EXERCISE 4.3
(APPROXIMATION OF STOCHASTIC INTEGRAL)

We consider the convergence rate of the approximation
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where Z; := f(s,W;) for some function f, such that ]Efo1 |Zs|? ds + sup;.,, E( %) < 400. We

illustrate that the convergence order is, under mild conditions, equal to 1/2 but it can be smaller
for irregular f.

i) Show that
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Solution: We see this by first noting that
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Thus, replacing this expression in AJ,, and applying It6 isometry, we get
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i) When Z, = Wy, show that E(]AJ,|?) ~ Cstn~! for some positive constant.
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Solution: This is seen as
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Here we first used the result from (i), then Fubini to move the expectation inside the integral, fol-
lowed by noting that we have the variance as integrand (since Var(X) = E(X?) — E(X)? and we
have zero expectation from the increment).

i4i) Assuming that f is bounded, smooth with bounded derivatives, prove that E(|AJ,|?) = O(n™1).

Solution: Since we are given the condition on smooth bounded derivatives, we are encouraged to
apply Itd’s formula on Z, := f(s, W;). Applying the formula on the interval [, s] gives
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since everything is nice and bounded. Hence, by inserting this into the expression AJ,, and applying
Fubini to move the expectation into the integral, we find that
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where the mixed term vanished due to the zero expectation of the increment of Brownian motion.

iv) Assume that Z is a square-integrable martingale. Show that E(|Zs — Z.|?) < E(|Zu|?) —
E( 2), and thus E(|AJ,|?) < (E(]Z1]?) — E(|Zo)*)n~?

Solution: First of all, we note that for s < ¢ we have
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since Z; is Fs-measurable. Thus, by applying the towering property with a filtration F.: we find
that '
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by linearity of the conditional expectation. Moreover, note that this result implies that

0<B(Zes - Z,°) = B(Z%) ~ B(Z),
so E(Z2) < E(ZHI) and thus we find that

B(Z, - Z,I*) = E(Z2) - B(Z2) < B(Zh) - B(Z2).



An easy consequence of this is
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