Exercise 4.1

(Linear transformation of Brownian motion)

i) Let W be a standard d-dimensional Brownian motion and let U be an orthogonal matrix (i.e. $U^{T}=U^{-1}$). Prove that $U W$ defines a new standard d-dimensional Brownian motion.

Solution: We have that W is a d-dimensional Brownian motion, i.e. it satisfies

1. $W_{0}=0 \in \mathbb{R}^{d}$,
2. W_{t} is a.s. continuous,
3. W_{t} has independent increments, and
4. $W_{t}-W_{s} \sim \mathcal{N}(0, t-s)$.

We check if $U W$ satisfies these conditions for an orthogonal matrix U. Since W_{0} is the zero vector, obviously $U W_{0}$ will also result in the zero vector in \mathbb{R}^{d}. Moreover, neither the a.s. continuity of W_{t} nor the independence of the increments will be affected by the multiplication of a matrix. The non-trivial thing to check is if the increments remain normally distributed with the same parameters. For this, we utilize the characteristic function to note that

$$
\varphi_{U W_{t}-U W_{s}}(\xi)=\mathbb{E}\left\{e^{i \xi^{T} U\left(W_{t}-W_{s}\right)}\right\}=\varphi_{W_{t}-W_{s}}\left(\xi^{T} U\right)=e^{-\frac{1}{2}(t-s) \xi^{T} U U^{T} \xi}=e^{-\frac{1}{2}(t-s)|\xi|^{2}}
$$

Here, the first and second equality follows from the definition of the characteristic function, the third from the characteristic function of a Gaussian random variable, and the last from the orthogonality of U.
ii) Let W_{1} and W_{2} be two independent Brownian motions. For any $\rho \in[-1,1]$, justify that $\rho W_{1}+\sqrt{1-\rho^{2}} W_{2}$ and $-\sqrt{1-\rho^{2}} W_{1}+\rho W_{2}$ are two independent Brownian motions.

Solution: Denote a 2-dimensional Brownian motion by

$$
W=\left[\begin{array}{l}
W_{1} \\
W_{2}
\end{array}\right]
$$

Note that with

$$
U=\left[\begin{array}{cc}
\rho & \sqrt{1-\rho^{2}} \\
-\sqrt{1-\rho^{2}} & \rho
\end{array}\right]
$$

we have that the two given processes are given as the two components of $U W$. Note that U is orthogonal since

$$
U U^{T}=\left[\begin{array}{cc}
\rho & \sqrt{1-\rho^{2}} \\
-\sqrt{1-\rho^{2}} & \rho
\end{array}\right]\left[\begin{array}{cc}
\rho & -\sqrt{1-\rho^{2}} \\
\sqrt{1-\rho^{2}} & \rho
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I .
$$

Using the previously shown statement, we have that both the components are independent Brownian motions.

