Solutions to algebra exam: MMG500 and MVE 150, 2019-03-23.

1a) On applying a corollary of Lagrange's theorem to the underlying additive group we get that $(1+1)^{2}=1+1+1+1=0$. Hence $1+1=0$ as we are in an integral domain.
b) The group equation $x+1=b$ has a unique solution $x=b-1$. But $0+1=1 \neq b, 1+1=0 \neq b$ and $b+1 \neq b$. Hence $x \notin\{0,1, b\}$, which implies that $x=a$ and $a+1=b$.
c) A finite integral domain is a field and hence $\{1, a, b\}$ a multiplicative group of prime order. We have thus by a corollary of Lagrange's theorem that $\{1, a, b\}=\left\{1, a, a^{2}\right\}$. So $a^{2}=b$.

2a) If k.l.m. $n \in \mathbf{Z}$, then $k / 2^{l} \pm m / 2^{n}=\left(2^{n-l} k \pm m\right) / 2^{n}=\left(k \pm 2^{l-n} m\right) / 2^{l} \in R$ as $2^{n-l} k \pm m \in \mathbf{Z}$ or $k \pm 2^{l-n} m \in \mathbf{Z}$.
Hence R is closed under addition and subtraction. R is also closed under multiplication as $\left(k / 2^{l}\right)\left(m / 2^{n}\right)=k m / 2^{l+n} \in R$. Hence R is a subring of \mathbf{Q} by the subring criterion.
b) 2 and 4 are units in R with inverses $1 / 2$ resp. $1 / 4$ in R. They are thus not irreducible in R.

6 is not a unit in R as $1 / 6 \notin R$. To decide if 6 is irreducible or nor we use that all elements of R are of the form $m / 2^{n}$ with $n \geq 0$. If now $3=\left(k / 2^{l}\right)\left(m / 2^{n}\right)$ with $l, n \geq 0$, then $2^{l+n} 3=k l$ in N . Hence k or l is then a 2-power and $k / 2^{l}$ or $m / 2^{n}$ a unit. This means that 6 is irreducible in R.

3a) An element of order 5 in S_{5} can only have one cycle of order 5. It is therefore of the form ($1 a b c d$) with $\{a, b, c, d\}=\{2,3,4,5\}$. There are $4!=24$ orderings of $\{2,3,4,5\}$ and hence 24 elements of order 5 in S_{5}.
b) The intersection of two different subgroups of order 5 is of order 1 by Lagrange's theorem.

We have thus a partition of the 24 elements of order 5 into disjoint subsets with 4 elements, where each such subset consists of the 4 non-neutral elements in a subgroup of order 5. There are thus $6=24 / 4$ such subsets and 6 subgroups of order 5.in S_{5}.

4a) Let $\sigma, \tau \in S_{5}$ and H be a subgroup of order 5 in S_{5}. Then,
$\pi_{\sigma \tau}(H)=(\sigma \tau) H(\sigma \tau)^{-1}=\left\{(\sigma \tau) h(\sigma \tau)^{-1}: h \in H\right\}=\left\{(\sigma \tau) h\left(\tau^{-1} \sigma^{-1}\right): h \in H\right\}$,
$\pi_{\sigma}\left(\pi_{\tau}(H)\right)=\sigma\left(\tau H \tau^{-1}\right) \sigma^{-1}=\left\{\sigma\left(\tau h \tau^{-1}\right) \sigma^{-1}: h \in H\right\}=\left\{(\sigma \tau) h\left(\tau^{-1} \sigma^{-1}\right): h \in H\right\}$.
Hence $\pi_{\sigma \tau}=\pi_{\sigma} \pi_{\tau}$ in $\operatorname{Sym}(T)$ for all $\sigma, \tau \in \mathrm{S}_{5}$, which means that π is an action of S_{5} on T.
b) $K=\operatorname{ker} \pi$ is contained in the stabilizer $N(H)=\left\{\sigma \in \mathrm{S}_{5}: \sigma H \sigma^{-1}=H\right\}$ of any $H \in T$. If the normal subgroup K contained a Sylow 5 -subgroup of S_{5}, then it would contain all such subgroups as they are conjugate in S_{5}. It would thus then be of order >24 as it contains all elements of order 5 in S_{5}. But this is impossible as K is a subgroup of $N(H)$ for any $H \in T$ and $o(N(H))=o\left(\mathrm{~S}_{5}\right) / \mathrm{Card} T=20$ as S_{5} acts transitively on T. The order of K can therefore not be divisible by 5 as it contains no Syolw-5-subgroup. It is thus by Lagrange's theorem of order 1,2 or 4 as a subgroup of $N(H)$. If $o(K)=2$ or 4 , then there is an element $\sigma \in K$ of order 2 . But all conjugates of σ are then also in K as it is normal in S_{5}. We have thus then that (12) and all its 9 conjugates are in K or that (12)(34) and all its 14 conjugates are in K. But this is not possible that $o(K) \leq 4$. Hence $o(K)=1$ and π injective.

