MATHEMATICS

Univ. of Gothenburg and Chalmers University of Technology Examination in algebra : MMG500 and MVE 150, 2019-08-21. No aids are allowed. Telephone 031-772 5325.

1. Let <i>R</i> be the quotient ring $\mathbb{Z}_2[x]/(x^2+1)$. Write down the Cayley tables for addition and multiplication on <i>R</i> . (All cosets should be represented by binary polynomials of minimal degree.)	4p
2. Find the subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_4$. (There are eight.)	4p
3. Let <i>G</i> be the abelian group of all rotations of the unit circle $S^1 = \{(\cos\theta, \sin\theta) \in \mathbb{R}^2 : 0 \le \theta < 2\pi)\}$. Determine the number of elements of order one million in <i>G</i> . (Hint: Prove first that $G \approx \mathbb{R}/2\pi \mathbb{Z}$.)	4p
4. Let $\varepsilon = \cos(2\pi/3) + i \sin(2\pi/3) = (-1 + i\sqrt{3})/2$ and <i>D</i> be the set of all complex numbers of the form $a+b\varepsilon$ with $a,b \in \mathbb{Z}$	
a) Show that <i>D</i> is a subring of C .	2p
b) Show that the integral domain <i>D</i> is Euclidean by means of the function $\delta(a+b\epsilon) = a+b\epsilon ^2 = a^2 - ab + b^2$	3р
5. Formulate and prove the fundamental homomorphism theorem for groups.	4p

6. Show that the kernel of a ring homomorphism $\theta: R \rightarrow S$ is an 4p ideal of *R* by verifying <u>all</u> conditions for a subset of *R* to be an ideal.

The theorems in Durbin's book may be used to solve exercises 1–4, but all claims that are made must be motivated.