Solutions to examination in algebra : MMG500/MVE 150, 2019-08-21.

	+	0	1	x	$x+1$	\times	0	1	x	$x+1$
0	0	1	x	$x+1$	0	0	0	0	0	
1.	1	0	$x+1$	x	1	0	1	x	$x+1$	
	x	x	$x+1$	0	1	x	0	x	0	$x+1$
$x+1$	$x+1$	x	1	0	$x+1$	0	$x+1$	$x+1$	0	

where all polynomials $p(x)$ should be interpreted as the $\operatorname{coset} p(x)+\left(x^{2}+1\right)$ in $\mathbf{Z}_{2}[x] /\left(x^{2}+1\right)$
2. There are two trivial subgroups $\{([0],[0])\}$ and $\mathbf{Z}_{2} \times \mathbf{Z}_{4}$, three cyclic subgroups of order $2:\langle([0],[2])\rangle,\langle([1],[0])\rangle$, and <([1], [2])>. one non-cyclic subgroup $\mathbf{Z}_{2} \times<([2])>$ of order 4 given by the elements ([0], [0]), ([0], [2]), ([1], [0]) and ([1], [2]).
and two cyclic subgroups of order 4 :
$\langle([0],[1])\rangle=\langle([0],[3])\rangle$ and $\langle([1],[1])\rangle=\langle([1],[3])\rangle$.
3. If we represent the points on the unit circle by complex number $\mathrm{e}^{i \varphi}=\cos \varphi+i \sin \varphi, \varphi \in \mathbf{R} / 2 \pi \mathbf{Z}$, then a rotation on S^{1} will send $\mathrm{e}^{i \varphi}$ to $\left.\mathrm{e}^{i(\varphi+\alpha}\right)$ for some $\alpha \in \mathbf{R} / 2 \pi \mathbf{Z}$. The composition $\left.\mathrm{e}^{i \varphi} \rightarrow \mathrm{e}^{i(\varphi+\alpha)} \rightarrow \mathrm{e}^{i(\varphi+\alpha+\beta}\right)$ of two such rotations correspond to the sum $\alpha+\beta$ in $\mathbf{R} / 2 \pi \mathbf{Z}$ such that G is isomorphic to the additive group $A=\mathbf{R} / 2 \pi \mathbf{Z}$. But any coset $\alpha \in \mathbf{R} / 2 \pi \mathbf{Z}$ with $n \alpha=0$ in $\mathbf{R} / 2 \pi \mathbf{Z}$ can be represented by exactly one of the real numbers $\frac{k}{n} 2 \pi$ for some $k \in\{0, \ldots, n-1\}$ and $\frac{k}{n} 2 \pi+2 \pi \mathbf{Z}$ is of order n in $\mathbf{R} / 2 \pi \mathbf{Z}$ if and only if $(k, n)=1$. If $n=10^{6}$, then $(k, n)=1$ if and only $k \equiv 1,3,7$ or $9(\bmod 10)$. There are thus 4×10^{5} elements of order 10^{6} in $\mathbf{R} / 2 \pi \mathbf{Z}$ and in G.

4a) Let $a+b \varepsilon$ and $c+d \varepsilon$ be elements to D. Then,

$$
\begin{aligned}
& (a+b \varepsilon)+(c+d \varepsilon)=(a+c)+(b+d) \varepsilon \in D \\
& (a+b \varepsilon)-(c+d \varepsilon)=(a-c)+(b-d) \varepsilon \in D \text { and } \\
& (a+b \varepsilon)(c+d \varepsilon)=a c+(a d+b c) \varepsilon+b d \varepsilon^{2}=a c-b d+(a d+b c-b d) \varepsilon \in D
\end{aligned}
$$

Hence R is a subring of \mathbf{C} by the subring criterion.

4b) There are two conditions for a function $\delta: D \backslash\{0\} \rightarrow \mathbf{N}$ to be Euclidean.
To verify these, let w and $z=a+b \varepsilon \in D \backslash\{0\}$. Then $\delta(z) \geq 1$ as $\delta(z)=a^{2}-a b+b^{2} \in \mathbf{Z}$ and $\delta(z)=|z|^{2}>0$. We have therefore that
(i) $\delta(w z)=|w z|^{2}=|w|^{2}|z|^{2}=\delta(w) \delta(z) \geq \delta(w)$

To prove the second property of Euclidean functions, we use that the fact the elements in D divide the complex plane into equilateral triangles with side 1 . We may therefore approximate $w / z \in \mathbf{C}$ by an element $q \in D$ with $|w / z-q|<1$. For $r:=w-q z$ we have hence that
(ii) $\delta(r)=|w-q z|^{2}=|w / z-q|^{2}|z|^{2}<|z|^{2}=\delta(z)$,
which implies that D is a Euclidean domain.
5. See page 114 in Durbin's book.
6. See page 179 in Durbin's book.

