Computational Methods for SDEs

Introduction and information

Annika Lang annika.lang@chalmers.se

Chalmers \& University of Gothenburg

> MMA630 / MVE565
> Ip $32021 / 22$

Compute efficiently and accurately

CQ

quantity of interest DI

Goal

Compute efficiently and accurately

$$
\mathbb{E}[\varphi(Y)]
$$

e.g., Y is given by solution to

$$
\begin{aligned}
\mathrm{d} X_{t} & =b\left(t, X_{t}\right) \mathrm{d} t+\sigma\left(t, X_{t}\right) \mathrm{d} W_{t} \\
X_{0} & =x
\end{aligned}
$$

Questions

- Which approaches can we use?

Questions

- Which approaches can we use?
- Which assumptions on the "functions" do we have/want to make?

Questions

- Which approaches can we use?
- Which assumptions on the "functions" do we have/want to make?
- How do we approximate solutions?

Questions

- Which approaches can we use?
- Which assumptions on the "functions" do we have/want to make?
- How do we approximate solutions?
- How good are theses approximations?

Questions

- Which approaches can we use?
- Which assumptions on the "functions" do we have/want to make?
- How do we approximate solutions?
- How good are theses approximations?
- How are we "sufficiently" efficient?

Approach

- Define our expectations of the course

Approach

- Define our expectations of the course
- Theoretical derivations
- approximation
- convergence
- [regularity]

Approach

- Define our expectations of the course
- Theoretical derivations
- approximation
- convergence
- [regularity]
- Computer simulations to test the theoretical findings \longrightarrow How do things work in practice?

About the course

-Runs for the second time

- Your chance (due to small group): give input and shape
- Your challenge: requires active participation, engagement and time
You get out what you put in!

About the course

- Runs for the second time
- Your chance (due to small group): give input and shape
- Your challenge: requires active participation, engagement and time
You get out what you put in!
- Chance to be given at a very high and tailored level for your group of students

About the course

- Runs for the second time
- Your chance (due to small group): give input and shape
- Your challenge: requires active participation, engagement and time
You get out what you put in!
- Chance to be given at a very high and tailored level for your group of students
- My idea of the course and expectation
- Read the literature before the lecture.

About the course

- Runs for the second time
- Your chance (due to small group): give input and shape
- Your challenge: requires active participation, engagement and time
You get out what you put in!
- Chance to be given at a very high and tailored level for your group of students
- My idea of the course and expectation
- Read the literature before the lecture.
- Come with parts and questions that we should discuss.
- Dare to say what you do not understand.

About the course

- Runs for the second time
- Your chance (due to small group): give input and shape
- Your challenge: requires active participation, engagement and time
You get out what you put in!
- Chance to be given at a very high and tailored level for your group of students
- My idea of the course and expectation
- Read the literature before the lecture.
- Come with parts and questions that we should discuss.
- Dare to say what you do not understand.
- If time admits, I pick out parts that are important to discuss from my point of view.
- I will not go through the text/proofs if not explicitly requested.

About me - About you

- Why are you here?
- What do you expect?
- What is your background?

Formalities

- officially. 4h exam, 2 projects with bonus points
- teaching: 4h lectures +2 h exercise classes (Per Ljung)
- lectures: Monday + Thursday, 10-12 in MVF33
- exercise classes: Tuesday, 10-12 in MVF26
- exceptions: tba thanks to the pandemic

Back to mathematics

finite leman approximations

Literature

[G] Emmanuel Gobet: Monte-Carlo Methods and Stochastic Processes: From Linear to Non-Linear, CRC, 2016
[HRSW] Norbert Hilber, Oleg Reichmann, Christoph Schwab, Christoph Winter: Computational Methods for Quantitative Finance:
Finite Element Methods for Derivative Pricing, Springer, 2013
[KP] Peter Kloeden, Eckhard Platen: Numerical Solutions of Stochastic Differential Equations, Springer, 1992
[\varnothing] Bernt \varnothing ksendal: Stochastic Differential Equations: An Introduction with Applications, Springer, 2003

Content

- Chapter 4-6 in [G]
- Chapter 3, 4, 8,9 in [HRSW]

In words

- Review of Brownian motion, Itô integration, SDEs
- Feynman-Kac formulas
- Euler-Maruyama scheme, strong \& weak convergence
- Statistical errors, (multilevel) Monte Carlo methods
- Review on FEM for parabolic PDEs
- FEM methods for PDEs from the Feynman-Kac formulas
- If time and interest: Applications

Recall on probability theory

- (Ω, \mathcal{A}, P) probability space
- Ω set
- $\mathcal{A} \sigma$-algebra
- P probability measure
- $X: \Omega \rightarrow \mathbb{R}$ random variable
- $\mathcal{B}(\mathbb{R})=\sigma([a, b), a<b)$ Borel σ-algebra
- X is $\mathcal{A} / \mathcal{B}(\mathbb{R})$-measurable, i.e. $\forall B \in \mathcal{B}(\mathbb{R}):\{\omega \in \Omega, X(\omega) \in B\} \in \mathcal{A}$

Recall on probability theory

- (Ω, \mathcal{A}, P) probability space
- Ω set
- $\mathcal{A} \sigma$-algebra
- P probability measure
- $X: \Omega \rightarrow \mathbb{R}$ random variable
- $\mathcal{B}(\mathbb{R})=\sigma([a, b), a<b)$ Borel σ-algebra
- X is $\mathcal{A} / \mathcal{B}(\mathbb{R})$-measurable, i.e.
$\forall B \in \mathcal{B}(\mathbb{R}):\{\omega \in \Omega, X(\omega) \in B\} \in \mathcal{A}$
- $P_{X}(B)=P(\{\omega \in \Omega, X(\omega) \in B\})$ image measure, $B \in \mathcal{B}(\mathbb{R})$
- f density of X

$$
P_{X}(B)=\int_{B} f(x) \mathrm{d} x, \quad B \in \mathcal{B}(\mathbb{R})
$$

Recall on probability theory

- (Ω, \mathcal{A}, P) probability space
- Ω set
- $\mathcal{A} \sigma$-algebra
- P probability measure
- $X: \Omega \rightarrow \mathbb{R}$ random variable
- $\mathcal{B}(\mathbb{R})=\sigma([a, b), a<b)$ Borel σ-algebra
- X is $\mathcal{A} / \mathcal{B}(\mathbb{R})$-measurable, i.e.

$$
\forall B \in \mathcal{B}(\mathbb{R}):\{\omega \in \Omega, X(\omega) \in B\} \in \mathcal{A}
$$

- $P_{X}(B)=P(\{\omega \in \Omega, X(\omega) \in B\})$ image measure, $B \in \mathcal{B}(\mathbb{R})$
- f density of X

$$
P_{X}(B)=\int_{B} f(x) \mathrm{d} x, \quad B \in \mathcal{B}(\mathbb{R})
$$

- $\mathbb{E}[X]$ expectation of X with

$$
\mathbb{E}[X]=\int_{\Omega} X \mathrm{~d} P=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x
$$

Random numbers

Do random numbers exist?

- philosophical question
- USB device uses Johnson-Nyquist noise
- HERE generation of pseudo random numbers

Random numbers

Do random numbers exist?

- philosophical question
- USB device uses Johnson-Nyquist noise
- HERE generation of pseudo random numbers

Definition

- $U=\left(U^{(i)}, i \in \mathbb{N}\right)$ sequence of independent, identically distributed random variables uniformly on $[0,1)$
- pseudo random number.
- sequence of numbers
- generated by a (deterministic) algorithm
- behaves like U

Random number generators

generate on $[0,1)$ uniformly distributed random numbers

- Algorithm K of Knuth
- linear congruent pseudo random number generator of Lehmer

$$
\begin{aligned}
X_{0} & =\text { "seed" } \\
X_{n+1} & =a X_{n}+c \bmod m
\end{aligned}
$$

imitates roulette, output:

$$
\frac{X_{n}}{m}
$$

- RANDU by IBM $\left(m=2^{31}, a=2^{16}+3, c=0\right)$
- Mother by Marsaglia
- Mersenne Twister by Matsumoto \& Nishimura
- KISS (Keep It Simple, Stupid) by Marsaglia \& Zaman

Test of RANDU

- generate random numbers $\left(U^{(i)}, i \in \mathbb{N}\right), U^{(i)} \sim \mathcal{U}([0,1))$
- set triplets $\left(U^{(1)}, U^{(2)}, U^{(3)}\right),\left(U^{(4)}, U^{(5)}, U^{(6)}\right)$, etc.
- draw them into the cube $[0,1] \times[0,1] \times[0,1]$

Test of RANDU

- generate random numbers $\left(U^{(i)}, i \in \mathbb{N}\right), U^{(i)} \sim \mathcal{U}([0,1))$
- set triplets $\left(U^{(1)}, U^{(2)}, U^{(3)}\right),\left(U^{(4)}, U^{(5)}, U^{(6)}\right)$, etc.
- draw them into the cube $[0,1] \times[0,1] \times[0,1]$

Random numbers for given distributions

- general methods
- inversion method

$$
X=F_{X}^{-1}(U), \quad U \sim \mathcal{U}([0,1))
$$

Random numbers for given distributions

- general methods
- inversion method

$$
X=F_{X}^{-1}(U), \quad U \sim \mathcal{U}([0,1))
$$

- Acceptance/Rejection method

Random numbers for given distributions

- general methods
- inversion method

$$
X=F_{X}^{-1}(U), \quad U \sim \mathcal{U}([0,1))
$$

- Acceptance/Rejection method
- combination method

$$
P_{X}=\alpha P_{Y}+(1-\alpha) P_{Z}
$$

Random numbers for given distributions

- general methods
- inversion method

$$
X=F_{X}^{-1}(U), \quad U \sim \mathcal{U}([0,1))
$$

- Acceptance/Rejection method
- combination method

$$
P_{X}=\alpha P_{Y}+(1-\alpha) P_{Z}
$$

- special methods
- normal distribution
- Poisson distribution
- Gamma distribution
- etc.

Questions for next lecture

While reading Chapter 4.1-4.2 of [G], ask yourself:

- Which possibilities do you have to sample the same path of a Brownian motion with different accuracy/resolution?
- What is important for sample paths vs. distribution?
- How is the heat equation coupled to Brownian motion? In which sense?
- What is the naive idea of a filtration? How is it related to our daily life?
- Why can't we use "usual" integration for Brownian motion but have to define the Itô integral?
- What are the basic steps for the definition of the Itô integral? What do they tell us?
- In which sense of "uniqueness" should the Itô integral be interpreted?
- What are important properties of the Itô integral?

