type themselves, and may propagate multiple properties simultaneously.
The typing environment stores information about referencable properties that needs to be accessed later.

let x=1 ensures that Γ(x) =
Nat if Γ(x) undefined

At the top model-level we ensure the key Boolean property: does the model type check or not? We also
store the entire type information collected during typing for use in the language implementation.

Chapter 6. Static Semantics with Type Systems 233

Exercise 6.6. Revisit the now complete implementation of the type checker.
Which part needs to be modified to implement the solution to Exercise 6.3?
Introduce the sound rule for binary expressions into the implementation.

6.7 Quality Assurance and Testing Type Checkers

Type systems are often developed using some formal specification (as we
did), which gives the basis for developing systematic tests. To test a type
system implementation, we test each component: each of the sub-typing
rules, each of the join rules, and each of the type checking rules.

Scenario-driven testing. Following the unit-test style, we create test cases
for each rule, attempting to achieve good decision branch coverage. For
each rule, find an input (abstract syntax tree) satisfying the premises, and
check if the implementation types it as prescribed. The second column in
Table 6.1 shows examples of such test cases for prpro. For example, the first
row has a test case derived from Fig. 6.5 to check whether the sub-typing
implementation for simple types behaves as expected. The right column

Table 6.1: Selected example test-cases for the elements of the type checker; For each formal rule, test how it behaves when
the input satisfies the premises, and when it violates them. Tests are shown in an informal dialect inspired by unit test matchers.

rule positive test case negative test case

SSIMPLE PosProbTy.isSubTypeOf (PosFloatTy)
must be (true)

PosProbTy.isSubTypeOf (NatTy)
must be (false)

SVECT VectorTy (42, PosProbTy)
.isSubTypeOf (VectorTy(13,PosFloatTy))

must be (true)

VectorTy (13, PosProbTy)
.isSubTypeOf (VectorTy (42, PosFloatTy))

must bet (false)

t1 t t2 for
simple types

lub (ProbTy, NonNegFloatTy)
must be (NonNegFloatTy)

no negative test (all pairs are unifiable)

t1 t t2 for
composite
types

lub (VectorTy (10, intTy),
VectorTy (42, probTy))

must be (vectorTy (10, floatTy)

lub (vectorTy (10, intTy),
DistribTy (probTy))

must fail

type-of(t) for
simple types

typeOf(CstF (0.6)) must be (PosProbTy) no negative test (all literals are assigned a type)

VAR-REF VarRef ("x") with Map ("x" -> PosProbTy)
is of type (PosProbTy)

VarRef ("x") with Map ("y" -> PosProbTy)
fails to type check

NORM val e = Normal (CstF (0.42), CstF (0.1))
tyCheck (tenv0 (), e) must be (FloatTy)

val e = Normal (CstF (0.42), CstF (-0.42))
tyCheck (tenv0 (),e) must fail

LET Let("x", BExpr (CstI (1), Plus,
Normal(CstF(0.0),CstF(0.1))) with Map()
must be (Map ("x" -> Distrib(FloatTy)))

Let ("x", BExpr (CstI (1), Plus,
Normal (CstF (0.0), CstF(0.1)))
with (Map ("x"-> PosProbTy) must fail

source: prpro.scala/src/test/scala/dsldesign/prpro/scala/adt/TypesSpec.scala
source: prpro.scala/src/test/scala/dsldesign/prpro/scala/adt/TypeCheckerSpec.scala

source: prpro.java/src/test/java/dsldesign/prpro/java/TypesTest.java
source: prpro.java/src/test/java/dsldesign/prpro/java/TypeCheckerTest.java

http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/test/scala/dsldesign/prpro/scala/adt/TypesSpec.scala
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/test/scala/dsldesign/prpro/scala/adt/TypeCheckerSpec.scala
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.java/src/test/java/dsldesign/prpro/java/TypesTest.java
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.java/src/test/java/dsldesign/prpro/java/TypeCheckerTest.java

234 Andrzej Wąsowski. Thorsten Berger

shows negative test-cases, so examples of broken inputs to the type checker
that violate the premises of typing rule. For the sub-typing of simple types
in the first row, we choose two types that are not sub-types in Fig. 6.5.

There are typically many more ways to violate a typing rule than to satisfy
it. Many negative test-cases are needed to obtain good decision branch
coverage. Remember that a type checker is an error finding tool, so testing
whether it works well, is largely testing how it behaves on broken inputs.
In the SVECT row of the table, we show a violation of the sub-typing rule
for vectors. The sub-type is shorter (13) than the super-type (42). Confirm
on page 233 that this is indeed a negative test case. However, this is not
the only one way to violate SVECT. For example, two types of the same
lengths but incomparable element types, would fail sub-typing check, too.

The remaining rows in the table show examples for each rule category
of this chapter: sub-typing for simple types, sub-typing for composite
types, joining simple types, joining composite types, typing literals, typing
expressions (3 rows). The test cases for the final rule MODEL are not shown
for brevity. You can use this table, to see whether you understand our typing
rules or the implementation presented in the chapter. In an implementa-
tion, we incorporate them in automated unit tests and use continuously in
development. We add to them any regressions identified later in the project.

Exercise 6.7. Design positive and negative test-cases for some of the rules not
shown in Table 6.1: SDIST-1, SDIST-2, BEXPR, NORM-O, UNIF, and DATA.
Add them to tests for the Scala or Java implementation of the prpro type checker.

Testing the MODEL rule requires a larger input. It can be constructed from
test cases for smaller parts, but it is more beneficial to obtain an independent
test. Take the maximal example designed for testing the parser of your lan-
guage, and evolve it into a type-correct example. (Often the maximal exam-
ple for the parser is immediately a negative test-case for the type checker.)

Property-driven testing. Scenario-based testing can get tedious when the
different aspects of the language interact with each other, easily leading
to a combinatorial explosion of the test case space. To test sub-typing for
our eight simple types we need 64 test cases, one for each pair. This may
appear overly conservative. For instance, we can easily cut the number of
test-cases in half, if we could establish general laws:

1. For any simple type t we have t v t
2. For any two simple types, if t1 6= t2 we have that if t1 ≤ t2 then t2 6≤ t1

This is what property-based testing is about. Instead of formulating discrete
inputs, we formulate laws that should hold for large classes of inputs, and
test these laws on many possible random values. Table 6.2 shows five
essential property-driven tests for the prpro type checker. These tests have
been derived from the fundamental properties of the type system that we
want to be able to establish for any type system: namely that sub-typing
with join form a partial order. The first row tests that a type is always a

Chapter 6. Static Semantics with Type Systems 235

sub-type of itself, the second that two mutual sub-types must be equal. The
third states that a sub-type of a sub-type is a sub-type as well (transitivity).
The fourth checks whether a join of two types results in a super-type. The
final row tests that the obtained super-type is the smallest possible.

The table uses the syntax of the Scalatest library, but many alternative
libraries exist for all main stream programming languages (e.g. Junit-
quickcheck for Java,5 hypothesis6 for Python). Property-based testing
is particularly useful for testing highly reusable components that are going
to experience a diversity of inputs, like language tool chains. It helps to
increase test coverage with automation.

The skill of writing property tests resembles writing constraints a lot
(Chapter 5). However, we constrain not the syntax of our language but its
types and the behavior of the type checker. If you are used to writing static
semantics constraints, you will easily succeed in writing property-based
tests. Obviously, there are more properties than the generic five that one
could write, also properties that are specific to the implemented language.
We show more in the implementation of prpro in our code repository.

Property-based testing interacts well with scenario-based testing. When-
ever a property-based test fails, the testing framework provides you with

5https://github.com/pholser/junit-quickcheck
6https://github.com/HypothesisWorks/hypothesis

sub-typing is
reflexive

forAll { t: Ty => t.isSubTypeOf (t) must be (true) }

sub-typing is
anti-
symmetric

forAll { (t1: Ty, t2: Ty) =>
whenever (t1.isSubTypeOf (t2) && t2.isSubTypeOf (t1))
{ t1 must be (t2) }}

sub-typing is
transitive

forAll { (t1: Ty, t2: Ty, t3: Ty) =>
whenever (t1.isSubTypeOf (t2) && t2.isSubTypeOf (t3))
{ t1.isSubTypeOf (t3) must be (true) }}

join is a
super-type of
its arguments

forAll { (t1: Ty, t2: Ty) =>
inside (lub (t1,t2)) {

case Right(ty) =>
t1.isSubTypeOf (ty) must be (true)
t2.isSubTypeOf (ty) must be (true)

case Left(msg) => }}

join is the
least
super-type of
arguments

forAll { (t: Ty, t1: Ty, t2: Ty) =>
whenever (t1.isSubTypeOf (t) && t2.isSubTypeOf (t)) {

inside (lub (t1,t2)) {
case Right (ty) =>

ty.isSubTypeOf (t) must be (true)
case Left (_) =>

fail ("must exist if a super-type does!") }}}}

source: prpro.scala/src/test/scala/dsldesign/prpro/scala/adt/TypesSpec.scala

Table 6.2: Examples of
property tests for prpro type
system. Note that these tests
are the same for any type
system. Code examples use
Scalatest library, but similar
Quickcheck-style libraries
exist for any main stream
programming language

https://github.com/pholser/junit-quickcheck
https://github.com/HypothesisWorks/hypothesis
http://bitbucket.org/dsldesign/dsldesign/src/master/dsldesign.prpro.scala/src/test/scala/dsldesign/prpro/scala/adt/TypesSpec.scala

236 Andrzej Wąsowski. Thorsten Berger

Figure 6.15: Simplified
generators for the prpro

types to be used to test type
system properties. We are

using the generator
framework of the Scalacheck

library, compatible with
Scalatest

1 val genTy: Gen[Ty] = Gen.oneOf (genSimple, genComposite)
2 val genSimple: Gen[SimpleTy] = Gen.oneOf (topologicallySortedSimpleTys)
3 val genComposite: Gen[CompositeTy] = Gen.oneOf (genVector, genDistrib)
4 val genVector: Gen[VectorTy] =
5 for {
6 len <- genInt
7 elemTy <- genSimple
8 } yield VectorTy (Math.abs (len % 1000) + 1, elemTy)
9 val genDistrib: Gen[DistribTy] = genSimple.map {ty => DistribTy(ty)}

the failure-inducing input. Since the framework is randomized, it is prudent
to store that input as a regression, besides using it for debugging. This way
you will accumulate a collection of test-cases quite fast.

Property-based testing needs a way to generate inputs automatically. For
all the types tested by properties, one needs to create generators compatible
with the framework. Figure 6.15 shows the generator for our composite
types. It is a inductive procedure that constructs larger terms from smaller
terms, and uses randomization to decide which sub-types to instantiate.
Similar generators can be implemented for the abstract syntax trees. They
will become useful again in testing later parts of the language infrastructure,
for instance code generators (??).

Exercise 6.8. Implement properties for testing the two laws stated on page 234
and use them to test our type system.

Exercise 6.9. Write a regression scenario test exposing the unsoundness of the
our typing rules (cf. Exercise 6.3). At this stage, we cannot argue for unsoundness
of a typing rule, yet. We can show that 0.6: PosProb and 0.42: PosProb leads
to (0.6 + 0.42): PosProb, but not that the latter is unsound. We would need to
know how to execute our operators, which we have not implemented yet. However,
we can write a syntactic regression test stating that the type of 0.6+0.42 should
be a super-type of PosFloat. This test will fail until you solve Exercise 6.3.

6.8 Types in the Language Conformance Hierarchy

The typing and the typed language are easily confused, even more so if the
typing language is a part of the typed language. Also, the types of your
language (prpro) and those of the implementation language (here Scala,
Java, and Ecore) may appear perplexingly similar. It is essential to draw
clear lines and understand how the involved languages and types relate to
each other. In this chapter, we followed the deep embedding design: the
types of prpro are not types of Java or Scala, but they are values. Type
checking is just an algorithm operating on values in the implementation
language. It relates values representing expressions and declarations to
values representing types. A deep embedding is a common choice for im-
plementation of types. The shallow embedding is the dual pattern, popular
in code generators and in internal DSLs. We define and discuss it in ????.

Chapter 6. Static Semantics with Type Systems 237

Ty

SimpleTy

tag : SimpleTyTag = INT

SimpleTyTag

INT

NON_NEG_INT

NAT

FLOAT

NON_NEG_FLOAT

POS_FLOAT

PROB

POS_PROB

CompositeTy

VectorTy

len : EInt

DistribTy

[1..1] outcomeTy[1..1] elemTy

new SimpleTy { tag = INT }
new SimpleTy { tag = NON_NEG_INT }
new SimpleTy { tag = NAT }
new SimpleTy { tag = FLOAT }
new SimpleTy { tag = NON_NEG_FLOAT }
new SimpleTy { tag = POS_DLOAT }
new SimpleTy { tag = PROB }
new SimpleTy { tag = POS_PROB }

isSubTypeOf

Boolean isSubTypeOf(...)

instances-of
realizes-in-code Figure 6.16: The subtyping

hierarchy is typically not
implemented using subtyping
in the implementation
language (a shallow
embedding) but it is coded
separately as a function
related values (a deep
embedding).

Definition 6.6 (Deep embedding). Deep embedding is a language imple-
mentation pattern in which the elements of the implemented language (say
types) are represented as values in the implementation language, and not
using the corresponding elements of the implementation language.

In the implementation of prpro, each simple type is a distinct value of
type SimpleTy, which is a Scala (Java) type representing all simple types.
Figure 6.16 attempts to visualize this for the Java implementation. The
simple types are tags in an enumeration, so they are simple values, in-
stantiating the enumeration type SimpleTyTag. The class SimpleTy wraps
the enumeration for minor technical reasons. The sub-typing hierarchy of
Fig. 6.5 is not captured by Java sub-typing (inheritance) but it becomes an
association between values. We have implemented this association not as
a direct reference but as a function isSubTypeOf that derives the property
from all super types of each type (Fig. 6.7 line 10, and Fig. 6.6 line 3).

Figure 6.17 extends this overview to abstract syntax of models and
composite types. We use Ecore for this example, which is easier to lay out
visually than Scala. We are interested in typing a simple binary expression
x+42, under the assumption that x is a distribution over floating point
numbers. We begin with the typed language, shown in the left part of the
figure. The abstract syntax for the example is found in the bottom-left
corner. It follows the UML instance specification notation. The top-left
corner of the figure shows the relevant fragment of the prpro meta-model
(quoting Fig. 6.2). The vertical dashed arrows connect each abstract syntax
object with the meta-class it instantiates. This left part of the figure is
reminiscent of Fig. 3.13, except that only two-levels are shown, M1 and
M2.

The right part of the figure presents the corresponding hierarchy for the
typing language. The values in the bottom-right corner represent types
relevant for the example expression: the simple type of naturals (for the
constant 42) and the distribution over floats (for x and the resulting binary ex-
pression). These values are instances of meta-classes defining the syntax of
the typing language shown in the top-right corner of Fig. 6.17, an exact copy
of Fig. 6.4. Again, the vertical dashed lines mark the instantiation relations.

238 Andrzej Wąsowski. Thorsten Berger

ExpressionLet

BExpr

operator : Operator = Plus

VarRef CstI

value : EInt

Operator

Plus

Minus

Mult

Div
[1..1] value [1..1] left

[1..1] right Ty

SimpleTy

tag : SimpleTyTag = INT

SimpleTyTag

INT

NON_NEG_INT

NAT

FLOAT

NON_NEG_FLOAT

POS_FLOAT

PROB

POS_PROB

CompositeTy

VectorTy

len : EInt

DistribTy

[1..1] outcomeTy[1..1] elemTy

: CstI

value = 42

: Let

name = "x"

: VarRef

: BExpr

operator = Plus

referencedVar

r ight

lef t

: SimpleTy

tag = NAT

: SimpleTy

tag = FLOAT
: DistribTy outcomeTy

instance-of instance-of
instance-of

instance-of

instance-of instance-of

instance-of

type-of

type-of
type-of

type-of

type-of

refines

Figure 6.17: Relating the typed language (top left), the typing language (top right), the typed language instance (bottom left),
and the actual typing (bottom right). Dashed arrows represent instantiation (conformance), while dotted arrows represent typing

The dotted horizontal lines visualize the typing relations. At the instance
level (bottom), concrete type values are assigned to each expression term
VarRef, BExpr, and CstI. These lines are reflected at the meta-level (top),
which states that any expression object will be typed by a Ty object, adding
further that constants shall be typed by SimpleTy. Note that at the meta-
level no concrete types can be specified. We know that constants must have
simple types, only because there is no way in prpro to write literal values
for composite types. At the meta-level, concrete type assignments cannot be
made. The type checker, operating on instance level can assign these types.

Mathematically, both the type-of relation and the instance-of relation are
mappings onto simpler domains. The former maps to the domain of types,
which is smaller and more abstract than the set of all models. The latter
maps onto the meta-model, again a small set of meta-classes and relations.
The former maps onto the types for the implemented language, the latter
maps onto the types in the implementation language.

Further Reading
Programming language researchers have identified many good use cases, engineer-
ing patterns, and sophisticated design methods for type systems that clearly go
beyond the scope of this book. There are many formal problems, to consider when
designing a type system. For instance, does there always exist a unique smallest type
describing the value that can be produced by each expression? Or is the execution of

Chapter 6. Static Semantics with Type Systems 239

a well-typed program going to preserve types (subject reduction)? What properties
are guaranteed to hold (soundness)? How to design type systems that do not require
explicit type annotations and support generic functions (parametric polymorphism)
with true type inference (solving type variable constraints)? The classic introductory
text on type systems that goes into considerable detail is the book of Pierce (2002).
The goal of Lämmel (2018) is closer to ours: to show the basics for application ori-
ented readers. Another book, with slightly more details about type systems, but still
fairly efficient, is the programming language implementation book by Sestoft (2012).

The ultimate goal of many researchers in type system engineering is to depart
from manual implementation of type checkers, to generate them automatically from
high-level descriptions, in a way similar to how we generate parsers from grammars.
Antwerpen et al. (2016) and Pelsmaeker, Antwerpen, and Visser (2019) describe
a tool, Statix,7 that attempts to bridge type checking and constraint solving. It
provides a DSL for declarative specification of type correctness. Models in this DSL
are automatically reduced to a constraint solving problem. Statix is being developed
within the ecosystem of the Spoofax8 language workbench (Kats and Visser, 2010).
Another tool for declarative definitions of type systems (and interpreters), integrated
with Xtext, is Xsemantics9 (Bettini, 2013).

In prpro, we have developed an entire expression language for the purpose of
the example. Many DSLs use a similar generic expression language. Xbase10 is an
implementation of a rich Java-like expression language with a type-system provided
by Xtext. It can be reused in other languages.

We do not teach property-based testing in this book but merely apply it to
language implementations. To learn more about its pragmatics, search online
for tutorials of ScalaCheck, QuickCheck (Haskell), Hypothesis (Python) or Junit-
QuickCheck (Java). Property-based testing is an increasingly popular technique
that originated with the seminal paper of Claessen and Hughes (2000) introducing
the Haskell tool QuickCheck. Reading it is highly recommended. Since language
definitions often have clear expected behaviors, it is natural to formulate laws that
the implementations should adhere to—a natural playground for property-based
testing (Palka et al., 2011). Generating meaningful random models and programs
remains a challenge, for instance ensuring that enough of them are well-typed
(Midtgaard and Møller, 2017).

Additional Exercises
Exercise 6.10. Add vector literal to the abstract syntax of prpro (the possibility of
writing constant literals that are representing vectors). Why the typing hierarchy
does not need to be changed with this extension? Expand the typing rules to
account for the new construct, and implement the new rule.

Exercise 6.11. Extend prpro with type-casting, so the ability to force a type of
an expression. For instance (in Scala notation) we could imagine a constructor:

case class Cast (e: expression, ty: Ty) extends Expression

7https://eelcovisser.org/research/#Statix
8http://www.metaborg.org/en/latest/
9https://github.com/eclipse/xsemantics

10https://www.eclipse.org/Xtext/documentation/305_xbase.html

https://eelcovisser.org/research/#Statix
http://www.metaborg.org/en/latest/
https://github.com/eclipse/xsemantics
https://www.eclipse.org/Xtext/documentation/305_xbase.html

240 Andrzej Wąsowski. Thorsten Berger

A type-casting construct simply changes the type of the expression e to ty
regardless of what the inferred type of e is. Adjust the type system to account for
this new construct and implement the new rule.

Notice that this extension provides another workaround for the weaknesses of
the numeric type inference in prpro. If the type system is not able to prove that a
number is positive, the programmer may explicitly indicate it. Of course, if the
programmer is wrong, the model will be malformed. It would be prudent to insert
a runtime check at this point in the interpreter for prpro, to ensure that the type
cast is safe for the value produced by e. We will revisit this question in ??, ??.

Exercise 6.12. Add 2-dimensional vector types to the type language of prpro (so
2-dimensional arrays, or vectors of vectors) and the typing rule (next to SVECT)
to support it.

Exercise 6.13. (A small project) Add arbitrarily nested vector types to prpro.
We can assume that the multidimensional vector values “enter” the language
via the Data construct (we can still ignore how they are actually specified in
external files). This extension requires revising the language of types, adding the
sub-typing rules, join rules, and the typing rules.

Exercise 6.14. (A small project) Change prpro’s Data bindings for data sets to
include a URL of a CSV file containing the data, instead of a type (Figs. 6.1
and 6.2). Implement a simple inference tool that detects the type of the entries in
the CSV file by their syntax and calculates the vector type returned by the type
checker for data bindings based on this information. Integrate this inference into
the type checker (Fig. 6.13) for prpro and test that it works well.

Exercise 6.15. (A small project) Extend the syntax of prpro with normal distri-
butions that take a vector of numbers for the mean parameter mu. Such a normal
expression should produce a vector of normal distributions, one per each value of
the mean. (A “vectorized” distribtuion construct is common in Python libraries
for probabilistic programming.) Extend the type language to allow vectors of
distributions. Make sure that there is a new typing rule for normal distributions,
and revisit all sub-typing, join, and typing rules for vectors, amending as needed.

Exercise 6.16. (A small project) The choice that distributions are subtypes of
simple numbers (see rule SDIST-2) may seemed arbitrary. For instance, it allows
vectors of distributions through a back door. Alternatively, we could invent an
abstract type, say ArithmeticValueTy, linked to the interface of objects that
participate in arithmetic expressions. Both simple types and distribution types
could become its subtypes. Redefine the typing language to change the design in
this direction. This requires changing the typing rules for arithmetic expressions
(to take value types). Reflect how would we would now make vectors to be
arithmetic values as well.

Exercise 6.17. (A project) Reimplement the type system for prpro using XSe-
mantics or Spoofax/Statix, and reflect on the added value of using a DSL-driven
(model-driven) tool for type system implementation. When is it beneficial?

Chapter 6. Static Semantics with Type Systems 241

Exercise 6.18. (A small project) Revisit the finite state machine language from
Chapter 3. Add global numeric variables and expressions (both arithmetic and
Boolean) to the abstract syntax, and allow adding Boolean expressions as guards
on transitions. A transition is active and can be taken if the source state is active
and the guard condition evaluates to true. Finally, design a type system that
ensures that only Boolean expressions, not numeric expressions, are used as
guards on transitions.

Exercise 6.19. (A project) Design a simple language for electric circuits. Each
wire in a circuit can carry a DC power or AC power. We have power inputs,
and power outputs. We have wires that have two ends (in and out) that can be
connected to other wires or junctions. Junctions that connect several incoming
wires to outgoing wires. Finally, we have a frequency converter (one input, one
output) that can change incoming AC current into a DC current. The abstract
syntax can be designed as a simplification of the finite state machine language.

Design and implement a type system which given a typing environment that
assigns AC or DC current to each input node for the circuit, infers the AC/DC
current type for every wire and output node. A circuit should fail to type check if
AC and DC wires are connected without a frequency converter node.

References
Antwerpen, Hendrik van et al. (2016). “A constraint language for static semantic

analysis based on scope graphs”. In: Proceedings of the 2016 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation, PEPM 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016. Ed. by Martin Erwig and Tiark
Rompf. ACM, pp. 49–60. DOI: 10.1145/2847538.2847543. URL: https://doi.org/
10.1145/2847538.2847543.

Bettini, Lorenzo (2013). “Implementing Java-like languages in Xtext with Xseman-
tics”. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing.
ACM, pp. 1559–1564.

Claessen, Koen and John Hughes (2000). “QuickCheck: a lightweight tool for
random testing of Haskell programs”. In: Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00), Montreal,
Canada, September 18-21, 2000. Ed. by Martin Odersky and Philip Wadler.
ACM, pp. 268–279. DOI: 10.1145/351240.351266. URL: https://doi.org/10.1145/
351240.351266.

Kats, Lennart C. L. and Eelco Visser (2010). “The Spoofax language workbench”. In:
Companion to the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, SPLASH/OOPSLA 2010,
October 17-21, 2010, Reno/Tahoe, Nevada, USA. Ed. by William R. Cook,
Siobhán Clarke, and Martin C. Rinard. ACM, pp. 237–238. ISBN: 978-1-4503-
0240-1. DOI: 10.1145/1869542.1869592. URL: http: / /doi .acm.org/10.1145/
1869542.1869592.

Lämmel, Ralf (2018). Software Languages: Syntax, Semantics, and Metaprogram-
ming. Springer.

Liskov, Barbara H. and Jeannette M. Wing (Nov. 1994). “A Behavioral Notion of
Subtyping”. In: ACM Trans. Program. Lang. Syst. 16.6, pp. 1811–1841. ISSN:
0164-0925. DOI: 10.1145/197320.197383. URL: https://doi.org/10.1145/197320.
197383.

https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/1869542.1869592
http://doi.acm.org/10.1145/1869542.1869592
http://doi.acm.org/10.1145/1869542.1869592
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/197320.197383

242 Andrzej Wąsowski. Thorsten Berger

Midtgaard, Jan and Anders Møller (2017). “QuickChecking static analysis prop-
erties”. In: Softw. Test. Verification Reliab. 27.6. DOI: 10.1002/stvr.1640. URL:
https://doi.org/10.1002/stvr.1640.

Palka, Michal H. et al. (2011). “Testing an optimising compiler by generating
random lambda terms”. In: Proceedings of the 6th International Workshop on
Automation of Software Test, AST 2011, Waikiki, Honolulu, HI, USA, May 23-24,
2011. Ed. by Antonia Bertolino, Howard Foster, and J. Jenny Li. ACM, pp. 91–97.
DOI: 10.1145/1982595.1982615. URL: https://doi.org/10.1145/1982595.1982615.

Pelsmaeker, Daniël A. A., Hendrik van Antwerpen, and Eelco Visser (2019). “To-
wards Language-Parametric Semantic Editor Services Based on Declarative
Type System Specifications”. In: 33rd European Conference on Object-Oriented
Programming, ECOOP 2019, July 15-19, 2019, London, United Kingdom. Ed. by
Alastair F. Donaldson. Vol. 134. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik. ISBN: 978-3-95977-111-5. DOI: 10.4230/LIPIcs.ECOOP.2019.26.
URL: https://doi.org/10.4230/LIPIcs.ECOOP.2019.26.

Pierce, Benjamin (2002). Types and Programming Languages. MIT Press.
Sestoft, Peter (2012). Programming language concepts. Springer Science & Busi-

ness Media.

https://doi.org/10.1002/stvr.1640
https://doi.org/10.1002/stvr.1640
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.4230/LIPIcs.ECOOP.2019.26
https://doi.org/10.4230/LIPIcs.ECOOP.2019.26

7 Design Patterns and Practices for Concrete
Syntax

7.1 Placeholder

This chapter is just a placeholder for now, so that we can refer to it.

243

244 Andrzej Wąsowski. Thorsten Berger

8 Software Product Lines

We will now look at the application of MDSE for so-called software product
lines—portfolios of software variants in a particular application domain. We
will discuss the systematic engineering of product lines using methods and
tools from the field of software product line engineering (SPLE). This field
advocates the creation of configurable software platforms that use MDSE
technology. From such platforms, the software products (i.e., the individual
variants) can be derived, typically in an automated process supported by
interactive configurator tools. As such, software product lines are kinds
of software architectures that aim at maximizing the reuse of code, the
reuse of other software development artifacts, and the reuse of engineering
efforts.

In this chapter, our focus is on the modeling aspect when introducing
SPLE and its main concepts. As we will show, real-world product lines
typically exhibit large and complex variability that needs to be managed—
and effectively managing variability requires modeling it, using dedicated
languages called variability modeling languages. Intuitively, the software
variants that are part of a product line (or that can be derived through
configuration from a product line), share commonalities and variabilities—
for instance, some functionality is sometimes there, sometimes not. Of-
ten, certain functionality also depends on other functionalities. So, these
functionalities and their dependencies need to be modeled. To this end,
a range of variability modeling languages has been developed, many of
which express the logic that some functionality (referred to as feature in the
remainder) can be present or absent in a concrete variant of the product line.
But, more expressive languages also exist—for instance, when variants
differ in how certain parts are connected with each other, which is called
topological variability. For the former kind of variability, using so-called
feature or decision modeling languages suffices (see our case study on the
Linux kernel in Sect. 8.2), while for the latter, dedicated DSLs need to be
created (see our case study of fire alarm systems in Sect. 8.8).

8.1 The Need for Software Variants

The need for software variants is increasing—not only due to an ever-
increasing diversity of hardware, runtime environments, and market seg-
ments, but also through new application scenarios for embedded or cyber-
physical devices, such as wearables or Internet of Things (IoT) devices.

245

246 Andrzej Wąsowski. Thorsten Berger

Feature Models are Languages, Too
Recall that this book is primarily about creating modeling languages, not so much about using languages
(but, of course we use meta-modeling languages for creating other languages). From the descriptions
above, you might think that this chapter is mainly about using languages to model the variability of
software product lines. However, the languages that we will discuss are in fact meta-modeling languages
with different levels of expressiveness. You will see that, when using the language feature models, you
are actually creating a new language—a specific feature model—that describes the whole product line
and that can be instantiated by creating a configuration. The latter is a model that represents a concrete
software variant and that conforms to the feature model.

As such, this chapter will also introduce you to simpler and less-expressive meta-modeling languages than
class diagrams. In fact, we will present you a spectrum of languages. Class diagrams are certainly the
most expressive ones, and in all the chapters above we have used their power to create DSLs describing
possible instances of software systems or parts thereof. But here, you will see that less-expressive
meta-modeling languages exist that can suffice as well. We will specifically discuss the advantages and
disadvantages of using DSLs versus feature models, and also explain the spectrum of languages between
both.

Creating variants of software systems allows organizations to address such
varying stakeholder requirements. It allows them to experiment with new
ideas or optimize non-functional requirements, such as performance, power
consumption or cost.

Opportunistic Software Reuse. Consider a typical scenario of opportunistic
code reuse, without a product line architecture. In this scenario, a developer
clones (copies) a fragment of code that implements some functionality
that had already been developed in an existing project. This allows her
to reuse past effort very easily and very fast, but unfortunately leads to
multiplication of maintenance efforts. The cloned code starts to live its
own life. If she fixes a bug in it, it is very likely that the bug will persist
in the original project. Fixing it there requires additional effort. Also, if
the original is fixed, it is unlikely that the correction will be propagated
to the new project. Furthermore, all the effort on testing the code is now
duplicated in both projects.

Over time, the software organization will have a number of projects that
share pieces of functionality, but that do not really share code. They only
contain copies (clones) of similar code. The shared code in a product system
decreases, and the product-specific code is growing. If this continues, the
costs are growing with the age of the projects, and ultimately the entire
system family becomes too expensive to maintain.

Similar problems appear when this so-called clone & own (Dubinsky et
al., 2013; Businge et al., 2018; Stanciulescu, Schulze, and Wąsowski,
2015) reuse is organized using branching in a version-control system.
Many developers initially start to use branching or forking to maintain
variations of software, but this only works for limited kinds of variations,
and even there it is hard to propagate bug fixes between branches and

Chapter 8. Software Product Lines 247

clones. Through parallel development, developers also commonly face
merge conflicts (McKee et al., 2017; Menezes, 2016; Mahmood et al., 2020;
Accioly, Borba, and Cavalcanti, 2018), which they need to resolve manually.
Essentially, clone & own is only manageable if there is just one difference
per variant. Then, using the notion of feature branches or using a dedicated
branching strategy, such as the one by Staples and Hill (2004) can help. But,
in general, version control is not well-suited to organize many variants of
software in parallel over time. It is much better suited to organize sequential
variants—a.k.a., history, representing software evolution in time. Branches
and forks should be used to organize the development process (for instance,
using feature branches) and not the architecture.

Opportunistic software reuse in terms of clone & own is in fact the most
common strategy that organizations use for creating software variants
(Berger, Rublack, et al., 2013). Various companies have documented
their experiences (Fogdal et al., 2016; Staples and Hill, 2004; Duc et al.,
2014; Dubinsky et al., 2013; Berger, Steghöfer, et al., 2019) of using
clone & own. There are also many open-source projects handling their
variants with this strategy, such as open-source software and firmware
(Stanciulescu, Schulze, and Wąsowski, 2015; Krüger et al., 2019), families
of Android apps (Businge et al., 2018; Mojica et al., 2014), families of Java
and Android games (Akesson et al., 2019; Debbiche et al., 2019; J. Krüger
et al., 2018), web applications (Ji et al., 2015), as well as robotics control
software (Garcia, Strueber, Brugali, Fava, et al., 2019; Garcia, Strueber,
Brugali, Berger, et al., 2020).

Let us take a look at the 3D printer firmware Marlin (Stanciulescu,
Schulze, and Wąsowski, 2015; Krüger et al., 2019; J. Krueger, Gu, et al.,
2018), which has over 8000 forks nowadays. Almost 20 % of these forks
represent different variants (Stanciulescu, Schulze, and Wąsowski, 2015),
since new features were developed within them, for instance, to support new
printer models. Interestingly, many other forks just change the configuration
file of Marlin as a very pragmatic way of storing individual configurations.

Forking provides substantial flexibility and drives innovation in Marlin
(Stanciulescu, Schulze, and Wąsowski, 2015). It allows to experiment, and
the fork developer has full control without affecting the codebase of the
main project repository. In fact, forks contributed to the firmware with 58 %
of Marlin’s commits. With this practice, the Marlin community follows
GitHub’s recommendation to use forking for developing projects, which is
often referred to as pull-based development (Gousios, Pinzger, and Deursen,
2014). Practically, a developer creates a fork, makes modifications, and
then creates a pull request to push the changes back to the main project
repository, where the changes are reviewed and either merged or rejected.
When working on a fork, developers need to pull the recent development
changes from the original project repository, which usually evolves when
the developer works on the fork.

248 Andrzej Wąsowski. Thorsten Berger

Figure 8.1: Features hidden
in the Marlin fork ecosystem

(image courtesy of S, tefan
Stănciulescu)

Results and observations - Decentralization

17

Marlin also faces the typical problems of clone & own. First, there
is the need to propagate changes, especially bug fixes, across the forks.
Unfortunately, the propagation of bug fixes is scarce in Marlin. For instance,
for a particular bug that crashed the firmware, nine months after it was fixed,
only 7 % of the forks had adopted the fix (Stanciulescu, Schulze, and
Wąsowski, 2015). In general, very few forks (15 %) adopt changes at all.
The second typical problem that can be observed with clone & own in Marlin
is that it is easy to loose overview of the forks and their content. Finding
interesting additions and features becomes challenging. Figure 8.1 shows
that sometimes, new features can be hidden in the fourth level of forks from
the main Marlin project. So, developers can easily loose overview over the
features that exist in the fork ecosystem, as well as they might not be aware
of the development that is going on.

Marlin is also highly configurable, offering around 140 configuration
options in a configuration file to customize Marlin to users’ needs and to
optimize it with respect to memory consumption. In fact, as a software that
runs on embedded systems, the available hardware resources are sparse. As
a Marlin contributor acknowledges, “not all boards have enough space to
run all the features,” which calls for making many of its functionalities (i.e.,
its features) optional. Relying on C++, Marlin adopted the C preprocessor’s
conditional compilation directives (e.g., #ifdef, #if) to cut out code from
the source files that pertains to disabled features based on the values of the
configuration options. Marlin uses these directives to facilitate flexibility
of using several variants (e.g., for testing) and to account for memory
constraints. Marlin even explicitly prescribes their use to realize optional
features and to integrate functionality (features) from a fork to the main
project. This way, Marlin benefits from community contributions, while
keeping the increase in functionality manageable, still allowing its users to
tailor and customize Marlin to their needs.

In summary, Marlin uses clone & own and also some sort of more sys-
tematic management of its variability using configuration options and C
preprocessor directives. We will now look more into the latter, where we
will more abstractly talk about those concepts, referring to configuration op-
tions as optional features and the preprocessor directives as variation points.

Chapter 8. Software Product Lines 249

Systematic Software Reuse The more variants a system has, the more it
needs to adopt dedicated methods and tools to manage variability—or, in
other words, to systematically reuse software. Let us look at five large
systems that manage vast amounts of variability (Berger, Pfeiffer, et al.,
2014): the Linux kernel as a general-purpose operating-system kernel, eCos
as an operating system for deeply embedded devices, the Debian Linux
distribution as a complete operating system with applications; Eclipse as
a platform for customizable IDEs with plugins, and Android as a mobile
operating system with apps. Each of these has established a software
platform with a vibrant software ecosystem around it (Bosch, 2009; Jansen,
Finkelstein, and Brinkkemper, 2009; Berger, Pfeiffer, et al., 2014). In these
ecosystems, third-party contributors provide additional value, way beyond
what the platform vendors would be able to accomplish. These contributions
to the platform have led to vast variability in these five systems. The
Linux kernel boasts 15,000 configuration options allowing it to operate in
many different hardware and runtime environments, ranging from Android
phones to large super-computer clusters and server farms. eCos has over
2,800 configuration options and packages to make it run on many different
hardware boards. Debian and Eclipse have tens of thousands of software
packages and plugins, respectively. Android boasts over 2 million apps
today. Each of these software ecosystem uses different variability mecha-
nisms and strategies to systematically manage variability, as illustrated in
Fig. 8.2. Linux and eCos use feature models, which are hierarchical menus
of configuration options and their dependencies (explained in detail in
Sect. 8.5.2). eCos, Debian, and Eclipse use package-management systems
where so-called manifest files describe the variability information (e.g.,
name and version of a package, dependencies between packages). Eclipse
and Android use service-oriented management and execution of apps, which
is characterized by dynamic binding lookup of app dependencies via the
capabilities they offer.

Looking at the Linux kernel, eCos, Debian, Eclipse, and Android reveals
a spectrum of different variability mechanisms and strategies. In this order,
as shown in Fig. 8.2, we can observe that: To the left, the domains are
highly technical, while those to the right are more end-user-oriented. To
the left, we find rather static and closed configuration, where the whole
space of configuration options is declared in one model, while to the right,
the systems focus more on dynamic and open configuration. The systems
to the left also rather strive to control and manage variability, controlling
the system’s scope, and strictly assuring contribution quality; while those
systems to the right focus more on encouraging variability to foster growth
of the ecosystem, letting the community decide the scope, encouraging
competition and community innovation.

In summary, we can see that using feature models works and scales
well for static variability in engineering domains. Feature models support
fine-grained, low-level, and controlled configuration. To the contrary, the

250 Andrzej Wąsowski. Thorsten Berger

Figure 8.2: Variability
mechanisms in five software

ecosystems

eCosLinux
Kernel

Debian Eclipse Android

each handles variability differently

feature models manifest-based
packages

service-oriented
apps

open and dynamic ecosystems grow fast and, therefore, rely on mechanisms
that we call dynamic binding, runtime-service lookup, capability-based
dependencies, and easy download and installation. For more details about
this mechanisms, we refer to Berger, Pfeiffer, et al. (2014).

In the remainder, our focus is on feature models as a language1 that is
not only confined to systems such as the Linux kernel or other software
product lines, but feature models can be seen as a very intuitive language to
model systems, domains, concepts, or other languages.

8.2 Case Study: The Linux Kernel

Let us look a bit deeper into the Linux kernel’s systematic software reuse,
specifically its use of variability modeling. Like Marlin, it has tens of
thousands of forks, but also systematically reuses software with a highly
configurable software platform comprising more than 15,000 features today.
The majority of these features represents configuration options that can
have values of a specific type, most of which control the inclusion of source
code into the Linux kernel. The predominant programming language is
C. The variability is realized using different mechanisms, including the
C preprocessor with its conditional compilation directives (e.g., #ifdef),
ordinary if statements in the C source code, and a configurable build system
relying on Make Mecklenburg, 2004. The former two control the selective
compilation of parts of a C file by removing the parts that should not be
included for the present configuration, while the build system selectively
compiles whole files.

Users configure the kernel interactively via its configurator tool, which
exists in three different variants. Figure 8.3 shows a screenshot of the graph-
ical configurator; the other two variants of the configurator are optimized
for shell use. While end users typically do not need to modify the default
configuration provided with the Linux distribution that ships the kernel,

1In fact, there is no single language, but “feature models” can rather be seen as a family of
languages, with a large number of variations proposed in the literature (K.C. Kang, 2009;
Berger and Collet, 2019).

Chapter 8. Software Product Lines 251

Figure 8.3: The Linux kernel
configurator, showing the
Kconfig language’s concrete
syntax

it is sometimes necessary even for end-users to tweak the kernel towards
specific hardware or environments. Linux developers or system integrators
modify the configuration much more, allowing the kernel to run in a large
range of environments, from supercomputer clusters to Android devices.

Users create a kernel configuration by giving values to features (mainly
by selecting or deselecting them) in the configurator tool (see Fig. 8.3).
A configuration is an assignment of concrete values to features according
to the feature’s type and other constraints. To derive a customized Linux
kernel, the configuration is then used in the kernel’s build process to steer
the inclusion of source files (Berger, She, Lotufo, Krzysztof Czarnecki,
et al., 2010) for compilation. Specifically, the build system selects the files
relevant for the selected features—more precisely, the files whose presence
condition evaluates to true2—and then the C preprocessor outputs C source
files that are customized via conditional compilation directives (e.g., #ifdef,
#if) within these files. The preprocessed source files can then be compiled
and linked. In addition to this rather static mechanism (a variation point that
is bound at build time cannot be changed without re-building the kernel),
many features also control so-called loadable kernel modules, which can be
loaded dynamically at runtime. With the exception of these modules, very
similar mechanisms can be found in many other systems software projects
(Berger, She, Lotufo, Wąsowski, et al., 2013) written in C or C++.

Not all combinations of features and their values are valid. A configura-
tion needs to adhere to constraints. Given the sheer size of the kernel, these
constraints need to be declared together with the features in a so-called
variability model. Constraints mainly arise from dependencies between
features (Nadi et al., 2015), for instance, when the code included by one

2It is actually even more complicated, since the build system does not use explicit presence
conditions explicitly, but they are encoded using some convention. See Berger, She, Lotufo,
Krzysztof Czarnecki, et al. (2010) for more details.

252 Andrzej Wąsowski. Thorsten Berger

feature references code that is only included by another feature. But,
there are also dependencies between different hardware, which leads to
dependencies between device-driver features. Sometimes, developers also
declare constraints that prevent combinations of features that have not been
tested or are not (yet) supported.

To declare the features together with their constraints and some other
meta-information (e.g., feature description), the Linux kernel comes with
a DSL called Kconfig (Zippel, 2017). The DSL has one graphical and
multiple textual syntaxes, implemented in the respective configurator tools
(Fig. 8.3 shows the graphical configurator). The Linux kernel model spans
over 1,000 files written in the textual Kconfig syntax and distributed over
the kernel codebase, following its structure. To this end, Kconfig offers a
simple modularization concept, where (sub-) Kconfig files can be referenced
in a Kconfig file and are then included by the configurator. Kconfig and
the configurator tool is also used in various other systems software projects,
such as Busybox and embedded libraries, such as uClibc (Berger, She,
Lotufo, Wąsowski, et al., 2013).

The most important semantics exhibited by a Kconfig model is called
configuration space semantics, meaning that a model describes all possible
valid configurations. Another relevant semantics is called ontological
semantics, which refers to the hierarchical organization of features. Both
semantics are implemented in the configurator tool. For the former, it
restricts the valid changes to those that lead to a configuration that still
adheres to the constraints. For the latter, the configurator renders a hierarchy
of features as a hierarchical menu browseable by the users.

The kernel’s model and the Kconfig language have evolved continuously
since Kconfig was introduced as a DSL in October 2002. As such, both the
language and the model are already relatively old, nicely illustrating how
such models and languages evolve (Lotufo et al., 2010). We can clearly
see that the evolution of the kernel is feature-driven, since the code and
the Kconfig model do co-evolve. When changing or adding features (e.g.
a device driver), usually, developers also need to modify Kconfig files or
provide a new Kconfig file, respectively.

We say that Kconfig is a feature-model-like language, since its syntax
can be mapped to feature models (Berger, She, Lotufo, Wąsowski, et al.,
2013; She and Berger, 2010; El-Sharkawy, Krafczyk, and Schmid, 2015).
Feature models are the most popular notation for modeling features and their
constraints, and which we will discuss in detail in Sect. 8.5. Like feature
models, Kconfig organizes the features in a hierarchy, offers mandatory and
optional features, feature groups, and feature types. Using these concepts
imposes constraints among features. Any additional constraints (e.g., a
dependency between two features, regardless how far away they are in
the hierarchy) can be expresses as so-called cross-tree constraints. To this
end, Kconfig provides a simple constraint language with three-state logics
(Kleene, 1938) for controlling the binding mode of features (a feature of

Chapter 8. Software Product Lines 253

1 menuconfig MISC_FILESYSTEMS
2 bool "Miscellaneous filesystems"
3

4 if MISC_FILESYSTEMS
5

6 config JFFS2_FS
7 tristate "Journalling Flash File System" if MTD
8 select CRC32 if MTD
9

10 config JFFS2_FS_DEBUG
11 int "JFFS2 Debug level (0=quiet, 2=noisy)"
12 depends on JFFS2_FS
13 default 0
14 range 0 2
15 --- help ---
16 Debug verbosity of ...
17

18 config JFFS2_COMPRESS
19 bool "Advanced compression options for JFFS2"
20 depends on JFFS2_FS
21

22 choice
23 prompt "Default compression" if JFFS2_COMPRESS
24 default JFFS2_CMODE_PRIORITY
25 depends on JFFS2_FS
26 config JFFS2_CMODE_NONE
27 bool "no compression"
28 config JFFS2_CMODE_PRIORITY
29 bool "priority"
30 config JFFS2_CMODE_SIZE
31 bool "size (EXPERIMENTAL)"
32 endchoice
33

34 endif

Figure 8.4: Kconfig excerpt
for a filesystem (JFFS2)
available in the Linux kernel,
shown in textual concrete
syntax

type “tristate” can be set to disable, enable or compile as module), as well
as comparison, arithmetic, and string operators. Furthermore, Kconfig also
exhibits concepts that go beyond feature modeling, mainly to scale the
model to over 15,000 features. Among others, it offers visibility conditions
for features, modularization concepts, default values, and derived features.
For a detailed explanation of all these concepts, we refer to a study about
the syntax and semantics of Kconfig by Berger, She, Lotufo, Wąsowski,
et al. (2013). We will also explain feature modeling in more detail shortly,
in Sect. 8.5.2.

Let us look at a small excerpt of the Linux kernel model that is shown
in Fig. 8.4. It illustrates the definition of features and constraints for an
embedded file system included in the kernel that is called Journalling Flash
File System (JFFS2). We also show the excerpt with more features in
the graphical feature-model syntax in Fig. 8.7 (we explain feature models
shortly in Sect. 8.5.2). Our model excerpt shows the definition of the
following seven features.

254 Andrzej Wąsowski. Thorsten Berger

• MISC_FILESYSTEMS is a feature that is mainly used to organize the
model. Still, it can be selected or deselected, the latter to disable its
whole sub-tree comprising many more “miscellaneous” filesystems.

• JFFS2_FS is the feature that represents the JFFS2 filesystem, which is of
type “tristate” and can have three values (similar to Kleene’s three-state
logics (Kleene, 1938)): “y” (yes, compile into the kernel), “n” (no, do
not compile at all) or “m” (module, compile the feature as a loadable
kernel module). It depends on the two other features MTD and CRC32,
but to each in a slightly different way, but this subtle semantic difference
is not so important here. In short, the latter dependency, declared with
the keyword select, automatically selects the depending feature when a
user selects JFFS2_FS, while the former does not (when MTD is disabled,
JFFS2_FS is grayed out and cannot be selected.

• The feature JFFS2_FS_DEBUG sets the debugging level as an integer
ranging from 0 to 2 (default 0). Notice the keyword depends on, which
has a dual meaning. It expresses a dependency, but also that the feature
should be a sub-feature of JFFS2_FS. Finally, we show the syntax of the
feature description here, which we, for brevity, omit for the other features
in the excerpt.

• The feature JFFS2_COMPRESS enables data compression in the filesys-
tem and is, as a simple configuration option, only a Boolean feature
(keyword bool). Its parent feature is set to JFFS2_FS, which this option
also depends on.

• Thereafter, we see a feature group named “Default compression” with
three features in our excerpt of the Linux kernel model. Exactly one of the
three features can be selected: JFFS2_CMODE_NONE, JFFS2_CMODE_PRIO-
RITY or JFFS2_CMODE_SIZE.

Kconfig is a relatively complex language with intricate semantics. Con-
sider again the dual meaning of the keyword depends on, which can express
both a cross-tree constraint and a hierarchy relationship. The latter is not
obvious, and there are further ways of (again, rather implicitly) expressing
the hierarchy, which illustrates a language design issue with Kconfig. A
developer more familiar with curly-brace-dominated languages, such as
Java or C, would probably find using parentheses, brackets or curly braces
a more natural way to explicitly represent the feature hierarchy. Many other
surprises exist, especially when combining different elements of Kconfig.
For instance, default values for features are only defaults when the feature
is visible; otherwise, the default determines the feature’s value and cannot
be changed (e.g., via choice propagation).

We see various explanations for the complexity of Kconfig:

• First, the configurator tool is not very intelligent, in the sense that it
does not support intelligent choice propagation or conflict resolution. A
conflict occurs when a user wants to set at least two features to values
that violate constraints. The transitivity of dependencies can make the

Chapter 8. Software Product Lines 255

resolution of conflicts challenging. Support for conflict resolution could
help users substantially when they need to enable or disable features,
which requires enabling or disabling other features, and so on. Kconfig
tries to tackle this problem with imperative choice propagation that is
triggered via certain types of constraints (e.g., select does choice propa-
gation, but depends on does not), which complicates the language and
requires the developers who edit the model to already think about choice
propagation. Still, despite this mechanism, performing the configuration
is still challenging. In fact, a survey among Linux users (Hubaux, Xiong,
and Krzysztof Czarnecki, 2012) revealed that it takes 68 % of them a
few minutes to activate an inactive feature on average, with 20 % stating
even a few dozen minutes. It also revealed that the advice given by
the configurator (and feature descriptions) is often incomplete, hard to
understand or incorrect.

• Second, the Kconfig language was not systematically engineered, as
opposed to what we advocate in this book. In fact, when Kconfig was
introduced in October 2002, the developers decided against another
language that came with more intelligent configuration support (based
on a reasoner in the background) and a language with simpler syntax
and more intuitive semantics. However, Kconfig is a bit more script-like,
which generally appeals to Linux developers.

• Third, Kconfig was continuously extended, together with its configura-
tor tooling. Language evolution is typically required to be backwards
compatible, which under long lifespans complicates the language.

Kconfig’s complexity challenges extending the configurator or building
further (intelligent) tools to support the Kernel configuration. For instance,
it would be valuable to incorporate better choice propagation and intelligent
conflict resolution support using off-the-shelf logical reasoners, such as
SAT, SMT or CSP solvers (Russell and Norvig, 2016). Using such a
reasoner, however, requires transforming the kernel model into the logical
representation needed by the solver (e.g., a propositional logics formula
in conjunctive normal form in the case of a SAT solver). This, in turn,
requires understanding the exact syntax and semantics of Kconfig in order
to develop a valid model transformation. Unfortunately, from our own
experience, reverse-engineering the syntax and semantics of Kconfig is
difficult and laborious. Syntax and semantics are hidden in the implemen-
tation of the kernel’s configurator tool. In our case, we read the Kconfig
documentation, tested the behavior of the configurator on small examples,
and inspected the configurator’s implementation (She and Berger, 2010;
Berger, She, Lotufo, Wąsowski, et al., 2013). Formally defining syntax and
semantics took over one month, and implementing the transformation into a
propositional logics formula another few months. Various other researchers
also implemented transformations themselves later, also being challenged
by Kconfig’s complexity, as shown in a survey by El-Sharkawy, Krafczyk,
and Schmid (2015).

256 Andrzej Wąsowski. Thorsten Berger

Another open-source DSL used in systems software is CDL (Component
Definition Language) (Berger, She, Lotufo, Wąsowski, et al., 2013; Berger
and She, 2010), specifically in the embedded operating system eCos. Com-
pared to Kconfig, CDL has a syntax that is more intuitive for users familiar
with curly-brace-like languages and a more obvious semantics, lacking
many of the surprising behaviors of Kconfig. The configurator tool for CDL
is also more intelligent, as it comes with a built-in reasoner that resolves
configuration conflicts automatically, showing users sets of changes that
can be done to a configuration to allow setting a feature to a certain value.

Exercise 8.1. The Linux kernel and the Android operating system are two promi-
nent examples of variability-rich systems. After we discussed the Linux kernel’s
variability in depth, discuss how Android’s variability mechanisms differ from
those used in the kernel. Discuss the following aspects: the goal of variability, the
target users of the products, the representation of variability, the granularity of
variability, and two other aspects you find relevant. To learn more about Android,
you could read the paper by Berger, Pfeiffer, et al. (2014).

Note that there is no notion of completeness for your discussion, and apparently,
you cannot cover all the details given in the paper. But, cover the aspects
above (plus the two you find relevant). See it from the perspective that you
tell a software architect, who does not know about either Linux’s or Android’s
variability mechanism, but needs to decide about what mechanisms to use for an
architecture she designs, for some software platform.

8.3 Software Product Line Engineering
Let us now look into the SPLE paradigm. Our understanding of the Linux
kernel as a highly configurable system will help, since it uses mechanisms
known from SPLE. While the Linux kernel originates from practitioners,
and SPLE mainly from researchers who worked closely with industry, both
came up with similar concepts. However, SPLE is more than just a bunch of
mechanisms, it is a paradigm comprising a business, process, architecture,
and organizational aspects, providing a tool box and practices for each of
these aspects. SPLE gained popularity in the 1990s and early 2000s, but
it goes back to research on so-called program families in the 1970s (Parnas,
1976).

SPLE arose from the observation that opportunistic reuse does not scale
with the number of software variants, as we discussed above in Sect. 8.1.
The following is a well-established definition of what a software product
line is:
Definition 8.1. A software product line is a set of software-intensive systems
that share a common, managed set of features satisfying the specific needs
of a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way.3

This definition emphasizes the following core characteristics of software
product lines when systematically developed using SPLE. First, a product

3By L. M. Northrop (2010)

Chapter 8. Software Product Lines 257

line represents a portfolio of software products (“set of software-intensive
systems”). Note that we will use the terms variant, product, and system
synonymously in the remainder. Second, SPLE advocates that a software
product line is realized via a configurable (a.k.a., integrated) software
platform (“share a common, managed set”) from which the individual
variants can be derived, often in an automated and tool-supported process
(“in a prescribed way”). Third, SPLE manages the platform using the
notion of feature (“managed set of features”), which abstractly represent
the common and variable functionalities of products in the product line.
As such, the individual products, or variants, are defined by the features
they provide. Fourth, SPLE is effective when the products pertain to a
particular domain, which, as you recall from Def. 2.2 in Sect. 2.2, is an
area of knowledge containing concepts and terminology understood by
practitioners and including the knowledge to build systems in the area
(Apel, Batory, et al., 2013b; Krzysztof Czarnecki and U. W. Eisenecker,
2000).

Organizing your software production into a product line is usually linked
with an intention of addressing a certain well-scoped market niche, by
providing well-customizable software for this niche/target group. The
production of this software should rely on systematic reuse. As such, the
notion of domain is crucial. When software systems do not belong to the
same domain, then it is usually not meaningful to develop them as a product
line. They likely do not share enough commonality that can be exploited
for establishing a platform.

SPLE is a method in which technical, business, and management issues
overlap. Adopting SPLE requires considering the four concerns Business,
Architecture, Process, and Organization, which is called the BAPO model
(F. J. v. d. Linden, Schmid, and Rommes, 2007; Obbink et al., 2000; F. v. d.
Linden, 2002). The concern Business refers to how to generate revenue from
the products of a product line. Architecture refers to the technical means to
build the product line. Process refers to the roles, responsibilities, and their
relationships in developing the product line and deriving individual products.
Organisation refers to mapping roles (developers and other stakeholders)
to organizational structures. An organization needs to consider all these
aspects to effectively adopt SPLE. Otherwise, the endeavor of migrating
from opportunistic to systematic software reuse is likely doomed to fail.

Let us briefly look at the concern Process, where SPLE advocates a
so-called two-lifecycle process. It separates the development of shared
assets (the platform) from deriving the individual products. Both are full-
blown classic engineering processes. Figure 8.5 summarizes these two main
(sub-) processes. Domain engineering is the process that systematizes and
collects knowledge, experience, and assets accumulated in an organization
(or in a software project) about a given domain, in order to provide means
to reuse these efficiently when building new systems. Application engi-
neering (bottom) derives the artifacts from the common domain artifacts

258 Andrzej Wąsowski. Thorsten Berger

Figure 8.5: The two main
processes of SPLE: domain
engineering and application

engineering. Figure from
Apel, Batory, et al. (2013b).

20 2 A Development Process for Feature-Oriented Product Lines

Fig. 2.1 Overview of an engineering process for software product lines

In the past, software product lines have been developed for a wide variety of
domains, including operating systems, database systems, middleware, automotive
software, compilers, healthcare applications, and many more.

The broader the domain of a product line is the larger is the number of possible
stakeholders’ requirements that can be covered in the form of individually tailored
products. However, the broader the domain, the smaller is the set of similarities
among products. For example, the domain of system software is huge, which includes
operating systems, drivers, network software, database systems, and many more.
Although there are similarities that could be exploited in system software, individual
systems have substantial differences, which decrease potential for reuse. Focusing on
the (sub)domain of database systems or even embedded database systems, increases
the reuse potential, while keeping maintenance effort acceptable. The bottom-line is
that a proper scoping of the target domain is essential, as we discuss further in Sect.
2.2.1.

A development process for software product lines has to take these peculiarities
into account. Two issues play a crucial role: the explicit handling of variability and
the systematic reuse of implementation artifacts. For both, an appropriate structuring
of process and software artifacts is imperative.

The specific characteristics of software product lines lead to a separation between
domain engineering and application engineering and between problem space and
solution space. In Fig. 2.1, we illustrate a two-dimensional structure with four clusters
of tasks in product-line development and the mappings between them, which we
explain next.

produced in domain engineering (the top process). So, the design is done by
completion of the shared design, application development is done by com-
pleting/deriving from the framework code. Test cases and documentation
might be derived, too. By instituting this process systematically, the cost of
obtaining a single product is lowered. Observe that the vertical arrows in
Fig. 8.5 (derivation of applications from platform assets) are obtained using
technologies presented in the previous chapters.

Let us also briefly look into the concern Architecture, which is typi-
cally realizing two abstractions: the problem space and the solution space
(Krzysztof Czarnecki and U. W. Eisenecker, 2000). Figure 8.5 and Fig. 8.6
illustrate both concepts. The problem space contains the domain-specific
abstractions (in our case, features) as an interface to the solution space—
the actual software assets in the platform. Both the problem space and
the solution space are deep concepts that have been intensively elaborated
upon elsewhere (Krzysztof Czarnecki and U. W. Eisenecker, 2000; Apel,
Batory, et al., 2013b). Our focus in this book is the problem space, since
we advocate the development of languages providing such domain-specific
abstractions. In this chapter, we focus on feature models as a simple and
intuitive language to represent the problem space. For the solution space,
we refer to the book by Apel, Batory, et al. (2013a), which describes many
different ways to realize it using different implementation techniques.

There exists a mapping between problem and solution space, which can
be realized using different techniques. An important concept is the presence
condition.

Definition 8.2. A presence condition is a logical expression over features
determining the presence or absence of software assets in a variant. A
presence condition evaluating to true for a specific configuration will
include the respective software asset.

Chapter 8. Software Product Lines 259

void __init
init_IRQ(void)
{

#ifdef CONFIG_ACPI
acpi_boot_ini();

#endif
ia64_register_ipi();
register_percpu_
irq(...);

1

mapping

IA64

ACPI PCI PM

ACPI → PCI  PM

feature model assets

source code requirements

models hardware

Figure 8.6: High-level architecture of a product line, illustrating the mapping of a feature model (problem space) to different
types of assets (solution space)

Looking at our running example, the Linux kernel, observe that it has
presence conditions, which are contained in the preprocessor directives
(e.g., #if) and, implicitly, in its build system (Berger, She, Lotufo, Krzysztof
Czarnecki, et al., 2010). Notably, the presence conditions are not limited
to Boolean operators, but also include arithmetic or string operators—
essentially the full richness of the C preprocessor.

On a final note, we emphasize that our experience shows that the real
benefit of SPLE and feature modeling can only be achieved when the
features are mapped to multiple types of assets. For complex and large
product lines, mapping to code suffices and already shows the benefits.
However, mapping features just to requirements is likely to fail, that is,
the costs of doing SPLE and feature modeling exceed the benefits, which
arise when new products can be derived quickly in an automated derivation
process. Figure 8.6 illustrates a system where features are mapped to code,
requirements, models, and pieces of hardware, which is a typical set of
asset types features are mapped to in industry.

8.4 Software Product Lines in Practice

As we have seen, the Linux kernel and other open-source systems software
manage their variability relying on techniques known from SPLE and from
MDSE, such as a configurable software platform, a configurable build
system, an interactive configurator tool, and a DSL- and model-based repre-
sentation of all kernel features. The latter abstractly represents thousands of
variabilities, such as supported drivers, processor architectures, scheduling
algorithms, and diagnostic facilities, and the dependencies among them.
Even though, the Linux kernel was developed completely independently of
the research community, which established SPLE methods and tools since
the advent of feature modeling in 1990, it illustrates the practical relevance
of SPLE.

Other application domains that typically need to engineer variant-rich
systems and that benefit from SPLE are the following.

• The automotive domain boasts some of the largest variant spaces in
existence today. SPLE in automotive has been described in experience
reports and case studies about Volvo Cars (Berger, Nair, et al., 2014a)
and Scania (Eklund and Håkan Gustavsson, 2013; Hakan Gustavsson

260 Andrzej Wąsowski. Thorsten Berger

and Eklund, 2010), Audi (Hardung, Kölzow, and A. Krüger, 2004),
Daimler (Dziobek et al., 2008; Bayer, Forster, et al., 2006), General
Motors (Flores, C. Krueger, and Paul Clements, 2012), Rolls-Royce
(Habli and Kelly, 2007), as well as the engine control softwares of Bosch
(Tischer et al., 2011) or Cummins (P. Clements and L. Northrop, 2001).

• Avionics and aerospace is another domain benefiting from SPLE, which
in addition has strict safety requriements. Example experience reports
have been written about Eurocopter (Dordowsky and Hipp, 2009; Hess
and Dordowsky, 2008), Lufthansa (Chastek et al., 2011), NASA (Ganesan
et al., 2009), Boeing (Sharp, 1998), and the US Army’s Common Avion-
ics Architecture System (CAAS) (Paul Clements and Bergey, 2005).

• Telecommunication is another typical domain suited for SPLE. Consider
the experience reports about Ericsson (Svahnberg and Bosch, 1999;
Mohagheghi and Conradi, 2008; Andersson and Bosch, 2005), E-COM
(Liang, Hu, and Wang, 2005), Terrestrial Trunked Radio (TETRA) (Poh-
jalainen, 2011), as well as Nokia Mobile Phones and Nokia Networks
(F. J. v. d. Linden, Schmid, and Rommes, 2007).

• Power electronics systems often need to exist in many different variants,
as discussed in the experience reports about Danfoss (Fogdal et al., 2016),
ABB (Ganz and Layes, 1998; Rösel, 1998; Pohl, Böckle, and F. J. v. d.
Linden, 2005; Stoll et al., 2009), and Hitachi (Takebe et al., 2009).

• Robotics and industrial automation systems often come in different
hardware configurations and benefit from SPLE methods, as discussed in
a case study on re-engineering automation systems into product lines by
Koziolek et al. (2016), in an experience report about managing variability
in robotics (Garcia, Strueber, Brugali, Fava, et al., 2019), in one of the
case studies on the company Keba in Berger, Lettner, et al. (2015), and
one of the companies in Berger, Nair, et al. (2014a).

• Even web applications have been reported (Verlage and Kiesgen, 2005).
While specific architectures for web applications have been proposed
(Balzerani et al., 2005), they often exhibit variability in the user interface,
which is still difficult to implement (Berger, Steghöfer, et al., 2019).

• Further case-study collections are provided by F. J. v. d. Linden, Schmid,
and Rommes (2007), the SEI’s catalog of case studies Software Engineer-
ing Institute (n.d.), and the SPLE community’s “Hall of Fame.”4 All are
summarized in Berger, Steghöfer, et al. (2019).

8.5 Variability Modeling

In this book, we are primarily interested in technical support for software
product line engineering. As we have seen in the Linux kernel case study
above, MDSE appears very helpful. The idea is to build a variability model
of the product line (the Kconfig model in case of the Linux kernel) that

4http://www.splc.net/fame.html

http://www.splc.net/fame.html

Chapter 8. Software Product Lines 261

describes the differences and similarities between systems, and then link
this model to the implementation either via code generation (generating indi-
vidual products) or other means (annotations, preprocessing, interpretation,
and so on). Variability modeling is one of the primary means to tackle the
complexity of product lines. Such models describe the variability and the
commonality of all the variants (i.e., products) that belong to a product line.

Variability modeling can be seen as the domain modeling for software
product lines or other complex software systems. A variability model
is a kind of domain model, since it not only describes the concepts and
terminologies in a domain, but also describes what parts of the product line
are common to all possible products (or variants) and what are variable (i.e.,
exist in some, but not all products). Among the latter, there can also be
product-specific parts, which only exist in one particular product.

Definition 8.3. A variability model is a domain model that describes the
common and variable aspects of software products in a software product
line.

For software product lines, or for any complex system, it is not sufficient
to only model the variability—that is, how the individual software products
differ. To support the engineering (e.g., to keep an overview understanding
or to scope a future product line), it is necessary to model the commonality
as well.

The first step to build a product line is typically to model the commonality
and variability of the products (i.e., the individual variants) belonging to
the product line. Commonality denotes all the aspects that are shared by the
products in a software product line. Variability comprises all the aspects in
which the products differ. In software product line engineering, the point is
to exploit the commonality and to manage (e.g., limit and scope) variability,
in order to obtain faster time to market, and a better return on investment.

Variability models, and thereby product lines, are usually focused on a
specific domain. We distinguish two kinds of domains:

• vertical domains: are areas which are organized around classes of
systems realizing specific business needs, for example “airline reserva-
tion systems, order processing systems, inventory management systems”
(Krzysztof Czarnecki and U. Eisenecker, 2000).

• horizontal domains: are areas organized around classes of parts of
systems (this includes database systems, container libraries, workflow
systems, GUI libraries, numerical code libraries and so on).

One meets product lines in both kinds of domains, but it is most classical
to apply SPLE to narrow vertical domains, for example, power electronics

262 Andrzej Wąsowski. Thorsten Berger

firmware or avionics constrol systems. An example of a product family in
a horizontal domain is the Linux kernel,5 or a configurable platform for
cloud computing.

The scope of the domain defines how diverse products will be allowed in
this domain. In general, more variability means a wider scope. Remember
that variability should be managed, so the scope should be kept under con-
trol. The scope of the domain needs to be established based on sales needs,
maturity of products and knowledge in the organization, and the potential
of reuse. In general, you want the scope be as narrow as possible, and
you need to continuously monitor and maintain it, to avoid the scope-creep
problem. The latter refers to product lines that admit too much variability
and become very difficult to maintain (for instance, the products in the
product line might no longer share the same core software architecture).

Common and variable properties of the system can be described by a
domain model. Such a model defines the scope of the domain, defines its
vocabulary and the main concepts of the domain. Domain models can be
expressed in many ways, but most commonly as a DSL. We call these DSLs
variability modeling languages.

Variability Modeling Languages

Since the advent of SPLE to efficiently develop software product lines in
the early 1990s, a large number of variability modeling languages has been
proposed (Sinnema and Deelstra, 2007; Lianping Chen, Muhammad Ali
Babar, and Ali, 2009; Alves et al., 2010; L. Chen and M. Ali Babar, 2009).
Variability modeling is one of the primary means to tackle the complexity
of product lines, describing the variability and the commonality of all the
variants that belong to a product line.

The most popular languages are feature (Kyo Kang et al., 1990; K.C.
Kang, 2009) and decision models (Schmid, Rabiser, and Grünbacher,
2011a), which are relatively similar with only smaller differences K. Czar-
necki et al., 2012. For instance, the latter’s configuration options are called
decisions instead of features. Our focus in the remainder is on feature
models as the most popular and widespread notation (Berger, Rublack, et
al., 2013). Furthermore, decision models only focus on variability, without
modeling the commonality of product lines, and the notion of feature is
more aligned with features as they are commonly used to refer to the
functional and non-functional aspects of software systems.

Many other variability modeling languages beyond feature models ex-
ist. We already mentioned decision modeling, which originates from the
Synthesis method for software reuse (Reuse-Driven Software Processes
Guidebook, Version 02.00.03 1993). Schmid, Rabiser, and Grünbacher

5Some authors would say that highly configurable systems in horizontal domains are not
product lines, because they cannot be seen as sets of "products", but rather subsystems or
components. Such subtle distinctions are unimportant here, though. They have relatively little
influence on the technical aspects interesting for us.

Chapter 8. Software Product Lines 263

(2011b), Dhungana, Heymans, and Rabiser (2010), and K. Czarnecki et al.
(2012) provide further information about decision models. An alternative
language is OVM (Orthogonal Variability Modeling), which focuses on
modeling variation points and its variants Pohl, Böckle, and F. v. d. Linden
(2005). Surveys comparing variability modeling languages from different
perspectives are provided by Classen, Heymans, and Pierre-Yves Schobbens
(2008), P.-Y. Schobbens et al. (2006), Schmid, Rabiser, and Grünbacher
(2011b), K. Czarnecki et al. (2012), and Sinnema and Deelstra (2007).

An interesting alternative is to provide a variability modeling language
as a UML profile (Ziadi, Hélouët, and Jézéquel, 2004), allowing to add
variation points to ordinary UML diagrams, such as class diagrams or
state machines. It relies on UML’s built-in extension mechanism called
profiles (Object Management Group, 2017). A profile provides so-called
stereotypes, which can be added to diagram elements, such as classes,
relationships (e.g., associations) or attributes. As such, a standard UML
tool can be used for modeling diagram variation points and their mappings
to features.

Feature Modeling

An important notation for expressing domain models is feature models.
Feature models are a simple, tree-based modeling notation that allows
expressing features and their constraints. The latter restrict the valid
combinations of features or express relations among features.

Feature models can nowadays be seen as the most successful notation to
model the common and variable characteristics of products in a software
product line. Proposed almost three decades ago, as part of the feature-
oriented domain analysis (FODA) method (Kang et al., 1990), hundreds
of variability management methods and tools have been introduced that
build upon feature models. Nowadays, many different variants of the
original feature-modeling notation exist. A brief history of these notations
is provided by Berger and Collet (2019).

Feature models center around the notion of feature (Berger, Lettner, et
al., 2015). Features are abstract entities used in a multitude of contexts,
including software configuration, product marketing, scoping, requirements
engineering or domain analysis. As opposed to implementation assets
(e.g., source files or components), features are more intuitive and domain-
oriented entities understood by a range of stakeholders, not only developers.
Features often also cross-cut software assets. For instance, the feature
ACPI (Advanced Configuration and Power Interface), which controls power
consumption in the Linux kernel, is a highly scattered feature, modifying
many different parts (via #ifdef code fragments) of the source code in the
kernel (Passos et al., 2018).

The notion of features is vague, which is in fact one of their core strengths,
since organizations can choose their own definition. In the most general
sense, we can say that features abstractly represent functional or non-

264 Andrzej Wąsowski. Thorsten Berger

Figure 8.7: Configuration of
a Linux filesystem illustrated
as a feature model (concrete

syntax)

functional concerns of a software system. We can also see features as
end-user-visible characteristics of a system (Kang et al., 1990; Berger,
Lettner, et al., 2015), or as distinguishable characteristics of a concept that
is relevant to some stakeholder in the project. For example, choosing a
manual or automatic transmission, when buying a car, might be interpreted
as deciding a feature. Furthermore, features are a kind of concern. They are
also a high-level requirement. Pragmatically, some organizations call the
headlines of the requirements documents features.

In the literature, as many as 37 definitions of “feature” exist. Some
definitions only capture the development side, e.g., when a feature is
defined as a set of requirements (Bosch, 2000), others only the business side
(Riebisch, 2003). As such, we recommend that you and your organization
agree on the notion of feature. The following is a definition that, in our
opinion, captures the notion of feature used in this book well, and which
can provide the basis for a more concrete definition that an organization
can formulate.

Definition 8.4. A feature is a concept in a domain. It can be seen as a
high-level requirement. A feature represents commonality or variability in
a product line. It is a unit of communication among stakeholders.

Feature models organize features in a hierarchy as well as they declare
relationships and constraints among features. Feature models allow devel-
opers keeping an overview understanding of software systems, and like
features, are an intuitive means for communications, bridging different
kinds of stakeholders, including developers and domain or business experts.

Figure 8.7 shows a feature model example. Take a look at the legend,
which explains the basic syntax. Mandatory features (filled circle) are
features that are features that are always included when their parent is
included. Optional features (hollow circle) do not need to, but may be
included if their parent is included. Both kinds require that their parent is
included, though, if they are to be included. Alternative feature groups (also
called Xor groups) denote an exclusive choice between several alternatives
(exactly one needs to be selected with the parent). Or group features denote
a non-exclusive choice between several alternatives (so more than one
inclusion in the group is allowed).

The example model in Fig. 8.7 is a feature model we created for a
configurable file system in the Linux kernel called JFFSs (Journalling Flash

Chapter 8. Software Product Lines 265

Uses of Feature Modeling
As illustrated below, feature models are used for different purposes. We distinguish between management
& design uses, such as for domain modeling, scoping and managing the product line, as well as
performing design-space exploration, and between development & quality assurance (QA) purposes,
such as coordination, configuration & build, and validation & verification.

feature models

27

configuration
& buildcoordination validation

& verification

domain modeling product-line scoping
& management

m
an

ag
em

en
t

&
de

si
gn

de
ve

lo
pm

en
t

&
Q

A

design-space
exploration

(C) Thorsten Berger, Chalmers | University of GothenburgA feature model can play the same role as a DSL model in a model-driven product architecture. A
feature model can be used to derive a desirable product configuration, which can be fed into the code
generator, to drive the derivation of an implementation of a specific product. In this sense, a feature
model is an extremely simple meta-model, which describes its models—configurations adhering to
the constraints of the feature tree.

Feature modeling languages are used by several commercial and open source product line tools such
as pure::variants from the company pure::systems (Beuche, 2004), Gears (C. W. Krueger, 2007) from
the company BigLever, or the open-source tool FeatureIDE (Thüm et al., 2014). Many configuration
languages grown internally within various projects resemble feature modeling a lot. Recall our
discussion of the Linux kernel’s language Kconfig in this chapter.

File System). In reality, it is defined in the Kconfig language, which we
explained above in Sect. 8.2, and specifically showed an excerpt of the
Kconfig model with the configuration declaration of JFFS2. There, the
feature Debug Level is a mandatory feature with the value type integer;
Compress Data is an optional feature of type Boolean with the optional
sub-features Support ZLIB and Default Compression. The latter is a feature
group of type Alternative, allowing to select exactly one sub-feature.

Additional dependencies between features (those that cross the tree
hierarchy) can be stated on the side. In our example, we show three such
constraints, which are typically called cross-tree constraints (CTCs). Note
that ZLIB Inflate is a feature that is defined outside our excerpt of the Linux
kernel model.

266 Andrzej Wąsowski. Thorsten Berger

Figure 8.8: One possible
meta-model for
feature models

(Janota, Kuzina, and
Wąsowski, 2008)

Feature

Root FeatureGrouped
Feature

Solitary
Feature

Group

2..*

1

0..*

Sub-feature
Relation Type

Mandatory
Sub-feature

Optional
Sub-featureXOR-groupOR-group

1

10..*

is
su

b-
fe

at
ur

e

a. The metamodel

gas electric

engine

car

car-body

manual automatic

gearshiftpower-locks

Root Feature

Mandatory
Sub-feature

Optional
Sub-feature

or-group

xor-group

b. An example of a feature diagram, inspired by [7]

Fig. 6. The Language of Propositional Feature Diagrams

4 Background: Propositional Feature Models

Let us recall the language of feature models, exploited as an example in the
upcoming sections. Feature models [15] are used to systematically describe vari-
ability and commonality in product line engineering [4]. In a nutshell, a feature
corresponds to a specific functionality of a system. A feature model records
available features, together with constraints and dependencies relating them.

A variety of feature diagram languages is found in the literature, mostly with
propositional semantics [21]. We should note, however, that other semantics ex-
ist, for instance using grammars [2], higher-order [12] and probabilistic [8] logic.
In this article we operate on the combinatorial core of feature models, the propo-
sitional models [7]. A propositional feature model comprises a feature diagram
and a constraint. The diagram is the centerpiece. It records the features and
dependencies in a graph-based notation. An additional constraint is appended
if it cannot be expressed in the diagrammatic language itself.

A feature diagram organizes features in a tree, containing a node for each
feature. A child node, or a sub-feature, is either optional, mandatory, or grouped.
A grouped feature belongs either to an or-group or an xor-group with other
sub-features of the same parent. Fig. 6a shows the metamodel of this language.

Apart from hierarchically organizing the features, the purpose of the diagram
is to determine which combinations of features, so-called feature configurations,
are permitted. The root feature must be present in all configurations. A sub-
feature must not be selected into a configuration not containing its parent. A
mandatory feature is required by its parent, whereas an optional one is not. From
features grouped in an or-group (resp. xor-group) at least one (resp. exactly one)
must be selected whenever the parent is selected. The feature diagram in Fig. 6b
describes possible configurations of a car. Each car must have a body, gearshift,
and engine; an engine is electric or gas (selecting both corresponds to a hybrid
engine); a gearshift is either automatic or manual.

Definition 8.5. A feature model is a tree-based structure representing fea-
tures and their constraints.

For completeness, we include a possible meta-model for feature models
in Fig. 8.8. However, in the remainder, it is not essential to understand
the meta-models of feature models, since we will use feature models as a
meta-modeling language. Feature models are not very expressive, but that
is their strength, and convenient tools are available. More complex feature
modeling notations exist. Extensions include adding references between
features, and adding classifiers (feature cardinalities, or feature groups).

After discussing the syntax and typical uses of feature models, let us
now look into their semantics. Several semantics exist. While the feature
hierarchy is one of the most important benefits of feature models (called
ontological semantics), allowing engineers to keep an overview understand-
ing of a product line, the primary semantics (called configuration space
semantics) of feature models is to represent the valid combinations and
values of features in a concrete product of a product line, restricted by
constraints. In other words, the configuration space semantics determines
the set of all possible products or variants of a product line.

The products or variants are represented as a configuration of the feature
model.

Definition 8.6. A feature model configuration is an assignment of concrete
values to features. A configuration is an instance of a feature model.

Mapping features to software assets provides further semantics. The
mapping specifies the locations of specific features in the assets. When
features are mapped to variation points, then they control the inclusion of
certain assets depending on a concrete configuration of a feature model.
Here, also recall Fig. 8.6 where we discussed the architecture of a product
line and how features are mapped to assets. The mapping is exploited in
the product derivation process, often performed via a configurable build
system, as we described for the Linux kernel in Sect. 8.2 above.

Definition 8.7. Concrete and abstract features are notions referring to the
mapping of features to assets. Concrete features are mapped. Abstract
features are not mapped and are rather used for model structuring purposes.
They are usually intermediate features in the model hierarchy.

8.6 The Process of Feature Modeling
Now that we discussed the feature modeling notation in detail, and also
sneaked into the feature-modeling-like language Kconfig used in the Linux

Chapter 8. Software Product Lines 267

Symbol Description

å Decision affecting following activities

2 Activity

(2) Optional activity

3 Composite activity

(3) Optional composite activity

2 Sub-Activity of a composite activity Table 8.1: Legend for
feature modeling guidelines

kernel and other systems software projects (Berger, She, Lotufo, Wąsowski,
et al., 2013), let us look into the modeling process itself. In this section,
we will refer to our modeling principles presented in Nesic et al. (2019)
and present core questions you need to answer as well as different kinds of
actions you need to perform. Table 8.1 explains core terms and their icons
we will use in this section.

The following process and principles should be applied when creating a
feature model for a software product line. If you are using feature models
just for brainstorming or other creative phases of software engineering
without the goal of creating a product line at some point, you probably do
not need to consider the following modeling process and principles.

There are three ways of adopting a product line (C. Krueger, 2002;
Berger, Rublack, et al., 2013), and they influence the way you create the
feature model. When building a product-line from scratch, also called pro-
active adoption, you predominantly create the feature model in a top-down
fashion. From domain analysis and scoping, where you model the domain
in a reasonable scope—for instance, you model the features that you think
you can develop and sell to customers—-you start with creating the top-
level features and then refine them. When building a product-line from one
existing product, also called re-active adoption, or from multiple existing
products, also called extractive adoption, then you predominantly build the
feature model in a bottom-up fashion. From the existing products you have
configuration options, which you model as optional features as leaves. From
the differences between existing products you identify differences and try to
understand why these differences exist from a domain perspective, and these
differences you model as features. However, while we say “predominantly”
top-down or bottom-up, in all three adoption scenarios one does both
(principle M5: Use a combination of bottom-up and top-down modeling),
as we discuss in the phase Domain Analysis and Scoping for the activity
Feature Identification on page 271.

In our process, we classify the different activities into four phases: Pre-
Modeling, Domain Analysis and Scoping, Modeling, and Maintenance and
Evolution. Figure 8.9 depicts these phases, together with typical iterations
among the last three phases.

268 Andrzej Wąsowski. Thorsten Berger

Figure 8.9: The four main
phases of the feature

modeling process

Pre‐Modeling

Domain Analysis and Scoping

Modeling

Maintenance and Evolution

Pre-Modeling Activities

In the first phase, before you start with the actual modeling, you plan
the feature modeling and train the relevant stakeholders. The result is
a description of the model purpose, a clarification of the stakeholders
involved and their roles, and a change and expectation management plan.
We recommend defining the model purpose (activity Define Model Purpose)
and training (activity Provide Training) in iteration, which allows clarifying
and refining the purpose.

2 Define Model Purpose Your first activity is to clarify what to use the
model for (principle PP3: Define the purpose of the feature model). You
need to do that in order to focus the modeling on the relevant features and
modeling concepts (e.g., constraints), not wasting time with irrelevant ones.
Choose among the different uses shown in the infobox on page ??. However,
note that when the feature model should serve both management & design
and development & QA purposes, there is often a tension between designing
the model more towards capturing domain- and business-oriented features
or towards implementation-oriented features. In other words, the feature
model is often seen as a pivotal model artifact, used as a communication
platform towards the business, while at the same time it should be possible
to map the features towards the software assets and control the platform, that
is, be able to derive individual products in an automated process supported
by a configurator tool, among others.

2 Identify Stakeholders Your second activity is to identify the relevant
stakeholders (principle PP1: Identify relevant stakeholders), which can have
diverse roles in your organization. We distinguish between three kinds,
which are not necessarily disjoint:

• (i) experts are those who will provide input about features and their
constraints, as domain- or implementation-oriented experts;

• (ii) modelers are those who will perform the modeling; and
• (ii) model users are those who will use and benefit from the feature

model.

Chapter 8. Software Product Lines 269

The experts (i) should have sufficient knowledge about the domain (i.e.,
know the problem space) or about the implementation (i.e., know the solu-
tion space). While the former understand what features need to be developed
for economic benefit (e.g., business and sales experts), the latter know the
technical details about the software in-depth (e.g., developers). Depending
on the purpose of the feature model, you want to have a representative of
one of each kind, multiple representatives of either kind, or one who has
knowledge about the domain and the implemention. In our exprience, we
even observed companies where the developers traditionally had very good
insights into the business and sales aspects, especially when there used to
be a close relationship due to frequent meetings. In many cases, however,
developers never learned to think in terms of the domain and business and
require training and a pilot project to obtain such a perspective.

The modelers (ii) are often system and software architects, project man-
agers or requirements engineers, since they usually build abstract system
models. Our experience shows that the number of stakeholders performing
the modeling in an organization should be low, perhaps as low as a single
person (principle PP6: Keep the number of modelers low).
å Finally, it is important to decide who are the model users (iii). In

case it is end-users or even customers, then the feature model needs to be
understandable. It is also necessary to model all the constraints among
features (principle D2: If the main users of a feature model are end-users,
perform feature-dependency modeling). This way, the configurator tool can
assure that always correct configurations are created and valid variants are
derived from the platform. When a domain expert configures the model,
who knows all the details about features and constraints among them, then
it might not pay off to invest the effort of modeling constraints (see below
when we talk about dependency modeling).

3 Provide Training Training should include becoming familiar with the
feature-modeling notation and the tool used, as well as with the process
and principles of feature modeling—a sub-activity we call 2 Tool and
Notation Training. Training involves familiarizing with product-line engi-
neering (e.g., platform architectures, software configuration, and product
derivation), perhaps with this book chapter—a sub-activity we call 2 SPLE
Education. To learn the feature modeling notation and its semantics, ideally
it can be related to concepts they are used to intuitively. For developers,
feature types and their graphical represenation can be related to classes
or data types. For instance, a feature with a checkbox is a feature of type
Boolean. In practice, the training is often done together with a tool vendor.

We recommend that training involves a 2 Pilot Project of around three
days (principle T3: Conduct a pilot project). This should be done with a
small (sub-)system of the company that exists in multiple variants, which
have sufficient commonality and do not come with strict deadlines re-
garding the release to production. This allows very fast feedback loops
and facilitates training. If your organization does not have an existing

270 Andrzej Wąsowski. Thorsten Berger

system and rather wants to adopt SPLE from scratch, then you can refer
to existing datasets of clone & own-based systems (J. Krueger and Berger,
2020; Strueber et al., 2019; Kuiter et al., 2018).

The pilot should comprise all the activities of the feature-modeling
phases, which we explain shortly: the modeling phase as well as the
maintenance and evolution phase. We recommend to create a platform
with around 20–50 variation points that represent the differences in the
individual variants. So, identify the differences in the implementations,
abstract them into the respective features, and model them in a feature
model, as we explain for the feature modeling phases shortly.

As a guided exercise, a core benefit of performing a pilot project is
to “walk” those who have detailed knowledge about the variant imple-
mentations up to the domain. Those stakeholders usually understand the
differences in detail, that is, in terms of implementation concepts. When
asked about the details, they usually provide those implementation-level
details. The idea is to ask them various times (cf. principle M3) why
the difference exists; leading to increasingly domain-oriented explanations,
until the difference can be described by the presence or absence of a specific
feature, as a domain-oriented concern. The pilot project will also help trying
out product deriviation (cf. principle QA2). Engineers can experience
whether the derivation feels viable, that is, going through the feature model
and making selections to establish a configuration.

The pilot project also helps to, if envisioned, connect business and
development worlds. Connecting features to assets and to business aspects
is also important, since doing that too late is difficult. This will also improve
acceptance of the feature model, since product derivation before was usually
a manual and error-prone activity, requiring copying and pasting software
assets and packaging them properly. Having selected a reasonably small
sub-system for the pilot project can substantually improve feature-model
training and acceptance.

2 Create Change and Expectation Management When an organization
wants to introduce feature modeling and SPLE, defining and executing
a communication plan is crucial. The plan should explain the benefits,
especially the reuse potential and the respective business-related benefits,
such as shorter time to market. We recommend describing the benefits
tailored to the different stakeholders. For instance, the stakeholders who
are more business-oriented benefit from having features, from having them
organized in the feature model, and from having feature descriptions.
The more development-oriented stakeholders benefit from clear feature
requirements, which the features are mapped to, as well as keeping an
overview understanding of the development.

The communication plan should also explain the necessary changes in the
process and in the organizational structure, as well as in the architecture of
the platform and the individual products. Explaining the notion of feature,
and why we need features is also important.

Chapter 8. Software Product Lines 271

2 Establish a Forum and a Workshop Format It is also advisable to estab-
lish a forum with regular meetings to discuss the feature model maintenance
and evolution. Since a feature model is brittle, one or few stakeholders in
the organization should become the main modeler(s), to be consulted in
those forums.

To elicit information about new features and their relations, a workshop
format should be adopted. The workshops help to elicit information from
the stakeholders (principle IS1: Rely on domain knowledge and existing
artifacts to construct the feature model), to validate the model (principle
QA1: Validate the obtained feature model in workshops with domain
experts), as well as to evolve and maintain it.

It is also advisable to put an approval process for new features in place,
ideally as part of the workshop format.

(2) Define Decomposition Criteria This optional activity aims at defining
some criteria that help modelers decide how to decompose features in the
model (principle PP4: Define criteria for feature to sub-feature decomposi-
tion). As discussed in the box “The Feature Hierarchy” on page 277, the
meaning of the hierarchy edges in a model is intentionally not well defined.
Modelers are relatively free to stick with Part-Of or Is-A relationships
between features and model the hierarchy freely to be as intuitive as possible,
or to conceive and document domain-specific decomposition criteria for the
model. These could reflect existing hierarchies (e.g., of physical parts of the
product) in the organization or even parts of the architecture decomposition,
or other hierarchies in customer-facing catalogs, that your stakeholders are
familiar with.

(2) Unify Domain Terminology This optional activity can be necessary
when the domain terminology is too diverse and ambiguous in the organi-
zation (principle PP2: In immature or heterogeneous domains, unify the
domain terminology). The risk is that different perceptions of domain con-
cepts might cause confusion among stakeholders and lengthy discussions.
We suggest you provide a dictionary with descriptive terms for feature
names. If several feature models will be created, you could also define
a hierarchical naming schema and prefixes for features in particular (sub-
)models. A common language is the precondition for successful joint work
among the stakeholders involved.

Domain Analysis and Scoping Activities

After the pre-modeling phase, there are two main phases carried out itera-
tively (principle PP5: Plan feature modeling as an iterative process). In the
first one, described in this subsection, you extract relevant information about
features and their relationships to the subsequent modeling phase. Iterating
between both phases allows to gradually increase modeling expertise, as
well as to safely and incrementally evolve the feature model.

The idea is that you start with an initial domain analysis and scoping,
to gather and document information (mainly a list of features and their

272 Andrzej Wąsowski. Thorsten Berger

relationships) in a way that is sufficient to proceed with the modeling
activities. Then you iterate—increasingly more closely—where you obtain
features and immediately model them. You usually even develop the system
in parallel. Once you have an initial software system controlled by the
feature model, this will also help with the iteration.

We recommend to perform the activities of this phase in workshops
(principle M1: Use workshops to extract domain knowledge). A workshop
is usually the best way to start with obtaining core domain knowledge from
the relevant experts. Recall the activity Establish a Forum and a Workshop
Format on page 271 above.

2 Identify Features Before modeling features, we first need to identify
them. We distinguish between the bottom-up and the top-down strategy.
The former you mainly apply for the extractive and the re-active adoption of
product lines, so when you already have a system or a set of cloned system
variants. The latter you apply for the pro-active adoption, when you need to
decide what features to realize and how to organize them. In practice, you
apply both the bottom-up and the top-down strategy, but put more emphasis
on either one based on the adoption strategy. You should also recall how
a feature is defined (cf. Def. 8.4), and what its main characteristics are—
most importantly, that a feature represents a distinct, well-understood, and
graspable aspect of the software system (principle M6: A feature typically
represents a distinctive, functional abstraction).

When identifying features, you should first focus on those that distinguish
variants (principle M2). You should also prefer features of type Boolean
(principle M10) for easy comprehension of the resulting feature model. The
following two main identification strategies exist:

• 2 Bottom-Up Feature Identification If you have one existing system
(re-active adoption), you usually start considering the existing and de-
manded configuration options, which give you a list of features to start
with.
When you have existing system variants (extractive adoption), which
often arose from clone & own, then you perform pairwise diffing. You
can use a standard diffing tool, such as the one that is built into Eclipse,
Notepad++ with the Compare plugin, or the tool Meld6, which provides
more extensive diffing support. Specifically, perform a pairwise diff
among the variants, which means that you take one as a base and diff
it with another one. You observe the differences, then try to understand
why these differences are there, in order to identify features. Of course,
to come up with a product line, you need to convert the differences
into variation points using a suitable variability mechanism. We refer to
?? and the relevant literature (Apel, Batory, et al. (2013b), Chapters 4
an 5) for details about implementation techniques for variation points,

6https://meldmerge.org

https://meldmerge.org

Chapter 8. Software Product Lines 273

as well for methods and tools to integrate the cloned systems into one
(product-line) platform (Assunção et al., 2017; Lillack et al., 2019; Rubin,
Krzysztof Czarnecki, and Chechik, 2015; J. Krueger and Berger, 2020).
Overall, your task is to “convert” implementation differences to features.
The idea, which we already explained for the pilot project above, is to
understand why a difference exists. A typical technique (principle M3:
Apply bottom-up modeling to identify differences between artifacts) is to
ask those with detailed variant implementation knowledge them various
times why the difference exists; leading to increasingly domain-oriented
explanations, until the difference can be described by the presence or
absence of a specific feature. In other words, you lift the implementation-
level differences to the domain.

• 2 Top-Down Feature Identification This sub-activity is usually the
responsibility of dedicated domain analysis (Kyo Kang et al., 1990) and
product-line scoping methods (Schmid, 2000; John and Eisenbarth, 2009;
John, Knodel, et al., 2006). According to Krzysztof Czarnecki and U. W.
Eisenecker (2000), the “purpose of Domain Analysis is to select and
define the domain of focus and collect relevant domain information and
integrate it into a coherent domain model.” The domain model in our
case is a feature model. Product-line scoping methods, such as PuLSE-
Eco (Bayer, Flege, et al., 1999), systematically select and prioritize the
features that an organization wants to realize. These should bring an
economic benefit for the organization and be in line with its business
strategy (e.g., considering vision, strategy, finance, and commercial
aspects).

After identification, the feature needs to be approved in some way by
your organization. This approval process can be part of the established
forum and workshop format (cf. page 271). Once approved, you can add
it to the feature model (see activity Add Features below). It should also
be documented (principle M11: Document the features and the obtained
feature model).
å The next question you should think about is whether you need to iden-

tify and model cross-tree constraints between features. Many constraints
will already be reflected in the feature hierarchy and in feature groups, or
as mandatory features. These constraints need to reflect the semantics of
how you can combine features via the assets they map to in any case. For
instance, when you combine features into an OR group, but the system
does not build or crashes when you select more than one of these features,
then an XOR group would properly constrain the features. Beyond these
constraints, which are easily visible in a feature model, you need to decide
whether you need to model cross-tree constraints, which are often more
intricate and challenge comprehension of the feature model.

Two modeling principles come in handy for making this decision. If the
models are configured by (company) experts, avoid modeling of cross-tree
constraints (principle D1). Since it is very expensive to accurately model

274 Andrzej Wąsowski. Thorsten Berger

all constraints, and since the experts will likely know all the constraints,
it usually will not pay off to model them. Some case studies (Berger,
Nair, et al., 2014b) shed more light on this issue. First, you often need a
consultant to help the customer to decide which features are needed, so you
can often safe the effort for modeling constraints. Another strategy, seen
in practice, is to maintain sets of tested configurations, wich are evolved
and maintained together with the model. In contrast, if the main users
of a feature model are end-users, then you need to model the cross-tree
constraints (principle D2). This can easily be seen in the Linux kernel
(cf. Sect. 8.2) and many other systems software projects (Berger, She,
Lotufo, Wąsowski, et al., 2013). The complexity of these models and the
sheer number of their configurations used for the running systems, demand
modeling all constraints.

(2) Identify Constraints As discussed in the box on page 278, constraints
restrict the possible configurations of a feature model, to prevent undesired
or invalid system variants, and to enhance the configuration experience.

But, where do the constraints come from? All systems composed of
parts (in our case, software assets) have constraints over those parts, arising
from domain, marketing, or technical restrictions. Since we abstract the
selection of those parts to the selection of features (i.e., we mapped the parts
to features), what we do is to lift those constraints over parts to constraints
over features, which is not always trivial.

• Code Constraints Empirical studies show that in systems software, up
to half of the constraints in a feature model can be found in the codebase
and extracted using various program analysis techniques (Nadi et al.,
2014; Nadi et al., 2015). Since such analysis techniques are difficult to
setup and use, rather the developers should inform the modelers about
the constraint, or declare them directly in the model.
We distinguish between two major kinds of sources: the so-called feature
effect and the prevention of build- or run-time errors. While details are
described by Nadi et al. (2015), intuitively, feature effect refers to the idea
that enabling a feature in the model should have an effect on the resulting
variants. In other words, if you enable the feature and nothing will happen,
then likely some constraints are missing. A typical example is a feature
whose implementation (i.e., the variation point controlling inclusion of
the implementation) is contained in that of another feature. Of course, if
the latter is disabled, enabling the former will not have any effect. So, fea-
ture effect means that enabling a feature should lead to a lexically different
program or to one that behaves differently. The other source of constraints
aims at the prevention of build- or run-time errors, and is also described
in more details by Nadi et al. (2015). Such errors can occur early when
the system fails to build, that is, fails to preprocess, parse, compile, type-
check or link. They can also occur late at run-time, for instance, when
the system crashes due to null-pointer de-referencing or buffer overflows.
Notably, they are much more difficult to detect than the build-time errors.

Chapter 8. Software Product Lines 275

• Domain Constraints Such constraints arise from domain knowledge and
are usually not contained in the codebase. Examples are dependencies
among hardware devices, which are rather contained in documentation
or in the experience and knowledge of domain experts or developers. To
some extent, these constraints can be found through testing the different
combinations of hardware and then adding them. However, mostly they
need to be provided by the domain experts.

• Other Constraints Further sources are marketing experts, which might
want to limit feature combinations for business reasons, or to simplify
feature selection for the customer. Constraints can also be used to par-
tially configure a feature model, called staged configuration (Krzysztof
Czarnecki, Helsen, and U. Eisenecker, 2005). Finally, some feature-
modeling tools allow to specify soft constraints, such as “recommends”
(Berger, Nair, et al., 2014b).

From these sources of constraints, observe that, while the code constraints
are reflected in the codebase and could in principle be recovered, the other
sources illustrate that feature models contain unique knowledge.

Finally, when identifying constraints, it is normal that initially, you are
not aware of all the dependencies. In fact, it is often difficult to see them
early on, which can also be seen in the Linux kernel (Lotufo et al., 2010).
There, when developers add new features, it is sometimes observable that
they fix the dependencies in several subsequent commits.

Finally, after identifying the constraints, document them together with
their rationales (principle M11: document the features and the obtained
feature model).

Modeling Activities

In the modeling phase, the goal is to obtain a feature model based on the
documented information about features and relationships in the previous
phase (Domain Analysis and Scoping Activities).
å A core question to begin the modeling with is whether you want to

physically separate the partitions of the envisioned model into different
feature-model files or not (principle MO3: Split large models). If so,
perform the following two activities, otherwise continue with activity
Define Coarse Feature Hierarchy below. Still, even if you do not want to
decompose and rather want to create one feature model, it can be beneficial
to temporarily decompose into models representing different stakholder-
related features, to model them in isolation, and later integrate them.
(3) Model Modularization Decomposing a feature model into smaller
ones has pros and cons. It facilitates distributed, independent evolution
and maintenance of the model, eases version management, as well as it
discourages (or limits) cross-tree constraints across the models. However,
it also raises consistency maintenance issues. In contrast, not decomposing
avoids the overhead of having to maintain multiple model files and their
inclusion in a central one, but large models quickly become unmanageable.

276 Andrzej Wąsowski. Thorsten Berger

Whether you should decompose depends on multiple factors. First,
it depends on whether you find an easy decomposition of the feature-
model hierarchy into coherent sub-trees. For instance, a sub-tree could
contain features representing implementation details and another one those
representing user-visible characteristics. Other factors are the estimated
software size and estimated number of features. From our experience, the
large models with several hundreds of features are all modularized into
multiple files. The Linux kernel with the distribution of its ultra-large model
across 1000 files (cf. Sect. 8.2) is an extreme example. From our experience,
all commercial models we have seen with several hundred feaures were all
split into multiple ones. The hierarchy of feature models sets up the first
framework for the platform—it is an initial structure that helps with the
modeling. This hierarchy can be distributed along the codebase (i.e., as in
the Linux kernel) or organized in a dedicated folder structure.

Model modularization has two sub-activities:
• 2 Define Structure of Model Files To decompose, what you do is

to define a hierarchy of feature models, beginning with a root model.
This model’s top-level features would then become root features in the
decomposed model files. You carry out this sub-activity at the beginning.

• 2 Maintain Consistency Between Model Files To maintain consis-
tency, what you can do is to find features that participate in dependencies
across the models, and then move them into a separate “interface” feature
model. This practice isolates the inter-model dependencies and eases their
maintenance. You carry out this sub-activity during the actual modeling
once you feel that the cross-model dependencies are getting out of hand.

2 Define Coarse Feature Hierarchy You start with creating an initial,
coarse hierarchy of features within a feature model (if you created mul-
tiple feature models, select the one you think its features are most well-
understood).

Start with defining feature groups, where you model features that belong
to a horizontal domain or have a close relationship. Think how to navigate
those groups and existing features in a better way. You maximize cohesion
and minimize coupling with feature groups (principle MO5). Specifically,
feature groups should represent related functionalities—these are within a
group, while there is low coupling to other groups (so, no cross-tree con-
straints). In contrast, you use abstract or mandatory features (cf. Def. 8.7)
for structuring the overall model.

Another idea is that you organize features into sub-trees that logically
partition the domain. Thereby, you try to reduce the need for cross-tree
constraints across those partitions (sub-trees), but rather within them. In
other words, you try to increase cohesion and reduce coupling.

To form the hierarchy, consider the properties given in the box on page
277. It is probably useful to recall that the top-level features are more
abstract and business-oriented (principle MO2: Features at higher levels in
the hierarchy should be more abstract), so that they can be communicated to

Chapter 8. Software Product Lines 277

The Feature Hierarchy
The feature hierarchy is one of the most valuable parts of a feature model. It organizes knowledge,
thereby helping stakeholders to keep an overview understanding of complex software systems in terms
of features.

The meaning of the hierarchy edges in feature models is not explicitly defined from a domain perspective.
In our experience, they most often resemble a Part-Of relationship, but can also be of the Is-A kind
(a.k.a., generalization), so rather expressing ontological relationships. Part-Of also makes sense also
from a configurator perspective. Recall that a child feature implies its parent in the semantics. You want
to avoid selecting a feature without it having an effect, so to avoid meaningless configurations (redundant
feature selectins that do not change the actual derived variant). When an asset that is controlled by a
child feature is part of another asset controlled by the parent feature, then you avoid that you can enable
the contained asset, which will never be there, since the container is missing.

A good feature hierarchy has the following properties:

• It is intuitive and easy-to-navigate.
• It abstracts over the codebase (folder) hierarchy.
• Its top-level features are more abstract and business-oriented. Those in the middle levels represent

functional aspects. The bottom-level features are usually more detailed technical concerns (e.g.,
hardware, libraries, diagnostics, and configuration options.

• It organizes features into sub-trees that logically partition the domain.
• Its organization reduces the need for cross-tree constraints, thereby increasing cohesion and reducing

coupling.
• It does not have a deep hierarchy. In practice, hierarchies have 3–6 levels. The maximum depth we

have seen (in the Linux kernel) is 8. Deep hierarchies would have many intermediate features, which
are usually vague and not very distinct, and as such difficult to understand for stakeholders.

customers. Intermediate features (i.e., those in the middle levels) represent
functional aspects. Towards the leaves, the features are more technical—
often, you create a domain- and business-oriented feature and then, when
actually implementing it, need to add more specific and perhaps technical
sub-features. You try to avoid having many intermediate features, which
are usually vague and difficult to understand for your stakeholders.

After defining a coarse hierarchy, it will be iteratively refined in the next
activity (Add Features).

2 Add Features While identifying features, you extend and refine your
feature model. The new features you identify will either already exist in the
feature model, or you need to add the newly identified features into relevant
places in the feature model.

Since you always want to limit the number of features, you should first
look for features that are similar and ask yourself whether an existing
feature can be adjusted. You also do that because there is always a cost to a
new feature to consider, and you want to avoid a growing pool of features.
So, you first try to update and enhance existing features.

278 Andrzej Wąsowski. Thorsten Berger

Feature Constraints
Constraints restrict the values of features based on other features’ values to prevent undesired or invalid
system variants. Or, in other words, constraints restrict the possible configurations (and, thereby, system
variants) of a feature model. Most of these constraints should be reflected in the feature hierarchy and
in feature groups, or by making features mandatory. The remaining constraints are added as cross-tree
constraints.

Constraints exist for various reasons (Nadi et al., 2015):

• Constraints enforce low-level dependencies between software assets, mainly code. Since software
systems, especially software product lines, are built modularly and have variation points, features
might need to use other features to function. For instance, there can be a definition-use relationship,
such as a method definition provided by the assets of one feature, and called from within the assets of
another feature.

• Constraints assure a correct run-time behavior—mainly since some dependencies for features might
only be known or available at runtime. For instance, in the Linux kernel, many driver features rely
on the availability of certain hardware or interfaces (e.g., communication ports) only available for a
certain hardware architecture. So, there would be a dependency to, for instance, the feature X86.

• Constraints improve the user’s configuration experience. As an input to interactive configurator tools,
feature models facilitate configuration, shown as menus and sub-menus in a tree-like organization. To
foster such an organization, feature model contain constraints. Interestingly, when configurator tools
do not offer intelligent choice-propagation or conflict-resolution support, such as the Linux kernel
configurator, often additional constraints are needed to compensate for the lack of such a support.

• Constraints avoid corner cases of feature combinations. Given the sheer number of possible configura-
tions and ways of combining features, often undesired feature interactions (Apel, Atlee, et al., 2014)
arise, which need extra code to handle it. For instance, we observed that in the Linux kernel, when
supporting a certain, but rare combination of hardware would be too expensive, developers might
decide to disallow such a corner case via constraints. Some systems even provide a disabled feature
Broken that features not currently supported can depend on.

For placing the feature in the hierarchy, consider again the properties
given in the box on page 277. However, the location should still “feel right”
to the involved stakeholders, and as such, a discussion among them might
be necessary.

Finally, define the relevant meta-data (e.g., feature title and short de-
scription, especially define default feature values (principle M8), which
substantially eases creating a feature-model configuration (making deriving
a configuration a reconfiguration problem). Further meta-data that might
be relevant in your organization could be the rationale why the feature
was added, the feature owner (if this role exists) or feature responsible, or
so-called visibility conditions (Berger, She, Lotufo, Wąsowski, et al., 2013),
determining when the feature is even visible to the user when creating a
configuration.

(2) Model Constraints If you decided to identify and model constraints
(recall the question on page 273), then conduct this optional activity.

Chapter 8. Software Product Lines 279

Declaring dependencies between features might require regrouping of
features, removing the dependency, or extracting those into an interface
feature model (principle MO3: Split large models). So, you should always
evaluate whether you really need to define those dependencies.

You should avoid complex constraints, which typically come in the
form of Boolean expressions. Such constraints challenge comprehension,
maintenance, and evolution of the model (principle MO4: Avoid complex
cross-tree constraints). You first try to model constraints using the feature
hierarchy and other graphical elements from feature models (e.g., manda-
tory features or feature groups). In fact, an indicator of a good feature
hierarchy is a low ratio of cross-tree constraints. If you still cannot restrict
the remaining cross-tree constraints to simple binary dependencies (e.g.,
required in the form of an implication between two features, or excludes in
the form of an implication of a feature to the negation of another one), you
can also put some constraints into the presence conditions of the variation
points, which keeps the model clean at the cost of a slighty more complex
mapping between features and software assets (i.e., variation points).

The source of the constraint (cf. activity Identify Constraints) gives you
an indication how to model it. Interestingly, constraints arising from the
source we called feature effect are mostly reflected in the feature hierarchy.
This makes a lot of sense when you remember that a feature always implies
its parent in a feature model, enforcing that the sub-feature has an effect.
Constraints preventing build- and run-time errors are rather seen in cross-
tree constraints or feature groups.
(2) Define Views In addition to model modularization, some feature-
modeling tools allow to create views, for instance, through filters or partial
configuration, sometimes also called profiles (principle M9: Define feature-
model views).
3 Validation After the modeling activities, it is time to check that the
modeling was correct in the eyes of the stakeholders. After evolution and
maintenance, you also want to use the following ways of validation. Notably,
the last one, regression testing, is primarily relevant for maintenance and
evolution.

• 2 Stakeholder Reviewing In the workshop format established during
the planning phase, various stakeholders should be invited to validate
the feature model (principle QA1: Validate the obtained feature model in
workshops with domain experts). We advise that different domain experts
participate, given their individual area of expertise. They can validate that
the right features and constraints were identified and modeled correctly,
as well as they can adivse on feature names and whether their structure
in the hierarchy is intuitive. It is also beneficial when experts who did
not participate in the modeling take part in the validation—among others,
to comment on the intuitiveness of the feature model.

• 2 Perform Product Derivations When one of the purposes of the fea-
ture model is to support product derivation, you should let the relevant

280 Andrzej Wąsowski. Thorsten Berger

stakeholders perform it for some example variants (principle QA2: Use
the obtained feature model to derive configurations). This can be done
in the workshop format established. Apparently, the experience will be
different than before, which was mostly manual. So, the stakeholders
will select features in a certain order, and by doing so, they will be able
to tell the modeler whether it feels right and whether it will be effective.
As for which variants to derive, you should do that for existing ones, but
also derive at least one that never existed before, also reinforcing the
benefit of having a platform with automated variant derivation through
feature-model configuration.

• 2 Regression Testing When iteratively creating the feature model, as
well as maintaining and evolving it, you can easily break existing con-
figurations. Many of the established feature-modeling tools, including
FeatureIDE (Meinicke et al., 2017), will provide you some automated
analysis that tells you whether a change to the model will have an effect
on existing configurations. However, these analyses are confined to the
feature model, but it is often desired to analyze the effect on the actual
variants (Mukelabai et al., 2018). This requires creating regression tests
(principle QA3: Use regression tests to ensure that changes to the feature
model preserve previous configurations) using typical testing methods
(e.g., unit tests), but these should be given different configurations, assur-
ing the coverage of feature configurations that cover variants that are in
use, ideally at the customer side. Knowing those requires either tracking
such configurations or obtaining expert knowledge from the developers
implementing the respective software assets. For instance, a developer
usually knows from experience which features might interact and should
be tested for certain modules.

Maintenance and Evolution Activities

To evolve the model, you can apply the activities from the previous two
phases: Domain Analysis and Scoping Activities, as well as Modeling
Activities. Especially the established workshop and forum (recall the
respective planning activity on page 271) come in handy here. Still, while
many stakeholders are involved, one or only few of them should ultimately
control the model and make changes (principle MME1: Use centralized
feature model governance). Feature models are brittle assets and need to
be evolved with care, to avoid inconsistencies that would have an impact
on many different variants. In this light, it is also important to regularly
perform the validation activities (cf. page 279).

The following activities additionally support evolving the model, as well
as maintaining it.

2 Model Version Control Tracking the evolution of the feature model, with
the ability to go back and analyze it, is core. There have been attempts at
supporting the versioning at the feature level, but according to our experi-
ence, you should version the feature model in its entirety (principle MME2).

Chapter 8. Software Product Lines 281

While keeping an overview with a more fine-grained way of versioning is
already difficult, the main reason is probably that individual features are not
units of deployment or packaging, but whole system variants are. As such,
it is more relevant to go back to such whole snapshots instead of individual
feature versions.

2 Remove Features Performing this activity is necessary from time to
time, but surprisingly difficult. Many companies therefore avoid removing
features. However, for very long-living platforms, removal is absolutely
necessary, to reduce the maintenance overhead and system complexity.

The removal of features should be discussed in the established workshop
or forum format. Once decided, a strategy is to remove the feature step-wise.
If supported by the feature-modeling tool, the feature should first be flagged
as deprecated, and also its default value should be changed to false. The
next step is to make the feature a dead feature via constraints, so that it
cannot be selected anymore. The final step is to remove the feature from
the model, and also the respective software assets.

Some companies even modeled the overall lifecycle states of a feature
internally as a state machine, with around 5–8 states. A good example of
states is: Proposed, Approved, Implemented, Deployed, Obsolete, Decom-
missioned. The state Obsolete would comprise the above steps of removing
the feature from the model, while in the state Decommissioned, the feature
is removed model and assets.

2 Optimizations Of course, over time, the constraints become more
intricate, and the hierarchy might not be as intuitive as necessary. So, an
important activity is to optimize the hierarchy and the constraints. However,
without proper tool support for refactoring, it is relatively easy to invalidate
existing variants, which should be avoided. Performing the validation
activities is crucial (cf. page 279).

8.7 Spectrum of Meta-Modeling

DSLs and feature models are two different techniques that belong to the
same continuum of meta-modeling or domain modeling. See the box on
page 53 for a discussion on the relation of meta-modeling and domain
modeling. This is illustrated in Fig. 8.10. Writing project-specific code
(right-most) is the most flexible and the hardest to maintain mechanism for
customizing software products. DSLs and MDSE are closer to the middle
of the spectrum—they allow a lot of freedom and flexibility, but are easier
to maintain than large amounts of custom code (due to systematic reuse
in interpreters and generators). Feature models are less expressive than
DSLs, and the way to configure with feature models is more rigid than
with a typical DSL. Yet, feature models require no meta-modeling and no
concrete syntax design, which makes them easier to use. They suffice for
many cases. Simple configuration files are to the left of the spectrum, with
the cheapest to maintain and the least flexible way to customize a system.

282 Andrzej Wąsowski. Thorsten Berger

Figure 8.10: Spectrum of
Domain Modeling

(Krzysztof Czarnecki and
U. Eisenecker, 2000).

property & configuration files + build system

feature models + build system

feature models + product specific code

domain specific languages + code generation

frameworks + framework completion code

only product specific code (no reuse)

Stahl and Völter (2005) advice that one should stay as much as possible
to the left side of this spectrum. Namely, one should prefer modeling with
feature models, or simple configuration parameters over DSLs, if possible,
to avoid scaling up complexity needlessly. The above spectrum, explains
though, that when features are not sufficient, it is natural to implement
product line architectures using DSLs. Consider our case study on fire alarm
systems in Sect. 8.8, where feature modeling (where you basically switch
on or of features) was not sufficient to represent all the possible concrete
fire alarm systems, since that domain is rather about instantiating things
like fire detectors and alarm devices and connecting them in a topology. To
this end, the expressive power of DSLs was necessary.

Concepts that are common to all products in the domain belong to the
platform implementation, while concepts and aspects that vary are expressed
in your domain specific models. If you use feature modeling, the mandatory
features correspond to common aspects of the system.

To decrease complexity, the MDSE domain and the MDSE platform
should be as close to each other as possible. Ideally, the platform (or
framework) should provide implementation of domain concepts.

If you use a DSL, note that, typically, structure is captured in the language,
while behavior is provided by the framework/platform. If you do need to
customize behaviour, it is recommended to reduce it to a small finite number
of choices of different behavior—and describe it using a feature model.

If this is not an option, try to reuse as much as possible existing languages
such as statecharts, automata, BPMN/BPEL, activity diagrams and message
sequence charts. Designing your own behavioral languages is known to be
difficult to get right. Inventing your own behavioral language, gives more
flexibility than reusing existing one, but it increases risks and difficulty of
achieving full automation.

A good rule of thumb: if you need to introduce typical GPL constructs
into your DSL, such as a loop, and they need to be generated from models
(compiled into the target language) then you probably have grown your
DSL too much. Most DSLs should stay simple, and possibly declarative.

Chapter 8. Software Product Lines 283

Figure 8.11 illustrates the difference between feature models and DSLs.

Figure 8.11: Feature models
versus DSLs

8.8 Case Study: A Fire Alarm System

Let us build a meta-model that allows modeling a fire-alarm installation. It
is based on a real project (Berger, Stanciulescu, et al., 2014) we conducted
with a Norwegian company producing fire-alarm systems for industry plants,
oil rigs, and cruise ships. The company used the meta-model for configur-
ing the software controlling the installation of fire-alarm devices. While
being realistic, the meta-model we will will create here is substantially
smaller than the real one (which consists of 219 classes). The meta-model
represents all possible fire-alarm installations the company can deliver,
whereas a concrete instance is used to configure the software that runs in
special panels (which are usually connected via a network) and controls
the installation with all its devices (e.g., smoke detectors or sounders).
Figure 8.12 illustrates a simple installation of a fire alarm system.

284 Andrzej Wąsowski. Thorsten Berger

Figure 8.12: Illustrative
example of a simple

fire-alarm installation (Berger,
Stanciulescu, et al., 2014).

Motivation Autronica strives for checking rules, regulations, and system
constraints at an early stage of the engineering process, well before the
delivery starts for each new installation. In the case of fire alarm systems,
the configurator not only warrants obtaining the right functionality, but is
responsible for enforcing rules required by functional safety certification.
Therefore, designing a new AutroSafe installation always involves creating
its model. Field equipment is configured by setting various parameters
in production and during startup of a panel. In the following, we discuss
opportunities and challenges of standardized domain modeling in Autronica.

Modeling configurations using a custom modeling tool. Today, Autronica is
handling the configuration data systematically and through proprietary con-
figuration tools. The installation configuration model is built by consultants
using a custom configurator tool developed around 15 years ago. The tool
relies on a meta-model expressed in the Entity-Relationship (E/R) notation.
The model has evolved over its lifetime, mainly through additions of new
physical devices and relationships. The configurator is used to create one
central configuration of the complete installation, which is used to generate
C-like data structures for each (display and operation) panel.

Unfortunately, the AutroSafe configuration tool is difficult to maintain,
partly because it has been tailor-made and does not rely on any modeling
or configuration frameworks. Thus, evolving the tool is a burden. It has
served well for years, but the infrastructure provides little overview, and
requires complex input. UML modeling tools are much easier to use; they
are standardized and maintained. The output from these tools can drive
more applications than just configuration, and it is accepted by many other
tools thanks to standardization.

Capturing topological properties in domain models. In the legacy E/R
model, domain properties were described in a very tight way with a high

Chapter 8. Software Product Lines 285

degree of coupling. Hopefully, using a more developed domain modeling
language will enable a clear separation between the logical and physical
topologies, yet still allow describing the constraints relating the two.

Maintaining configurators and meta-models for similar product families.
Presently, configurators for several products exist, but they are indepen-
dently built and rely on different technologies. Some of the input files use
XML, others have a C-like syntax. Even though, the overall configuration
procedures are similar for the products families, Autronica does not handle
them in a uniform manner.

Abstract Syntax (Meta-Model) A fire alarm installation has a name and a
list of responsibles. The latter are persons who have a name. The installation
is composed of multiple domains, which are meant to separate the fire alarm
system into parts that should be independent (e.g., when the parts reside in
different buildings). For the remainder of the system, the company wanted
to be flexible and create a logical structure (for organizing devices into
zones) and a physical structure (which reflects the actual, physical layout of
the devices on so-called loop cables), so that flexible activation relationships
can be realized.

The logical structure of fire alarm installations is defined as follows:

• A domain contains one or more operation zones, which have a name,
a severity (LOW, MEDIUM, or HIGH), a textual description, and one
up to five responsible persons. An operation zone can contain one or
more operation zones itself, which makes it possible to divide a zone into
sub-zones, allowing an arbitrarily deep hierarchy of zones.

• An operation zone contains an arbitrary number of detection zones and
alarm zones, each of which has a name. An alarm zone can have multiple
other alarm zones as neighbors. When an alarm zone starts the alarm,
it will notify its neighbors to also trigger the alarm. An alarm zone is
mapped to detection zones via an activation expression. This expression
can just be the name of a detection zone or a more complex logical
expression with the operators AND, OR, and ! (NOT). For instance, if
there exist detection zones named D1, D2, D3, D4, D5, one should be
able to specify expressions such as:

(D1 AND !D3) OR (D4) OR (D2 AND D4 AND D3)

The physical structure is as follows:

• An operation zone is controlled by exactly one panel, which can be a
display panel or an operation panel. Both have a name. An operation
panel contains a so-called loop driver module, to which the physical
devices are connected (via a loop wire). More precisely, a loop driver
contains nodes in a specific order. A node can be either a smoke detector,
a sprinkler or a sounder, each of which having a name. Finally, to connect

286 Andrzej Wąsowski. Thorsten Berger

logical and physical structure, smoke detectors and sprinklers belong to
one or multiple detection zones, and sounders belong to one or multiple
alarm zones.

Figure 8.13 shows a meta-model realizing the language description above.
Note the operation findDZones in the class OperationZone, which is a
convenience query operation we added to simplify the declaration of a
constraint, explained below.

FireAlarmInstallation

Domain OperationZone

severity : Severity = LOW

description : EString

findDZones(e ActivationExpression) : DetectionZone

NamedElement

name : EString

DetectionZone AlarmZone

Panel

DisplayPanel

OperationPanel LoopDriver

Person

Severity

LOW

MEDIUM

HIGH

Node

SmokeDetectorSounder Sprinkler

ActivationExpression

UnaryOp

NOT

BinaryOp

AND

OR

BinaryExpression

operator : BinaryOp = AND

UnaryExpression

operator : UnaryOp = NOT

Literal

[1..*] domain

[1..*] panel

[0..*] responsibles

[1..*] operationzone

[0..*] operationzone

[0..*] detectionzone [0..*] alarmzone

[1..1] controlledBy

[1..5] responsible

[0..*] neighbor

[1..1] activatedBy

[0..*] loopdriver

[1..1] firstNode

[0..1] nextNode

[1..*] belongsto

[1..*] belongsto

[1..*] belongsto
[1..1] left

[1..1] right

[1..1] expr

[1..1] dzone

Figure 8.13: Meta-Model for fire-alarm installations

Static Semantics (Constraints) Let us define the following additional
constraints as static semantics in our meta-model.

• Names should be at least two characters long (invariant nameLength).

Chapter 8. Software Product Lines 287

• If the severity of an operation zone is high, then there shall be at least
two responsibles (invariant: twoResponsibles).

• Each responsible shall be responsible for at least one operation zone
(invariant responsibleForOZ).

• If an alarm zone A is a neighbor of an alarm zone B, then B shall also be
a neighbor of alarm zone A (invariant neighborSymmetry).

• Alarm zones that are activated by detection zones shall be in the same
operation zone (invariant activatedWithinOZ).

• An operation zone that is the sub-zone of another operation zone shall be
in the same domain as the parent operation zone (invariant sameDomain).

We define these constraints using OCL in Fig. 8.14, remembering from
Chapter 5 that other constraint languages could be used as well. For
descriptions of the OCL language, refer to the sources given in Sect. 5.7,
such as the tutorial of Cabot and Gogolla (2012). Note that for the invari-
ant activatedWithinOZ we first create a query operation findDZones that
traverses the expression tree to return the literals (i.e., concrete detection
zones) that we then use in the constraint. There, we need to apply this
function on a set of activation expressions, which we do via the collection
operator iterate. The latter is a common aggregate function in functional
programming (e.g., called reduceLeft() in Scala), which aggregates a set via
a supplied closure that repeatedly “folds” a set element into an aggregate
(which is again a set in our case). Furthermore, note that the invariant
sameDomain is already enforced by the meta-model and can be omitted.

288 Andrzej Wąsowski. Thorsten Berger

Figure 8.14: Additional
constraints (static semantics)
for our fire-alarm meta-model

from Fig. 8.13 defined as
OCL constraints

context NamedElement
invariant nameLength: self.name.size() >= 2

context OperationZone
invariant twoResponsibles: self.severity=Severity::HIGH implies

responsible->size() >= 2

context Person
invariant responsibleForOZ: OperationZone.allInstances()->

exists(o : OperationZone | o.responsible->
exists(p : Person | p = self))

context AlarmZone
invariant neighborSymmetry: self.neighbor->

forAll(myNeighbor | myNeighbor.neighbor->
exists(theirNeighbor | theirNeighbor=self))

context OperationZone
findDZones(argument: ActivationExpression): DetectionZone[*]
body: if argument.oclIsKindOf(BinaryExpression) then

findDZones(argument.oclAsType(BinaryExpression).left)->
union(findDZones(argument.oclAsType(BinaryExpression).right))

else if argument.oclIsKindOf(UnaryExpression) then
findDZones(argument.oclAsType(UnaryExpression).expr)

else
Set{argument.oclAsType(Literal).dzone}

endif
endif

invariant activatedWithinOZ: self.detectionzone->includesAll(
self.alarmzone->iterate(x:AlarmZone; acc=Set{} |

acc->union(findDZones(x.activatedBy)))
)

context OperationZone
invariant sameDomain: true -- already enforced by meta-model

Further Reading

Classical textbooks on SPLE are those by Apel, Batory, et al. (2013b), P.
Clements and L. Northrop (2001), Pohl, Böckle, and F. v. d. Linden (2005),
F. J. v. d. Linden, Schmid, and Rommes (2007), and Capilla, Bosch, and
K.-C. Kang (2013).

The body of work on feature modeling is humongeous. The FODA report
(Kang et al., 1990) is the most popular work on feature oriented domain
analysis, which has proposed the feature modeling notation. Another
introduction to feature modeling is Chapter 4 of the book by Krzysztof
Czarnecki and U. Eisenecker (2000). A brief history of the feature modeling
notation is provided by (Berger and Collet, 2019).

Chapter 8. Software Product Lines 289

Note that the academic feature modeling languages usually come with
a graphical syntax, but there are also textual languages tat can be seen as
feature-model-like, for instance: TVL (Classen, Boucher, and Heymans,
2011; Hubaux, Boucher, et al., 2011), ClaFeR (Bak, Krzysztof Czarnecki,
and Wąsowski, 2010; Bąk et al., 2014), and of course Kconfig (Berger, She,
Lotufo, Wąsowski, et al., 2013; She and Berger, 2010) and CDL (Berger,
She, Lotufo, Wąsowski, et al., 2013; Berger and She, 2010). A comparison
of textual languages is provided by Eichelberger and Schmid (2013)

Clafer (Bak, Krzysztof Czarnecki, and Wąsowski, 2010) is a language
that allows seamless switching from feature modeling to structural mod-
eling (class modeling). We are presently working on extending Clafer
towards behavior modeling, which would also allow incremental addition
of behaviors for mature projects.

Exercises
Exercise 8.2. Imagine the company UpAndDown that produces elevator systems.
It provides customized solutions for private and public customers.

Analyze the domain. Which features are likely to be requested by many cus-
tomers? Which features are likely to be requested only by few customers? Which
features could distinguish your products from the products of your competitors in
this market segment?

Model the domain with a feature model. Pay attention to feature dependencies.
Hint: Consider a maximum of ten features.

Exercise 8.3. The company UpAndDown has a competitor, the elevator manufac-
turer LiftYouUp. One of its customers has an urgent request for an elevator with
directed call buttons. You remember that call buttons are either directed call or
undirected call. Directed call definitely requires the behavior mode ShortestPath,
while undirected call can work with the behavior modes FIFO or ShortestPath.
Due to a bug in your current system, ShortestPath does not work with the priority
mode RushHourPriority, so you can only sell FloorPriority or PersonPriority
currently for ShortestPath (of course, one of these priority modes is required
for the elevator to work). FIFO, when used in combination with the priority
PersonPriority, excludes undirected call buttons. Overall, you have three available
behavior modes Sabbath, FIFO, and ShortestPath, and all exclude each other. Your
customer has heard that some elevators offer periodic airing, which your customer
wants, but airing definitely excludes both RushHourPriority and PersonPriority.

Model the problem as a feature model. Can you offer your customer an elevator
with directed call buttons and periodic airing?

Exercise 8.4. Draw a feature model for the following product line of a (very
simple) robot control software.

A robot has always a body, a mobile base, a connectivity system, an arm, and a
perception sensor. Optionally, it can incorporate a computer. The mobile base can
be biped or wheeled, depending on its operational environment. The connectivity
system can be either wireless or wired. If wireless, the connection can be based
on Wi-Fi and/or Bluetooth. The end-effector of the robotic arm can be either a
parallel gripper (with high payload capacity) or a 5-fingers-hand (provides more

290 Andrzej Wąsowski. Thorsten Berger

functionalities). The perception sensor can be a Lidar and/or a RGBD-camera.
The usage of a RGBD-camera requires the inclusion of a computer. If the parallel
gripper is chosen, the biped option is not possible.

Exercise 8.5. Draw a feature model for the following subset of the open-source
SSL server called AXTLS.

The system supports various platforms, including Linux, Win32, and Cyg-
win. Exactly one of these platforms has to be selected. AXTLS has a built-in
and mandatory HTTP server, which has three optional features: debug mode,
HTTP_AUTH authorization, and CGI. The latter is further decomposed into CGI
Extensions and LUA scripts which can be enabled for CGI. AXTLS further has
so-called BigInt options: an optional sliding window, an optional CRT, and a
mandatory reduction algorithm; the latter can be Montgomery, classical or Barret,
or any combination of the three. Montgomery does not work on Cygwin platforms,
and Barret requires the debug mode to be enabled.

Figure 8.15: A simplified
feature model in concrete

graphical syntax

options

display cache

small
large

1M 8M fixed

requires
excludes

Exercise 8.6. Consider the feature model presented in Fig. 8.15. For each of the
following configurations state whether it is an instance of the above model:

a) options, display, large, cache, fixed

b) options, display, large, cache, 1M, fixed

c) options, display, small, cache, 8M

d) options, display, small, cache, fixed

Exercise 8.7. Consider the following Clafer model.

Figure 8.16: A simple Clafer
model of a car telematics

system

1 telematicsSystem
2 xor channel
3 single
4 dual
5

6 extraDisplay ?
7 xor size
8 small
9 large

10 [dual]

Chapter 8. Software Product Lines 291

For each of the following instances, state whether they adhere or not to the
above model.

a) telematicsSystem, channel, single
b) telematicsSystem, channel, single, extraDisplay
c) telemeticsSystem, channel, single, extraDisplay, size, large
d) telemeticsSystem, channel, single, extraDisplay, size, small

Exercise 8.8. Consider the feature model of a car entertainment system presented
in Fig. 8.15. Change the model to capture two new requirements:

a) The system should be allowed to have both a small and a large display at the
same time (in the above model only one of them is allowed at a time).

b) A system that has both a small and a large display, must also have an 8M
cache.

Recall that you may both modify the diagram and to add feature constraints
outside the diagram.

Exercise 8.9. Consider the following Clafer model.

1 telematicsSystem
2 xor channel
3 single
4 dual
5

6 extraDisplay ?
7 xor size
8 small
9 large

10 [large => dual]
Figure 8.17: A simple Clafer
model of a car telematics
system

Change the above model to capture the following new requirements:

a) The system should be allowed to have both a small and a large extra display at
the same time (in the presented model only one of them is allowed at a time).
Like in the old model it is still allowed to have either small or large extra
display alone, and it is still required to have at least small or large display.

b) If a system has both a small and a large display, then it must be dual channel,
but a large display should be allowed with a single channel (unlike in the
presented model)

Exercise 8.10. Discuss the differences between modeling a product line using
feature models versus DSLs. List at least two advantages of each.

References
Accioly, Paola, Paulo Borba, and Guilherme Cavalcanti (2018). “Understanding

semi-structured merge conflict characteristics in open-source java projects”. In:
Empirical Software Engineering 23.4, pp. 2051–2085.

292 Andrzej Wąsowski. Thorsten Berger

Akesson, Jonas et al. (2019). “Migrating the Android Apo-Games into an Annotation-
Based Software Product Line”. In: SPLC.

Alves, Vander et al. (2010). “Requirements engineering for software product lines:
A systematic literature review”. In: Information and Software Technology 52.8,
pp. 806–820.

Andersson, Jesper and Jan Bosch (2005). “Development and use of dynamic product-
line architectures”. In: IEE Proceedings-Software 152.1, pp. 15–28.

Apel, Sven, Joanne M. Atlee, et al. (2014). “Feature Interactions: The Next Gener-
ation (Dagstuhl Seminar 14281)”. In: Dagstuhl Reports 4.7. Ed. by Sven Apel
et al., pp. 1–24. ISSN: 2192-5283.

Apel, Sven, Don Batory, et al. (2013a). Feature- Oriented Software Product Lines.
Springer.

– (2013b). Feature-Oriented Software Product Lines. Springer.
Assunção, Wesley K. G. et al. (2017). “Reengineering legacy applications into soft-

ware product lines: a systematic mapping”. In: Empirical Software Engineering
22.6, pp. 2972–3016.

Bak, Kacper, Krzysztof Czarnecki, and Andrzej Wąsowski (2010). “Feature and
Meta-Models in Clafer: Mixed, Specialized, and Coupled”. In: SLE. Ed. by Brian
A. Malloy, Steffen Staab, and Mark van den Brand. Vol. 6563. Lecture Notes in
Computer Science. Springer, pp. 102–122. ISBN: 978-3-642-19439-9.

Bąk, Kacper et al. (2014). “Clafer: unifying class and feature modeling”. In: Soft. &
Sys. Modeling, pp. 1–35. ISSN: 1619-1366.

Balzerani, Luca et al. (2005). “A product line architecture for web applications”. In:
Proceedings of the 2005 ACM symposium on Applied computing, pp. 1689–1693.

Bayer, Joachim, Oliver Flege, et al. (1999). “PuLSE: A methodology to develop
software product lines”. In: Proceedings of the 1999 symposium on Software
reusability, pp. 122–131.

Bayer, Joachim, Thomas Forster, et al. (2006). “Process Family Engineering in
Automotive Control Systems: a Case Study”. In: GPCE.

Berger, Thorsten and Philippe Collet (2019). “Usage Scenarios for a Common
Feature Modeling Language”. In: First International Workshop on Languages
for Modelling Variability (MODEVAR).

Berger, Thorsten, Daniela Lettner, et al. (2015). “What is a Feature? A Qualitative
Study of Features in Industrial Software Product Lines”. In: SPLC.

Berger, Thorsten, Divya Nair, et al. (2014a). “Three Cases of Feature-Based Vari-
ability Modeling in Industry”. In: ACM/IEEE 17th International Conference on
Model Driven Engineering Languages and Systems (MODELS).

– (2014b). “Three Cases of Feature-Based Variability Modeling in Industry”. In:
MODELS.

Berger, Thorsten, Rolf-Helge Pfeiffer, et al. (2014). “Variability Mechanisms in
Software Ecosystems”. In: Information and Software Technology 56.11, pp. 1520–
1535.

Berger, Thorsten, Ralf Rublack, et al. (2013). “A survey of variability modeling in
industrial practice”. In: VaMoS.

Berger, Thorsten and Steven She (2010). Formal Semantics of the CDL Language.
Tech. rep. Technical Note. Department of Computer Science, University of
Leipzig, Germany. URL: http : / / www. informatik . uni - leipzig . de / ~berger / cdl _
semantics.pdf.

http://www.informatik.uni-leipzig.de/~berger/cdl_semantics.pdf
http://www.informatik.uni-leipzig.de/~berger/cdl_semantics.pdf

Chapter 8. Software Product Lines 293

Berger, Thorsten, Steven She, Rafael Lotufo, Krzysztof Czarnecki, et al. (2010).
“Feature-to-Code Mapping in Two Large Product Lines”. In: SPLC.

Berger, Thorsten, Steven She, Rafael Lotufo, Andrzej Wąsowski, et al. (2013). “A
Study of Variability Models and Languages in the Systems Software Domain”.
In: IEEE Transactions on Software Engineering 39.12, pp. 1611–1640.

Berger, Thorsten, Stefan Stanciulescu, et al. (2014). “To Connect or Not to Connect:
Experiences from Modeling Topological Variability”. In: SPLC.

Berger, Thorsten, Jan-Philipp Steghöfer, et al. (2019). “The State of Adoption and
the Challenges of Systematic Variability Management in Industry”. In: Empirical
Software Engineering. Preprint.

Beuche, Danilo (2004). “pure::variants Eclipse Plugin”. User Guide. pure-systems
GmbH. Available from http://web.pure-systems.com/fileadmin/downloads/pv_
userguide.pdf.

Bosch, Jan (2000). Design and use of software architectures: adopting and evolving
a product-line approach. Pearson Education.

– (2009). “From software product lines to software ecosystems”. In: Proceedings
of the 13th International Software Product Line Conference. SPLC ’09.

Businge, John et al. (2018). “Clone-Based Variability Management in the Android
Ecosystem”. In: ICSME.

Cabot, Jordi and Martin Gogolla (2012). “Object Constraint Language (OCL): A
Definitive Guide”. In: Formal Methods for Model-Driven Engineering - 12th
International School on Formal Methods for the Design of Computer, Commu-
nication, and Software Systems, SFM 2012, Bertinoro, Italy, June 18-23, 2012.
Advanced Lectures. Ed. by Marco Bernardo, Vittorio Cortellessa, and Alfonso
Pierantonio. Vol. 7320. Lecture Notes in Computer Science. Springer, pp. 58–90.
DOI: 10.1007/978-3-642-30982-3_3. URL: https://doi.org/10.1007/978-3-642-
30982-3_3.

Capilla, Rafael, Jan Bosch, and Kyo-Chul Kang (2013). “Systems and Software
Variability Management: Concepts, Tools and Experiences”. In:

Chastek, Gary et al. (2011). “Engineering a Production Method for a Software
Product Line”. In: Proceedings of the 2011 15th International Software Product
Line Conference. SPLC ’11. Washington, DC, USA: IEEE Computer Society,
pp. 277–286. ISBN: 978-0-7695-4487-8. DOI: 10.1109/SPLC.2011.46.

Chen, L. and M. Ali Babar (2009). “A Survey of Scalability Aspects of Variability
Modeling Approaches”. In: Workshop on Scalable Modeling Techniques for
Software Product Lines at SPLC.

Chen, Lianping, Muhammad Ali Babar, and Nour Ali (2009). “Variability manage-
ment in software product lines: a systematic review”. In: SPLC’09.

Classen, Andreas, Quentin Boucher, and Patrick Heymans (2011). “A text-based
approach to feature modelling: Syntax and semantics of TVL”. In: Science of
Computer Programming 76.12, pp. 1130–1143. ISSN: 0167-6423. DOI: 10.1016/j.
scico.2010.10.005.

Classen, Andreas, Patrick Heymans, and Pierre-Yves Schobbens (2008). “What’s in
a Feature: A Requirements Engineering Perspective”. In: FASE.

Clements, P. and L. Northrop (2001). Software Product Lines: Practices and Pat-
terns. Addison-Wesley.

Clements, Paul and John Bergey (2005). The US Army’s Common Avionics Architec-
ture System (CAAS) Product Line: A Case Study. Tech. rep. Software Engineering
Institute, Carnegie Mellon University.

http://web.pure-systems.com/fileadmin/downloads/pv_userguide.pdf
http://web.pure-systems.com/fileadmin/downloads/pv_userguide.pdf
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1109/SPLC.2011.46
https://doi.org/10.1016/j.scico.2010.10.005
https://doi.org/10.1016/j.scico.2010.10.005

294 Andrzej Wąsowski. Thorsten Berger

Czarnecki, K. et al. (2012). “Cool Features and Tough Decisions: A Comparison of
Variability Modeling Approaches”. In: VaMoS.

Czarnecki, Krzysztof and Ulrich Eisenecker (2000). Generative Programming.
Methods, Tools, and Applications. Addison-Wesley.

Czarnecki, Krzysztof and Ulrich W. Eisenecker (2000). Generative Programming:
Methods, Tools, and Applications. Boston, MA: Addison-Wesley.

Czarnecki, Krzysztof, Simon Helsen, and Ulrich Eisenecker (2005). “Staged config-
uration through specialization and multilevel configuration of feature models”.
In: Software process: improvement and practice 10.2, pp. 143–169.

Debbiche, Jamel et al. (2019). “Migrating the Java-Based Apo-Games into a
Composition-Based Software Product Line”. In: SPLC.

Dhungana, Deepak, Patrick Heymans, and Rick Rabiser (2010). “A Formal Seman-
tics for Decision-oriented Variability Modeling with DOPLER”. In: VaMoS.

Dordowsky, Frank and Walter Hipp (2009). “Adopting Software Product Line
Principles to Manage Software Variants in a Complex Avionics System”. In:
Proceedings of the 13th International Software Product Line Conference. SPLC
’09. San Francisco, California, USA: Carnegie Mellon University, pp. 265–274.
URL: http://dl.acm.org/citation.cfm?id=1753235.1753272.

Dubinsky, Yael et al. (2013). “An Exploratory Study of Cloning in Industrial
Software Product Lines”. In: CSMR.

Duc, Anh Nguyen et al. (2014). “Forking and Coordination in Multi-platform
Development: A Case Study”. In: Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. ESEM ’14.

Dziobek, Christian et al. (2008). “Functional Variants Handling in Simulink Mod-
els”. In: MACDE. URL: https://www.researchgate.net/publication/238778580_
Functional_Variants_Handling_in_Simulink_Models.

Eichelberger, Holger and Klaus Schmid (2013). “A systematic analysis of tex-
tual variability modeling languages”. In: Proceedings of the 17th International
Software Product Line Conference.

Eklund, Ulrik and Håkan Gustavsson (2013). “Architecting automotive product lines:
Industrial practice”. In: Science of Computer Programming 78.12, pp. 2347–
2359.

El-Sharkawy, Sascha, Adam Krafczyk, and Klaus Schmid (2015). “Analysing the
Kconfig semantics and its analysis tools”. In: GPCE.

Flores, Rick, Charles Krueger, and Paul Clements (2012). “Mega-Scale Product
Line Engineering at General Motors”. In: Proc. SPLC.

Fogdal, Thomas et al. (2016). “Ten years of product line engineering at Danfoss:
lessons learned and way ahead”. In: SPLC.

Ganesan, Dharmalingam et al. (2009). “Verifying Architectural Design Rules of
the Flight Software Product Line”. In: Proceedings of the 13th International
Software Product Line Conference. SPLC ’09. San Francisco, California, USA:
Carnegie Mellon University, pp. 161–170.

Ganz, Christopher and Michael Layes (1998). “Modular turbine control software: A
control software architecture for the ABB gas turbine family”. In: International
Workshop on Architectural Reasoning for Embedded Systems.

Garcia, Sergio, Daniel Strueber, Davide Brugali, Thorsten Berger, et al. (2020).
“Robotics Software Engineering: A Perspective from the Service Robotics Do-
main”. In: 28th ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE).

http://dl.acm.org/citation.cfm?id=1753235.1753272
https://www.researchgate.net/publication/238778580_Functional_Variants_Handling_in_Simulink_Models
https://www.researchgate.net/publication/238778580_Functional_Variants_Handling_in_Simulink_Models

Chapter 8. Software Product Lines 295

Garcia, Sergio, Daniel Strueber, Davide Brugali, Alessandro Di Fava, et al. (2019).
“Variability Modeling of Service Robots: Experiences and Challenges”. In: 13th
International Workshop on Variability Modelling of Software-intensive Systems
(VaMoS).

Gousios, Georgios, Martin Pinzger, and Arie van Deursen (2014). “An Exploratory
Study of the Pull-based Software Development Model”. In: Proceedings of the
36th International Conference on Software Engineering. New York, NY, USA:
ACM, pp. 345–355.

Gustavsson, Hakan and Ulrik Eklund (2010). “Architecting Automotive Product
Lines: Industrial Practice”. In: SPLC.

Habli, Ibrahim and Tim Kelly (2007). “Challenges of Establishing a Software
Product Line for an Aerospace Engine Monitoring System”. In: Proceedings of
the 11th International Software Product Line Conference. SPLC ’07. Washington,
DC, USA: IEEE Computer Society, pp. 193–202. ISBN: 0-7695-2888-0. DOI:
10.1109/SPLC.2007.14.

Hardung, Bernd, Thorsten Kölzow, and Andreas Krüger (2004). “Reuse of Software
in Distributed Embedded Automotive Systems”. In: Proceedings of the 4th ACM
International Conference on Embedded Software. EMSOFT ’04.

Hess, Klaus-Dieter and Frank Dordowsky (2008). “Rational ClearCase migration to
a complex avionics project - an experience report”. In: CONQUEST.

Hubaux, Arnaud, Quentin Boucher, et al. (2011). “Evaluating a Textual Feature
Modelling Language: Four Industrial Case Studies”. In: Software Language
Engineering. Ed. by Brian Malloy, Steffen Staab, and Mark van den Brand.
Vol. 6563. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
pp. 337–356. ISBN: 978-3-642-19439-9.

Hubaux, Arnaud, Yingfei Xiong, and Krzysztof Czarnecki (2012). “A User Survey
of Configuration Challenges in Linux and ECos”. In: VaMoS.

Janota, Mikolás, Victoria Kuzina, and Andrzej Wąsowski (2008). “Model Con-
struction with External Constraints: An Interactive Journey from Semantics to
Syntax”. In: MoDELS. Ed. by Krzysztof Czarnecki et al. Vol. 5301. Lecture
Notes in Computer Science. Springer, pp. 431–445. ISBN: 978-3-540-87874-2.

Jansen, Slinger, Anthony Finkelstein, and Sjaak Brinkkemper (2009). “A sense of
community: A research agenda for software ecosystems”. In: 31st International
Conference on Software Engineering - Companion Volume. IEEE, pp. 187–190.

Ji, Wenbin et al. (2015). “Maintaining Feature Traceability with Embedded Annota-
tions”. In: SPLC.

John, Isabel and Michael Eisenbarth (2009). “A decade of scoping: a survey”.
In: Proceedings of the 13th International Software Product Line Conference,
pp. 31–40.

John, Isabel, Jens Knodel, et al. (2006). “A practical guide to product line scoping”.
In: 10th International Software Product Line Conference (SPLC’06). IEEE,
pp. 3–12.

Kang et al. (1990). Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Tech. rep. CMU/SEI-90-TR-21.

Kang, K.C. (2009). “FODA: Twenty Years of Perspective on Feature Models”. In:
Keynote Address at the 13th International Software Product Line Conference.
SPLC.

Kang, Kyo et al. (1990). Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Tech. Rep. SEI, CMU.

https://doi.org/10.1109/SPLC.2007.14

296 Andrzej Wąsowski. Thorsten Berger

Kleene, S. C. (1938). “On Notation for Ordinal Numbers”. In: The Journal of
Symbolic Logic 3.4, pp. 150–155. ISSN: 00224812.

Koziolek, Heiko et al. (2016). “Assessing software product line potential: an
exploratory industrial case study”. In: Empirical Software Engineering 21.2,
pp. 411–448.

Krueger, Charles (2002). “Variation Management for Software Production Lines”.
In: Proceedings of the Second International Conference on Software Product
Lines. SPLC 2.

Krueger, Charles W. (2007). “BigLever software gears and the 3-tiered SPL method-
ology”. In: OOPSLA.

Krueger, Jacob and Thorsten Berger (2020). “Activities and Costs of Re-Engineering
Cloned Variants Into an Integrated Platform”. In: 14th International Working
Conference on Variability Modelling of Software-intensive Systems (VaMoS).

Krueger, Jacob, Wanzi Gu, et al. (2018). “Towards a Better Understanding of
Software Features and Their Characteristics: A Case Study of Marlin”. In: VaMoS.

Krüger, Jacob et al. (2018). “Apo-games: A Case Study for Reverse Engineering
Variability from Cloned Java Variants”. In: 22nd International Systems and
Software Product Line Conference - Volume 1. SPLC ’18.

Krüger, Jacob et al. (2019). “Where is my feature and what is it about? a case
study on recovering feature facets”. In: Journal of Systems and Software 152,
pp. 239–253.

Kuiter, Elias et al. (2018). “Getting rid of clone-and-own: moving to a software
product line for temperature monitoring”. In: SPLC.

Liang, Liang, Zhiqiang Hu, and Xiangyun Wang (2005). “An open architecture
for medical image workstation”. In: Medical Imaging 2005: PACS and Imaging
Informatics.

Lillack, Max et al. (2019). “Intention-Based Integration of Software Variants”. In:
41st International Conference on Software Engineering. ICSE.

Linden, Frank J. van der, Klaus Schmid, and Eelco Rommes (2007). Software Prod-
uct Lines in Action: The Best Industrial Practice in Product Line Engineering.
Springer.

Linden, Frank van der (2002). “Software Product Families in Europe: The Esaps &
Café Projects”. In: IEEE Software 19.4, pp. 41–49.

Lotufo, Rafael et al. (2010). “Evolution of the Linux Kernel Variability Model”. In:
SPLC. Ed. by Jan Bosch and Jaejoon Lee. Vol. 6287. Lecture Notes in Computer
Science. Springer, pp. 136–150. ISBN: 978-3-642-15578-9.

Mahmood, Wardah et al. (2020). “Causes of Merge Conflicts: A Case Study of Elas-
ticSearch”. In: 14th International Working Conference on Variability Modelling
of Software-intensive Systems (VaMoS).

McKee, S. et al. (2017). “Software Practitioner Perspectives on Merge Conflicts and
Resolutions”. In: ICSME.

Mecklenburg, Robert (2004). Managing Projects with GNU Make: The Power of
GNU Make for Building Anything. " O’Reilly Media, Inc.".

Meinicke, Jens et al. (2017). Mastering Software Variability with FeatureIDE.
Springer.

Menezes, Gleiph Ghiotto Lima de (Dec. 2016). “On the nature of software merge
conflicts”. PhD thesis. Federal Fluminense University.

Chapter 8. Software Product Lines 297

Mohagheghi, Parastoo and Reidar Conradi (June 2008). “An Empirical Investigation
of Software Reuse Benefits in a Large Telecom Product”. In: ACM Trans. Softw.
Eng. Methodol. 17.3, 13:1–13:31. ISSN: 1049-331X. DOI: 10.1145/1363102.
1363104. URL: http://doi.acm.org/10.1145/1363102.1363104.

Mojica, Israel J. et al. (Mar. 2014). “A Large Scale Empirical Study on Software
Reuse in Mobile Apps”. In: IEEE Software 31.2, pp. 78–86.

Mukelabai, Mukelabai et al. (2018). “Tackling Combinatorial Explosion: A Study of
Industrial Needs and Practices for Analyzing Highly Configurable Systems”. In:
33rd IEEE/ACM International Conference on Automated Software Engineering
(ASE).

Nadi, Sarah et al. (2014). “Mining Configuration Constraints: Static Analyses and
Empirical Results”. In: ICSE.

– (2015). “Where do Configuration Constraints Stem From? An Extraction Ap-
proach and an Empirical Study”. In: IEEE Transactions on Software Engineering.
preprint.

Nesic, Damir et al. (2019). “Principles of Feature Modeling”. In: FSE.
Northrop, Linda M. (2010). “Introduction to Software Product Lines”. In: SPLC.
Obbink, H. et al. (2000). “COPA: a component-oriented platform architecting

method for families of software-intensive electronic products”. In: Tutorial for
SPLC.

Object Management Group (2017). Unified Modeling Language Specification 2.5.1.
https://www.omg.org/spec/UML.

Parnas, David (July 1976). “On the design and development of program families”.
In: IEEE Transactions on Software Engineering SE-2.1, pp. 1–9.

Passos, Leonardo et al. (2018). “A Study of Feature Scattering in the Linux Kernel”.
In: IEEE Transactions on Software Engineering. Preprint.

Pohjalainen, Pietu (2011). “Bottom-up Modeling for a Software Product Line: An
Experience Report on Agile Modeling of Governmental Mobile Networks”. In:
Proceedings of the 2011 15th International Software Product Line Conference.
SPLC’11.

Pohl, Klaus, Günter Böckle, and Frank J. van der Linden (2005). Software Product
Line Engineering: Foundations, Principles and Techniques. Springer.

Pohl, Klaus, Günter Böckle, and Frank van der Linden (2005). Software Product
Line Engineering. Springer Verlag.

Riebisch, Matthias (2003). “Towards a More Precise Definition of Feature Models –
Position Paper”. In: Modelling Variability for Object-Oriented Product Lines. Ed.
by Matthias Riebisch and Detlef Streitferdt James O. Coplien. BookOnDemand
Publ. Co.

Rösel, Andreas (1998). “Experiences with the Evolution of an Application Fam-
ily Architecture”. In: Proceedings of the Second International ESPRIT ARES
Workshop on Development and Evolution of Software Architectures for Product
Families.

Rubin, Julia, Krzysztof Czarnecki, and Marsha Chechik (2015). “Cloned product
variants: from ad-hoc to managed software product lines”. In: STTT 17.5, pp. 627–
646.

Russell, Stuart J and Peter Norvig (2016). Artificial intelligence: a modern approach.
Pearson Education Limited.

Schmid, Klaus (2000). “Scoping software product lines”. In: Software Product Lines.
Springer, pp. 513–532.

https://doi.org/10.1145/1363102.1363104
https://doi.org/10.1145/1363102.1363104
http://doi.acm.org/10.1145/1363102.1363104
https://www.omg.org/spec/UML

298 Andrzej Wąsowski. Thorsten Berger

Schmid, Klaus, Rick Rabiser, and Paul Grünbacher (2011a). “A Comparison of
Decision Modeling Approaches in Product Lines”. In: VAMoS.

– (2011b). “A comparison of decision modeling approaches in product lines”. In:
VaMoS, pp. 119–126.

Schobbens, P.-Y. et al. (2006). “Feature Diagrams: A Survey and a Formal Seman-
tics”. In: Proc. RE.

Sharp, David C (1998). “Reducing avionics software cost through component based
product line development”. In: 17th DASC. AIAA/IEEE/SAE. Digital Avionics
Systems Conference. Proceedings (Cat. No. 98CH36267).

She, Steven and Thorsten Berger (2010). Formal Semantics of the Kconfig Language.
Technical Note. Available at https://gsd.uwaterloo.ca/sites/default/files/kconfig_
semantics.pdf.

Sinnema, Marco and Sybren Deelstra (2007). “Classifying variability modeling
techniques”. In: Information and software technology 49.7, pp. 717–739.

Software Engineering Institute (n.d.). Catalog of Software Product Lines. http :
//www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm.

Reuse-Driven Software Processes Guidebook, Version 02.00.03 (1993). Software
Productivity Consortium Services Corporation, Technical Report SPC-92019-
CMC.

Stahl, Thomas and Markus Völter (2005). Model-Driven Software Development.
Wiley.

Stanciulescu, Stefan, Sandro Schulze, and Andrzej Wąsowski (2015). “Forked and
Integrated Variants in an Open-Source Firmware Project”. In: ICSME.

Staples, Mark and Derrick Hill (2004). “Experiences Adopting Software Product
Line Development without a Product Line Architecture”. In: APSEC.

Stoll, Pia et al. (2009). “Supporting Usability in Product Line Architectures”. In:
Proceedings of the 13th International Software Product Line Conference. SPLC
’09.

Strueber, Daniel et al. (2019). “Facing the Truth: Benchmarking the Techniques
for the Evolution of Variant-Rich Systems”. In: 23rd International Systems and
Software Product Line Conference (SPLC).

Svahnberg, Mikael and Jan Bosch (Nov. 1999). “Evolution in Software Product
Lines: Two Cases”. In: Journal of Software Maintenance 11.6, pp. 391–422.
ISSN: 1040-550X.

Takebe, Yasuaki et al. (2009). “Experiences with Software Product Line Engineering
in Product Development Oriented Organization”. In: SPLC.

Thüm, Thomas et al. (2014). “FeatureIDE: An extensible framework for feature-
oriented software development”. In: Science of Computer Programming 79,
pp. 70–85.

Tischer, Christian et al. (2011). “Experiences from a Large Scale Software Product
Line Merger in the Automotive Domain”. In: SPLC.

Verlage, Martin and Thomas Kiesgen (2005). “Five years of product line engineering
in a small company”. In: ICSE.

Ziadi, Tewfik, Loïc Hélouët, and Jean-Marc Jézéquel (2004). “Towards a UML
Profile for Software Product Lines”. In: Software Product-Family Engineering.

Zippel, Roman (2017). KConfig. Technical Documentation. Available at http://www.
kernel.org/doc/Documentation/kbuild/kconfig-language.txt.

https://gsd.uwaterloo.ca/sites/default/files/kconfig_semantics.pdf
https://gsd.uwaterloo.ca/sites/default/files/kconfig_semantics.pdf
http://www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm
http://www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm
http://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
http://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

A Class Modeling

We use class modeling as the main meta-modeling formalism in the book—
with an occasional use of functional data types and feature models, which
are other popular alternatives. In this chapter, we recall the main aspects of
class modeling.

UML (Unified Modeling Language) provides a complete set of notations
for modeling software systems. These can be used for modeling many
different aspects, including requirements, architecture, types, structure, and
behaviors.

In this book, we primarily use UML class diagrams, and only for struc-
tural modeling of the abstract syntax of a language. As such, our view of
UML is clearly restricted. We also mix-in some non-standard extensions
included in the Eclipse Modeling Framework EMF with its class-modeling
language Ecore.

A.1 Classes and Objects

Let us start with a definition of a class:

Definition A.1. A class is an abstraction that specifies attributes of a set
of concept instances (objects) and their relations to other sets of concept
instances (objects).

Importantly, in this book, a class is not a programming language concept
that can be identified in the system source code. It is not a program type
(or this is not its primary aspect). We first and foremost will be using
classes to model real-world concepts or—more precisely—domain-level
concepts. These are often much more abstract than what Java or C# classes
are. Our classes will rarely map one-to-one to implementation classes.
This big leap from implementation to a conceptual application domain is
necessary in order to obtain the productivity gains promised by domain-
specific languages and MDSE.

Both classes and objects are depicted by boxes with three compartments:
names, attributes, and operations. When visualizing models, attributes
and operations can be omitted if they are not essential. In high-level
modeling, we usually ignore the class operations. Operations are useful
when describing low-level implementation aspects (such as APIs), but they
are rarely used in DSL design—thus, you will not see them in this book. At
the same time, names and attributes are essential for us.

299

300 Andrzej Wąsowski. Thorsten Berger

Figure A.1: An object
diagram with two objects

yrCar: Car

no: String="AB 5678"
color: String="red"

myCar: Car

no: String="WN 1234"
color: String="silver"

info:generalization
Inheritance vs Generalization

You have probably realized that we prefer to use the term generalization over the, possibly more common,
inheritance. This is not without a reason. The modeling experts prefer the former term, because it
captures more precisely the meaning of the kind-of relationship in concept modeling: it states that one
concept is more general than the other, and the latter is a specialization of the former. Inheritance is a
particular implementation mechanism for generalization when this relationship has to be represented at
runtime in an interpreter or generated code (we implement generalization by inheriting attributes and
operations). This is the reason why programming language experts, who are typically also compiler
writers, would tend to prefer the term inheritance. You can safely assume that the two terms are
synonyms.

Consider the object diagram in Fig. A.1 (object diagrams are called
instance specification diagrams in newer versions of UML). It states that
there exist two car objects, each with two attributes. In order to distinguish
object diagrams from class diagrams, the object names (instance names)
are underlined and followed by a colon with the class name the object is an
instance of.

In the simplest view, classes are just types for objects. Our objects in
Fig. A.1 are of type Car:

Figure A.2: An example
class

The block above represents the class Car. The name is not underlined,
and attributes have types, not values. They also have a multiplicity constraint
(here simply “1”, which says that both attributes are mandatory for any
instance of this class). By convention, class names are capitalized, and
instance names are not.

Appendix A. Class Modeling 301

A.2 Generalization

A generalization relation (also known as inheritance) specifies that instance
sets of two classes are included:

Definition A.2. A class A generalizes class B, if each instance of B is also
an instance of A.

Figure A.3: An example
generalization hierarchy of
car engine designs

We illustrate the generalization hierarchy using a model of the design
space of car engines. In the diagram (Fig. A.3) we read that, among others,
every CombustionEngine is an Engine, and so is every ElectricEngine. A
HybridEngine is both a gas and electric engine. We sometimes say that a
generalization relation expresses the kind-of or an is-a relationship: “an
electric motor is a kind of engine.”

The diagram in Fig. A.3 contains two examples of abstract classes (for
instance CombustionEngine). An abstract class has no instances of its own.
In the diagrams, we mark abstract classes using a cursive font for the class
name.

Finally, Fig. A.3 also includes a case of multiple-inheritance: a hybrid
engine is both a gas engine and an electric motor.1 Multiple inheritance
often appears in meta-modeling applications, when a concept shares features
properties with more than one concepts, or when a concept can appear in
more than one role.

Class diagrams also allow the modeling of interfaces—this is done by
adding an interface property to a class. Note that Eclipse EMF’s class-
diagram editor puts a little interface icon next to the box label, as shown in
Fig. A.4.

1Technically, we could argue that this modeling is incorrect. In reality, a hybrid engine is not a
specialization of a gas engine and an electric motor, but a composition of both—see below for
the composition relation.

302 Andrzej Wąsowski. Thorsten Berger

Figure A.4: EMF’s syntax
for interfaces

When EMF generates code, interfaces are mapped to Java interfaces,
while classes are mapped both to classes and interfaces. The latter is a
simple pattern (a workaround, if you prefer) for Java’s lack of multiple
inheritance.

A.3 Simple Types
EMF provides simple types (for example the EString used above), which
are mapped to Java types during code generation. An attribute declaration
can be followed by a default value, as in: color : EString = "red".

Enumerations are used to capture a small finite number of discrete simple
values of an attribute, for instance a color, as shown in Fig. A.5.

Figure A.5: EMF syntax for
enumerations

Enumerations can be used as types for attributes, but cannot be the ends
of associations (explained shortly), which is reserved for classes. Fig. A.6
shows the usage of the enumeration Color as the type for the attribute color
in the abstract class Vehicle.

It is also possible to introduce new basic types by providing their Java
implementations. Details about this mechanism can be found in Budinsky
et al., 2004 (search for EDataType in the index).

Figure A.6: Using an
enumeration as an attribute

type

A.4 Associations
An association represents a relation between instances of two classes.
Note that association is qualitatively different from generalization. We

Appendix A. Class Modeling 303

use associations to model all other kinds of relations between objects than
kind-of. Associations can be bidirectional, then they have no arrows on the
ends, or uni-directional (indicated by an arrow). An example of the latter is
shown in Fig. A.7.

Figure A.7: A single
directional association (also
known as a reference)

The navigable name of the association (the name used for navigation in
transformation and constraint code) is written on the “far end.” For example,
the myCar.owner gives the object representing the owner of myCar. Note
that the owner label is on the other side of the vehicle class—the intuition
is that it shows the name that we can use in the context of Vehicle to name
the associated person object.

In the example, the reference is also decorated with a multiplicity con-
straint 1..∗, meaning that a vehicle must have at least one owner. More
than one owner is allowed in the example (for modeling co-ownership).
This also means that technically, myCar.owner returns a collection and not
a single instance.

In EMF, associations are unidirectional binary references. Unidirectional
references can only be navigated in one direction. In UML, references
can be bidirectional and n-ary. For our purpose of meta-modeling, binary
references are typically sufficient. Higher-arity references can be always
handled by creating an explicit class that will reify the association (similar
to UML association classes). But, as already said, we rarely need it in
language design.

Bidirectional references can be simulated using two unidirectional refer-
ences. EMF allows to link two unidirectional references using the EOpposite
property of the reference. In such a case, the generated code maintains
links in both directions: whenever you add a link in one direction, the link
in the other direction is updated automatically. The mechanism is a bit
complicated, and has shortcomings, so test well when you rely on it. In
particular, a reference cannot be EOpposite to itself,2 and special care might
be needed if you use references of multiplicity higher than 1.

2This sounds a bit complicated, but in fact it appears in real domains for symmetric associations
between objects of the same class. For example, consider a class Person and a unidirectional
reference marriedTo. One way to model this in EMF would be to make the reference a
bidirectional association, but this would require that it becomes an EOpposite of itself, which
is not supported.

304 Andrzej Wąsowski. Thorsten Berger

A.5 Containment (Part-Of)

Associations can be used to denote a part-of relation (in contrast to the
kind-of relation of generalization). This is denoted using a black diamond
on the owner side, as shown in Fig. A.8. In this example, we state that
each Vehicle contains four Wheels as its integral part. This means that a
Vehicle instance without four wheels cannot exist (such an instance is not
well-formed). When a Vehicle object is deallocated, the objects representing
wheels are also removed.

Figure A.8: A containment
(part-of) relation

The black-diamond symbol is the UML syntax (notation) for the part-of
associations. The black-diamond semantics is that every object in such
a relation can only have one owner—so there could not be cars sharing
wheels, and that the owned objects exist only with the owner. Finally,
objects cannot be owners of themselves, so a directed sub-graph of an
object diagram (instance), in which all the links instantiate containment
edges must be a tree (or a forest).

The black-diamond associations are interchangeably called “composi-
tions,” “aggregations,” and ”part-of relations.” Out of these names, we find
“part-of” and “containment” most intuitive, and this is why we use them in
the main text of this book.

A.6 Views on Class Models

So far it was not evident that we distinguish class models from class
diagrams. The difference is important, though, when discussing modeling
in detail. Diagrams are mere views on models, thus, a diagram might
only be showing a fragment of a model, and multiple diagrams can show
overlapping fragments. The model is usually identified as the collection of
all model elements (all classes and relationships). Tools, including Eclipse
EMF, typically show models as abstract syntax trees and allow constructing
diagrams for parts of these trees.

Two views on class models are particularly interesting: a taxonomy and
partonomy. The taxonomy view is consistent with the standard use of this
term in knowledge classification:

Definition A.3. A taxonomy of a class model is a diagram presenting
specialization-generalization relations (kind-of relations) between the classes
of this model.

Appendix A. Class Modeling 305

Fig. A.3 presents an example of a taxonomy. A generalization view is
always a directed acyclic graph containing only classes and generalization
arrows. This graph may be disconnected if we have unrelated concepts in
the model’s taxonomy.

In general knowledge classification a partonomy is a hierarchy that deals
with part–whole relationships (after Wiktionary). The use of this term in
class modeling is consistent with the general definition, as well, by relating
parts using the composition associations:

Definition A.4. A partonomy of a class model is a diagram (a view) pre-
senting only the part-of relationships between classes, so a view presenting
the composition associations and classes.

A partonomy view is always a tree (or more generally a forest if we
have classes that are not associated using composition)—this is due to
the semantics of containment which disallows sharing of subtrees of the
partonomy (no class can be a part of to disjoint containers). Most modeling
tools, including Eclipse EMF, requires a single, connected partonomy hier-
archy, thus forest partonomy are rarely seen in practice of class modeling. A
single partonomy is usually achieved by creating a root class containing (via
composition associations) all roots of otherwise disconnected partonomies.

Class diagrams share a lot of commonality with entity-relationship mod-
eling (E/R) used to specify database schema. One key difference introduced
by class diagrams was including the taxonomy and partonomy in the model.
None of these were part of the original E/R model.

Further Reading

If you have never been exposed to class diagrams, we recommend the book
of Fowler (2004), but many other books on UML would be fine, too.

An excellent resource that does not only explain UML class diagrams, but
many other types of UML diagrams as well, is https://www.uml-diagrams.
org. Its page on class diagrams3 explains class diagrams and instance
specifications. Remember that the latter are not modeled separately in
an object diagram anymore, which is deprecated, but directly in the class
diagram. We discuss this in Sect. 3.9 in the main part of the book.

Furthermore, many reference guides (a.k.a., cheat sheets) exist that
provide a brief overview on class diagrams, such as DZone’s Refcardz
at https://dzone.com/refcardz/getting-started-uml. Jordi Cabot provides an
overview on such cheat sheets at https://modeling-languages.com/best-uml-
cheatsheets-and-reference-guides.

Finally, since we use Ecore as the class-modeling language of our choice,
we also recommend directly looking at Appendix B and the list of further
reading in that appendix.

3https://www.uml-diagrams.org/class-diagrams-overview.html

https://www.uml-diagrams.org
https://www.uml-diagrams.org
https://dzone.com/refcardz/getting-started-uml
https://modeling-languages.com/best-uml-cheatsheets-and-reference-guides
https://modeling-languages.com/best-uml-cheatsheets-and-reference-guides
https://www.uml-diagrams.org/class-diagrams-overview.html

306 Andrzej Wąsowski. Thorsten Berger

Exercises
Exercise A.1. Change the model of Fig. A.3 to more properly reflect the fact that
a hybrid engine is not a refinement of a combustion engine and an electric motor,
but has both of these as parts combined.

Exercise A.2. A family consists of persons. Each person may be married to
another person. Each person may have a parent, and each parent may have
multiple children. Each person has exactly one name, exactly one age and exactly
one person number (a unique ID of type String). Each person may be enrolled in
a university. University must own one or more study programs.

a) Create a simple class model using the tree editor of Eclipse following this
description of a domain:

b) Create a valid instance of your diagram representing Bob married to Alice,
with their son Sam enrolled in the “SDT programme” of “IT University”.

c) For pedagogical reasons we recommend using the tree editor and understand-
ing the relation between the tree editor and the diagram editor in Eclipse (or
any other modeling tool you are using). This will yield useful intuitions when
we start to build abstract syntax trees of models in the book.

d) Explore different views: Create three diagrams for your model, a complete
diagram (that contains all model elements), a diagram only showing the family
relations without the enrollment aspects, and a diagram showing university
enrollment without family aspects.

Exercise A.3. Consider the following example class diagram.

This diagram is valid in the sense that we can construct its instances. Two
example instances are shown as simple instance specification diagrams to the

Appendix A. Class Modeling 307

right (a–b). Now consider the three unrelated class diagrams that follow. For each
of the diagrams decide whether it is valid (well-formed). If it is valid, draw an
example of a non-empty instance diagram. If invalid, explain why.

a) b) c)

Figure A.9

Exercise A.4. In this exercise (a mini-project, in fact) we use class modeling as
a method for system comprehension. Recall (Sect. 1.3) that using models in
software development fosters knowledge conservation and reuse by improving
the domain understanding as a key strength.

We will use the implementation of JUnit 4 framework as a case study. We
assume that you are familiar with unit testing using JUnit, which will make the
exercises easier.

To avoid excessive use of time, for this and the following three exercises (that
should be solved in order) we bound the time to be used on them. This should
give you an impression of the expected level of details. Read exercises A.4–A.6
entirely, before starting to solve this one.

Build a conceptual model of JUnit as a class model, based on available user
oriented documentation. Start with reading the user oriented documentation of
JUnit: http://junit.sourceforge.net/doc/cookbook/cookbook.htm or https://github.com/
junit-team/junit/wiki, but do ignore the javadoc for the time being. The high-level
documentation will give names of the key concepts, which will likely translate
to a handful of class names and relations between them. These concepts do not
necessarily correspond to low level implementation classes precisely.

Identify key concepts, objects, subsystems and record them as classes, associa-
tions, generalizations, and aggregations. For example when you find the concept
of Test, create the corresponding class. Then you encounter a concept of a Suite
that aggregates multiple tests. You can create a Suite class, and make it own one
or more tests using composition.

Record cardinalities precisely in your model. If you, at any point, encounter
constraints, dependencies between concepts, which cannot be expressed using
class diagrams, then note them down in English, either in a separate file, or in an
annotation. They will be input for exercises on constraints.

http://junit.sourceforge.net/doc/cookbook/cookbook.htm
https://github.com/junit-team/junit/wiki
https://github.com/junit-team/junit/wiki

308 Andrzej Wąsowski. Thorsten Berger

All modeling should be done using a modeling tool (not on paper, not using
a drawing tool). An indicative model size is circa 12 classes. Estimated time:
approximately 1 hour.

Obviously, this small project can be run on other frameworks than JUnit, be it
other implementations of unit testing frameworks, or any other software projects.

Exercise A.5. In continuation of the above exercise, perform a cursory analysis of
the developera oriented documentation of JUnit to refine your model. Developer
documentation for Junit is essentially only javadoc, available at: http://junit.org/
javadoc/latest/. Start with concepts that seem to be already connected to elements
in your model. When you study them, refine the model appropriately. Do not
mean converting your model to an implementation level model, just codifying
classes in JUnit’s source code. Rather try adding further abstract concepts and
relations to your existing high-level model.

Do not grow your model too much. Focus on understanding whether the
selection of classes, associations and generalizations is correct (so whether the
lower level documentation confirms your initial sketch from the previous point).
Also try to understand and record any constraints (including cardinalities) that
you might have spotted.

The objective is not to create a diagram of implementation classes. So there
does not have to be (and should not be!) a one-to-one mapping between your
model and the classes in the JUnit implementation. We only look at lower level
artifacts to understand details of the system that were too hard to understand from
user documentation. Estimated time: 1–2 hours.

Exercise A.6. In this exercise, we delve into the JUnit code. Hopefully, after
the first two steps, reading the JUnit code is relatively easier. JUnit is a small
and well implemented framework, done by some of the best programmers out
there. Whenever you get frustrated, remember that it is by orders of magnitude
better experience to read it than reading any code you might need to inspect or
understand in your job.

Obtain the source code from JUnit GitHub repository (clone https://github.com/
junit-team/junit.git) For pedagogical reasons, it is better to work with a stable
release, than with a snapshot code that may be buggy. Switch to a stable released
branch after checking out the code.

It is good for the project to be set up, so that you can compile it. Then you can
use IDE searching, navigation support, tool tips, etc, to orientate yourself much
faster in the implementation. You can get a sanity check of the build environment
by running JUnit’s own unit tests (about 200 would likely fail out of 2000+, don’t
worry about that).

While studying the code, record new information you as learn it by enriching
and revising the class model, and your list of constraints. Again it is not our point
to reflect implementation classes one-to-one in your high-level model; rather to
add information and to correct what was misunderstood.

aWe mean a contributor to JUnit project, and not developers writing tests using JUnit in other
projects.

http://junit.org/javadoc/latest/
http://junit.org/javadoc/latest/
https://github.com/junit-team/junit.git
https://github.com/junit-team/junit.git

Appendix A. Class Modeling 309

Task size guide: You will end up with ca. 25-30 classes, including those added
in the two prior exercises. Estimated time: about 2–3 hours, assuming that you are
reasonably fluent with the modeling tool, can read Java code and documentation,
and have used Git before.

Exercise A.7. After completing the three exercises above, reflect how modeling
has supported the process of understanding the implementation of an unfamiliar
system. Has it made the investigation more systematic? Has it made the compre-
hension easier? Have you ever referred to your models when trying to understand
something in later phases? If you have worked in the group: did the models, and
ability to draw support group discussions? Would the created model help, if you
needed to explain what you understood to a colleague?

310 Andrzej Wąsowski. Thorsten Berger

B Using the Eclipse Modeling Framework

B.1 Installing Eclipse Modeling Tools

Install a new copy of Eclipse by following the instructions below. Multiple
instances of Eclipse in different versions can happily co-exist in your system.
We recommend that you do not customize any existing installations of
Eclipse on your PC. You would likely break the setup for your existing
projects (if you already use Eclipse), and likely the resulting installation
would be slightly incomplete, leading to incompatibilities (you do not want
to waste time on them).

One way of handling multiple Eclipse installations is to have a global
folder where you store all these installations, and then specific folders for
each installation by choosing an appropriate name for it (e.g., a name that
contains the year and release of Eclipse). In this folder, you extract the
Eclipse archive and create a workspace folder where you should keep all
your projects related to this installation (avoid opening the same workspace
using different versions of Eclipse).

1. Make sure that at least Java JDK 8 (recommended since the release of
Eclipse Neon2) is installed on your computer.

2. Download Eclipse Modeling Tools from https://www.eclipse.org/downloads/
eclipse-packages.

3. Copy the downloaded ZIP archive to the folder you created for this
Eclipse installation and decompress it.

4. Run Eclipse by double clicking the Eclipse icon in the newly created
folder (or invoking the eclipse executable)

B.2 Create an EMF Project

Class diagramming in the Eclipse Modeling Framework (EMF) can be done
using the Ecore language, which is a simple subset of UML class diagrams
(cf. Sect. 3.3). We shall now accustom ourselves with the language and its
associated tools. We will use our simple mind-map language from Sect. 3.7
as a running example.

Our objective is to show how to create a simple class model with EMF.
In Eclipse, every file belongs to a project. Create a new project called
mdsebook.mindmap via File→ New→ Project→ Eclipse Modeling Frame-
work→ Empty EMF Project. See Fig. B.1.

311

https://www.eclipse.org/downloads/eclipse-packages
https://www.eclipse.org/downloads/eclipse-packages

312 Andrzej Wąsowski. Thorsten Berger

Figure B.1: Creating an
EMF project

B.3 Create an Ecore Model (Meta-Model)

EMF distinguishes between model files (abstract syntax or the actual data)
and diagram files (concrete syntax or the visualization of data). To create
a model file select the model folder, right-click on it and select New →
Other→ Eclipse Modeling Framework→ Ecore Model. Name the model
MindMap.ecore. Ecore is the language in which we will be doing the class
modeling, so Mindmap.ecore represents the meta-model of our language.
Such Ecore models are stored in files with the .ecore extension.

B.4 Create an Ecore Diagram for the Ecore Model

In order to create a diagram file, right-click on the created Ecore file and
select Initialize Ecore Diagram, then choose Entities in a Class Diagram and
give the diagram a name (such as the default class diagram). Both the
model and the diagram are initially empty. You should have two files in the
model folder: MindMap.ecore and MindMap.aird. Open the former first.

Figure B.2: The model tree
editor with the properties

view in the bottom.

Appendix B. Using the Eclipse Modeling Framework 313

This will launch the Ecore tree editor, a generic editor that shows Ecore
models as trees, as shown in Fig. B.2 (where the three is still empty, only
the root node is shown).

If not yet opened, open the Properties view via the menu Window→ Show
View→ Other . . . → General→ Properties. This view allows you to modify
the attributes of your model elements. Explore the available properties. At
this point it is also useful to mention the Quick Access feature of Eclipse.
Almost any deeply nested property or a menu item can be accessed quickly,
if you remember its name. Press Ctrl+3 and type "properties", then select
from the menu. This way a lot of complex operations can be speeded up.

Let us rename the unnamed package in the model editor (orange line
in Fig. B.2). Let it be called MindMapPackage. This can be done in its
Properties view, which is reachable, for instance, from the context menu in
the model editor, or by double clicking on the node, if you closed it.

B.5 Class Modeling using the Ecore Diagram Editor

Classes. In order to create a new class in the model editor, select New Child
from the context menu of the MindMapPackage node (named so above).
Then select Eclass from the list of choices. A new node is created. You can
name it in the Properties view. Please name it Model.

Observe that a class does not automatically appear in the diagram editor
(see Fig. B.4). Note: The diagram editor can be opened by double-clicking
the ‘class diagram’ entry in the hierarchy under the WebApp.aird file in the
Model Explorer view, as shown in Fig. B.3. When the diagram is still empty,
double click on “Double-click to initialize using the EPackage content.” In
our case, this will add the class Model created above.

Figure B.3: Opening the
diagram editor for the class
diagram created for our
Ecore model

In the diagram editor, we create classes using the tool palette on the
right side. Select Class and click anywhere on the canvas to create a class.
Then rename it. Create classes for MindMap, Topic, and NamedElement
(see Fig. B.5. Make NamedElement an abstract class by double-clicking it,
which opens the properties, and selecting the “Abstract” checkbox. Also
give NamedElement an attribute with the name name and the type EString
(simply by hovering over the class, selecting the Attribute icon, and then
just typing “name: EString” and pushing enter, which adds the attribute.

314 Andrzej Wąsowski. Thorsten Berger

Figure B.4: View of the
diagram editor

Figure B.5: An Ecore
diagram with four classes

Observe that classes added to the diagram appear in the model (please
check in the other editor).1 A diagram is a view on the model, so every
element of the diagram must exist in the model, but not vice-versa. Recall
the class Model which we had created in the model and then added to the
diagram by double-clicking “Double-click to initialize using the EPackage
content.” If we had not done so, we could have added it to the diagram by
choosing Existing Elements / Add from the palette.

Containment and Inheritance. Two kinds of relations are of special impor-
tance in class diagrams: generalization (inheritance, a kind-of relation) and

1Since different views are synchronized via files, you will only see the new classes if you save
the diagram in the diagram editor. Always save the model (respectively the diagram) after
changes when switching editors.

Appendix B. Using the Eclipse Modeling Framework 315

containment (a part-of relation). In the Ecore diagram editor, generalization
is available from Relation/SuperType. Containment is available from the
Relation/Composition palette. Add these two kinds of relations to your
diagram: a MindMap is a part of a Model, Topic is a part of MindMap, Topic
is also a part of itself (to realize sub topics), and both MindMap and Topic are
a kind of NamedElement (i.e., these classes have a name attribute. Compare
the result to Fig. B.6. Save the diagram, and observe the impact in the model
editor. Observe that the compositions mindmap and topic are just a regular
reference in the model, but their Containment property (see properties view)
is set to true.

Figure B.6: Composition
and generalization. A black
diamond is placed on the
container side; an arrowhead
next to the more general
class.

Other Elements. Experiment with adding attributes and references to your
classes both in the diagram editor and in the model editor. Add at least the
attributes author and description to the class MindMap and make sure they are
of type EString. You can also define default values for attributes. We show
an example of the default value “1” for an attribute editorVersion of the class
Model in Fig. B.7. Try visualizing elements added in the model/tree editor
in the class diagram, and locate elements added to the diagram in the model
editor.

Figure B.7: A default value
defined for the attribute
editorVersion

Multiple Diagrams. Since diagrams are views on models, it is possible
to create multiple diagrams for the same model. Try creating another

316 Andrzej Wąsowski. Thorsten Berger

diagram for your model, that only contains the classes MindMap and Topic.
This can be done from the context menu of the MindMapPackage in the
Project Explorer (or in the Model Explorer). Select New Representation
and MindMapPackage class diagram. Existing classes can be added to this
diagram as described above (Existing Elements / Add). The ability to create
multiple diagrams for the same model is very useful when models become
large. You can, for instance, create one view (diagram) showing the main
part of your DSL design, and another one showing only types, or only the
expression sub-language. It is quite common practice to create one diagram
that only shows the generalization hierarchy (the taxonomy of concepts in
the model), and the other one that shows the containment hierarchy (the
partonomy of concepts in the model).

Class Duplication. A class with a given name can only exist once in each
package (as each package defines a namespace). Try adding another class
named MindMap to the model in the tree editor, then choose validate from
the context menu of the package MindMapPackage (not just of the newly
created class). You will receive an error message about a duplicate classifier.
The same will happen if you try to add an existing class to a diagram in the
diagram editor, using Classifier/Class, as opposed to Existing Elements/Add.
This is equivalent to creating a duplicate class in the model editor. Please
get rid of duplicate classes by renaming or deleting them (see below about
deletion).

Let us also use this opportunity to fix the other two errors in the validation
results of MindMapPackage. Set the property namespace prefix to, for in-
stance, mdsebook.mindmap and the namespace URI to http://www.mdsebook.org/mdsebook.fsm.
The latter key will be used to load the models in your programs. It is
important to always give different namespace URIs to your models. The
framework gets confused and produces inexplicable errors when you try to
load a model using a URI, and several model files in the workspace use the
same one.

Deleting and Hiding. Try to delete an element in the model editor. It
disappears from all diagrams of the same model (after saving). In the
diagram editor, you have a choice:

• Hide simply hides the element (find it under Show/Hide in the context
menu of the element in the diagram editor). The element still exists both
in the model and in the diagram. You can make it visible again in the
diagram by invoking Show/Hide menu.

• Delete from Diagram under Edit in the context menu, removes the element
from the Diagram. Please test that after such removal the element remains
in the model, but disappears from the diagram. It remains in all the other
diagrams of the same model, which contained it before deletion.

• Delete from Model in the same context menu, permanently removes the
element from the model, and consequently from all its diagrams (please
verify).

Appendix B. Using the Eclipse Modeling Framework 317

B.6 Edit Ecore Models Using a Textual Syntax

It can be cumbersome to use the graphical Ecore editors, that is, the Ecore
tree editor (Fig. B.2) or the Ecore diagram editor (e.g., Fig. B.4). Instead,
there are Ecore editors that provide a textual syntax for Ecore that can be
edited. Figure B.8 shows the OCLinEcore editor, whose primary purpose
is to add OCL constraints into an Ecore model. However, it can also be
used to solely edit the Ecore model through the textual syntax. The editor
can be started by right-clicking the Ecore file and selecting Open With→
OCLinEcore Editor. We found this editor a bit unstable, however. Using the
editor might require installing additional OCL plugins into Eclipse, search
for ’OCL’ in the Eclipse Marketplace.

Figure B.8: OCLinEcore
editor, used to edit Ecore
files using a textual syntax

B.7 Create a Dynamic Instance

So far we have learned how to create class models and diagrams in Ecore.
Next we will create an instance of this class diagram. Open the model
MindMap.ecore in the package explorer or in the model editor. Select
Create Dynamic Instance from the context menu of the Model class. In the
file dialog, choose MindMapModel.xmi as the file name, since Ecore model
instances (more precisely, in abstract syntax) are typically saved in the XMI
format. A new tree editor is opened, containing a node of the instance tree
(first line) and a reference to the Ecore model (second line).

Instances of class diagrams are object diagrams. If you open the first
node, you will see that this diagram already contains one object of type
Model. Add two child nodes to this node, both of type MindMap. You
can give them names by filling in their name attribute in the properties
view. Create three topics for the first mindmap. Compare to Fig. B.9. A
duplication of types is possible, now. Obviously it is OK to have two

318 Andrzej Wąsowski. Thorsten Berger

mindmap objects in the model (while it is illegal to have two MindMap
classes in the model). Note that changes to the instance model have no
effect on the Ecore models and diagrams. This is because the creation of
instances (data) does not change the types (models).

Figure B.9: Create Dynamic
Instance

B.8 Generate Language Infrastructure

Instead of creating a dynamic instance, you can also generate the language
infrastructure (Model, Edit, and Editor Code) and then launch an editor to
create an instance. The generation of code is controlled by a so-called gen-
model, which configures the code generator. So, after you create the eCore
model, you need to create a genmodel. You typically put the genmodel into
the same folder as the Ecore model (e.g., into model/). Right-click on teh
folder to open the context menu and then select New→ Other→ Eclipse
Modeling Framework→ EMF Generator Model. You can give it the same
filename as the Ecore model, but with the extension .genmodel. Then select
Ecore model as the model importer, and then select the respective Ecore file
for which (usally via Browse Workspace) you want to generate code (here,
MindMap.ecore). Then select Finish (the root package MindMapLanguage
should be selected by default in this window).

Generate the editor by opening the genmodel file. On the root node,
choose Generate All from the context menu. This will, among others, create
a project called mdsebook.mindmap.editor. Launch the editor by choosing
Run-As→ Eclipse Application from the context menu of this editor project.
Usually, some validation errors pop up, which you can ignore. This will
launch an Eclipse instance that has quite many plugins (you could remove
some not needed plugins in the launch configuration), but especially the
generated editor plugins.

In the launched Eclipse instance, create a new project (choose just Project
as the project type). In the project, create a new mindmap model by

Appendix B. Using the Eclipse Modeling Framework 319

choosing, from the project’s context menu, New→ Other, and there select
MindMapLanguage Model. In the following wizard, when asked about the
Model Object, choose Model.

In the editor, you can now create an example mindmap. It is the same tree
editor that launches when you edit a dynamic instance (see Appendix B.7
above). As an exercise, create at least seven topics, some of which should
be nested. Use the Properties view (on any node, choose Show Properties
View from the context menu) to set properties of each node. Recall that a
node represents an instance of a class, a.k.a., object.

Further Reading

Whole books were written about Eclipse EMF. To understand EMF in its
whole richness, read into the books of Steinberg et al. (2009), Budinsky
et al. (2004) or Moore et al. (2004).

Lars Vogel also covers Eclipse EMF on his website http://www.vogella.de.
A free tutorial on it for the current release of Eclipse can usually be found
at http://www.vogella.de/articles/EclipseEMF/article.html.

http://www.vogella.de
http://www.vogella.de/articles/EclipseEMF/article.html

320 Andrzej Wąsowski. Thorsten Berger

C Xtext in a Nutshell

C.1 Syntax Overview

We will now explain the syntax definition using Xtext as an example, so
that you can define concrete syntax yourself. We will rewrite the default
grammar, generated by Xtext, into a simpler, more human-friendly one.
A hands-on guide for using Xtext in Eclipse, with instructions on how to
exactly generate the infrastructure and to run the generated editor is given
in Appendix C.

The XText specification language is a variation of the familiar Extended
Backus-Naur Form (EBNF) notation for context free grammars. EBNF is
used by most parser generators, and it is included in curriculum of most
compiler courses.

We shall now discuss the main syntactic elements of the Xtext lan-
guage, by presenting a simple grammar for an artificial trip language,
whose meta-model is shown in Fig. C.1. The grammar specification starts
with the name (in the same format as fully qualified Class name in Java):
grammar org.xtext.example.mydsl.MyDsl.

In order to enable reuse in language definition, Xtext allows importing
other grammars. In our example above, we have included the grammar that
describes standard terminals in a typical programming language:

grammar org.xtext.example.mydsl.MyDsl with org.eclipse.xtext.common.Terminals

Then we import the meta-models used as the abstract syntax:
import "http://URI.declared.in.the/metamodel"
import "http://www.eclipse.org/emf/2002/Ecore" as ecore
The first model imported is the model presented in Figure C.1. We also

import Ecore itself, in order to be able to use its types, for instance EString.
Note that the elements of trip become available in the default name space
(no as clause). So later in the grammar, types like Person are referred to
directly. At the same time the Ecore types are prefixed by the name space
ecore. Double colon is used as the name space prefix operator.

The first symbol used in the grammar specification (the left hand side of
the first production) is the start symbol of the grammar. Here: TripModel.
The returns construct allows to specify the type representing a nonter-
minal in the abstract syntax. The default type has the same name as the
nonterminal, so most of the returns clauses in the generated grammar are
redundant.

321

322 Andrzej Wąsowski. Thorsten Berger

Figure C.1: Abstract syntax
(the meta-model) of the trip

language

Terminals are simply introduced as string literals. For example ’Car’
and the braces in the following rule:

Car: ’Car’ name=EString ’{’ ’nrOfSeats’ nrOfSeats=EInt ’}’;

A value resulting from parsing a nonterminal can be stored directly in
a property of the current abstract syntax object. For example, the above
production says that an object of type Car will be constructed upon its
successful application. The name of the car (Car.getName() in Java) will
be initialized with the value of a string directly following the first keyword.
Similarly the number of seats will be initialized to an integer value following
slightly later. In general a property of any time (including class types) can
be assigned with an object constructed by invoked productions.

In the following rule we see how elements parsed can be used to populate
collections:

Person returns Person:
’Person’ name=EString
’{’

(’trips’ ’(’ trips+=[Trip|EString] ("," trips+=[Trip|EString])* ’)’)?
’}’;

If a property of an abstract syntax object is a collection, we can add a
value to the collection (as opposed to replacing the collection) using the
+= operator instead of assignment. This happens for both vehicles and
elements above. There is no null pointer error, since the collections are
initialized to be empty upon object creation (by EMF).

The braced type name ({TripModel}) enforces creating an instance of a
given type. This is useful if we are parsing a concept that is represented by
an abstract type with several possible implementations. For example, pars-
ing named elements, could be more concisely written without introducing
nonterminals for Cars and Persons as:
1 NamedElement returns NamedElement:
2 Trip
3 | Car
4 | TripModel
5 | Van
6 | {Person} ’Person’ name=EString ’{’
7 (’trips’ ’(’ trips+=[Trip|EString]
8 ("," trips+=[Trip|EString])* ’)’)?
9 ’}’;

Appendix C. Xtext in a Nutshell 323

The use of this construct in this example is redundant. It is only there
because the grammar is automatically generated and needs to also cater for
other complex meta-models.

Remaining syntax: alternatives (|), repetition (+,*), optionality (?) is
familiar from most regular expression dialects, and the meaning is as
expected.

A crucial ability of Xtext is resolving references. The syntax for a
cross-reference is [TypeName|RuleCall], where RuleCall defaults to ID if
omitted. The parser only parses the name of the cross-referenced element
using the ID rule and stores it internally. Later on, the linker establishes the
cross-reference using the name, the defined cross-reference’s type (Entity
in this case) and the defined scoping rules. For example:
1 Person: ’Person’ name=EString ’\{’
2 (’trips’ ’(’ trips+=[Trip|EString]
3 ("," trips+=[Trip|EString])* ’)’)?
4 ’\}’;

There is much more to Xtext than we present, but this is sufficient for
creating simple languages. Among other elements, of the highest interest
are probably customizable scoping semantics (what names are visible in
what scopes), and fully qualified name support for references across name
spaces/scopes. These are described in the Xtext documentation.

Finally, we present another version of the grammar for the same language
Trip that leads to a much simpler syntax:

It takes about minutes, not days, to rewrite the default generated syntax
specification to this one, including generating a new Xtext-based editor for
models. An example model in this syntax looks as follows:
1 person Andrzej
2 person Helge
3 person Thorsten
4 person Joachim
5

6 car VWPolo with 4 seats
7 car Trabant with 4 seats
8

9 trip MDSETrip
10 car VWPolo
11 passengers Helge, Andrzej, Thorsten, Joachim
12 driver Joachim

324 Andrzej Wąsowski. Thorsten Berger

Since Xtext registers suitable handlers, if you insist that Eclipse should
open a .trip file in an ecore-like model editor, it will automatically involve
the parser and open the editor, just as if the mode was stored in an xmi file.

Finally, C-like comments (both block comments, and line comments) are
automatically supported in languages built with Xtext.

C.2 Creating DSLs with Xtext

Xtext is a popular language workbench for Eclipse. It supports the design
and development of textual languages. The project’s documentation pro-
vides the following concise characterization: “Xtext provides you with a set
of domain-specific languages and modern APIs to describe the different
aspects of your programming language. Based on that information it
gives you a full implementation of that language running on the JVM. The
compiler components of your language are independent of Eclipse or OSGi
and can be used in any Java environment. They include such things as the
parser, the type-safe abstract syntax tree (AST), the serializer and code
formatter, the scoping framework and the linking, compiler checks and
validation and last but not least a code generator or interpreter. These
runtime components integrate with and are based on the Eclipse Modeling
Framework (EMF), which effectively allows you to use Xtext together with
other EMF frameworks and tools (...). In addition to this nice runtime
architecture, you will get a full-blown Eclipse IDE specifically tailored for
your language.” (XText online documentation)

We give a brief guide to Xtext by showing how to automatically derive
a concrete textual syntax for one of the examples used before in this
book. Xtext supports both the grammar-first and the meta-model first
ways of designing DSLs (see box “Grammar-First or Model-First?” in
Sect. 3.6). In the former case, it automatically generates the meta-model
from the grammar, while in the latter case, it automatically generates a
crude grammar from a meta-model. We use the Ecore model of Fig. 3.1 as
the meta-model for this guide (see page 58).

We follow these steps:

1. Create the .ecore file with the meta-model. Ensure that the meta-model
has a single partonomy. Using nested packages is discouraged. Use one
top-level package. Add names to as many model elements as possible,
of course, if it makes sense. The name property is used with default
editors and for default name/reference resolution. Also ensure that the
model has a unique URI in the workspace (otherwise the framework
will have difficulty identifying it).

2. Create the default generator model for the fsm.ecore file (File / New /
Other ... / EMF Generator Model).

3. Generate the model code from this new genmodel (context menu of the
fsm in the .genmodel editor)

Appendix C. Xtext in a Nutshell 325

4. Add the Xtext nature to the project containing your fsm.ecore meta-
model (context menu of the project folder / Configure / Convert to Xtext
Project).
Otherwise, the import of the meta-model via the grammar’s (fsm.xtext)
import statement will not work (line 4 in Fig. C.2). An alternative to this
conversion is to use “platform:/resource/mdsebook.fsm/model/fsm.ecore”
as the import string in the grammar (fsm.xtext), instead of the meta-
model URI; which causes a warning, however.

5. Create a new Xtext project from existing ecore models (using a dedicated
Project creation wizard in Eclipse). Choose ecore.genmodel and the
Model class as the root element (in the “Entry rule” dropdown menu).
Choose .fsm as the file extension for this language.

6. A new project is created, and the default grammar specification for your
language generated and opened in a text editor (the fsm.xtext file).
This generated (and clumsy) syntax is shown in Fig. C.2.

7. Generate Xtext artifacts (in the grammar editor use the context menu
command: Run As -> Generate Xtext Artifacts). Several projects are
created.

8. Launch the main Xtext project as an Eclipse application (’Run as’).
A new instance of Eclipse should start. Create a new project and
a file with the .fsm extension, to open your newly generated editor.
Experiment with syntax highlighting, code completion, name resolution,
and interactive error reporting.

Fig. C.3 shows a screenshot of the running editor generated by Xtext.
The terminals of the above grammar specification have been directly turned
into keywords in the editor. The strings are referring by name to other
objects (so the two occurrences of "initial" are actually linked in the
constructed AST).

The model in Fig. C.3 is correct. However, if it contained static syntactic
errors (like dangling references to states, or syntax errors), they would
be highlighted in the editor, and listed in the Problem View of the Eclipe
Workbench. The editor not only parses the model as you type, but also
performs static validation of references. It also does type checking, and can
be integrated with other static semantics constraints.

The newest versions of the Xtext framework can also generate editors
as plugins for JetBrain’s IntelliJ, and web-based editors (JavaScript-based)
from the very same input specifications. These editors also produce in-
stances conforming to the same Ecore meta-model. Moreover, Xtext gener-
ates build setups for Maven and Gradle, to allow automatically building the
projects outside Eclipse.
1 \textbf{enum} SimpleTypeEnum:
2 BOOLEAN=’boolean’ | OBJECT=’Object’ | OBJECT_ARRAY=’Object[]’ |
3 DOUBLE="double" | LONG="long" | BYTE_ARRAY="byte[]" |
4 SHORT = "short" | INT ="int" | FLOAT = "float";
1 Exp \textbf{returns} Exp:
2 Term (\{BOp.lexpr=\textbf{current}\} operator=’+’ rexpr=Exp)*;

326 Andrzej Wąsowski. Thorsten Berger

Figure C.2: The concrete
syntax definition

automatically derived from
the FSM meta-model of

Fig. 3.1.

1 grammar org.xtext.example.mydsl1.MyDsl
2 with org.eclipse.xtext.common.Terminals
3

4 import "http://www.mdsebook.org/mdsebook.fsm"
5 import "http://www.eclipse.org/emf/2002/Ecore" as ecore
6

7 Model returns Model:
8 {Model}
9 ’Model’

10 name=EString
11 ’{’
12 (’machines’ ’{’ machines+=FiniteStateMachine (","
13 machines+=FiniteStateMachine)* ’}’)?
14 ’}’;
15

16 EString returns ecore::EString:
17 STRING | ID;
18

19 FiniteStateMachine returns FiniteStateMachine:
20 ’FiniteStateMachine’
21 name=EString
22 ’{’
23 ’initial’ initial=[State|EString]
24 ’states’ ’{’ states+=State ("," states+=State)* ’}’
25 ’}’;
26

27 State returns State:
28 {State}
29 ’State’
30 name=EString
31 ’{’
32 (’leavingTransitions’ ’{’
33 leavingTransitions+=Transition
34 ("," leavingTransitions+=Transition)* ’}’)?
35 ’}’;
36

37 Transition returns Transition:
38 ’Transition’
39 ’{’
40 ’input’ input=EString
41 (’output’ output=EString)?
42 ’target’ target=[State|EString]
43 ’}’;

Appendix C. Xtext in a Nutshell 327

Figure C.3: The generated
editor with default concrete
syntax of Fig. C.2. The
bottom left pane shows a
sketchy abstract syntax tree
for the model ni the right
pane.

	Preface
	Using Modeling Languages
	Why Modeling?
	Model-Driven Software Engineering
	Model-Driven Software Engineering in Industry
	Scope and Structure of the Book
	References

	Building Modeling Languages
	The Need for Domain-Specific Languages
	Domain-Specific Languages
	What Is a Language Built Of?
	Building a Language
	Testing Language Implementations
	References

	Domain Analysis and Abstract Syntax
	What is Meta-Modeling?
	Domain Analysis for Meta-Modeling
	Meta-Modeling with Class Diagrams
	Guidelines for Meta-Modeling with Class Diagrams
	Meta-Modeling with Algebraic Data Types
	Language-Independent Meta-Modeling Guidelines
	Case Study: Mind Maps
	Quality Assurance and Testing for Meta-Models
	The Meta-Modeling Hierarchy
	A Sneak at XML
	References

	Concrete Syntax
	Concrete and Abstract Syntax
	Defining Concrete Syntax
	How to Actually Write a Grammar in Practice?
	Parsing and Tools
	Guidelines for Specifying Concrete Syntax
	Quality Assurance and Testing for Grammars
	Meta-hierarchy for Grammars
	References

	Static Semantics
	Why Static Semantics?
	Static Semantics with First-Order Structural Constraints
	Writing Constraints in GPLs
	Specialized Constraint Languages for Modeling
	Guidelines for Writing Constraints
	Quality Assurance and Testing for Static Semantics
	Static Semantics in the Language Conformance Hierarchy
	References

	Static Semantics with Type Systems
	Abstract Syntax
	The Language of Types
	Type Hierarchy
	Climbing the Type Hierarchy to Merge Compatible Types
	Type Checking Algorithm for Prpro Expressions
	Type Checking Prpro Models
	Quality Assurance and Testing Type Checkers
	Types in the Language Conformance Hierarchy
	References

	Design Patterns and Practices for Concrete Syntax
	Placeholder

	Software Product Lines
	The Need for Software Variants
	Case Study: The Linux Kernel
	Software Product Line Engineering
	Software Product Lines in Practice
	Variability Modeling
	The Process of Feature Modeling
	Spectrum of Meta-Modeling
	Case Study: A Fire Alarm System
	References

	Class Modeling
	Classes and Objects
	Generalization
	Simple Types
	Associations
	Containment (Part-Of)
	Views on Class Models

	Using the Eclipse Modeling Framework
	Installing Eclipse Modeling Tools
	Create an EMF Project
	Create an Ecore Model (Meta-Model)
	Create an Ecore Diagram for the Ecore Model
	Class Modeling using the Ecore Diagram Editor
	Edit Ecore Models Using a Textual Syntax
	Create a Dynamic Instance
	Generate Language Infrastructure

	Xtext in a Nutshell
	Syntax Overview
	Creating DSLs with Xtext

