## ExERCISE 4.3

(Approximation of stochastic integral)
We consider the convergence rate of the approximation

$$
\Delta J_{n}:=\int_{0}^{1} Z_{s} \mathrm{~d} W_{s}-\sum_{i=0}^{n-1} Z_{\frac{i}{n}}\left(W_{\frac{i+1}{n}}-W_{\frac{i}{n}}\right)
$$

where $Z_{s}:=f\left(s, W_{s}\right)$ for some function $f$, such that $\mathbb{E} \int_{0}^{1}\left|Z_{s}\right|^{2} \mathrm{~d} s+\sup _{i<n} \mathbb{E}\left(\left|Z_{\frac{i}{n}}\right|^{2}\right)<+\infty$. We illustrate that the convergence order is, under mild conditions, equal to $1 / 2$ but it can be smaller for irregular $f$
i) Show that

$$
\mathbb{E}\left(\left|\Delta J_{n}\right|^{2}\right)=\mathbb{E}\left(\sum_{i=0}^{n-1} \int_{\frac{i}{n}}^{\frac{i+1}{n}}\left|Z_{s}-Z_{\frac{i}{n}}\right|^{2} \mathrm{~d} s\right) .
$$

Solution: We see this by first noting that

$$
\sum_{i=0}^{n-1} Z_{\frac{i}{n}}\left(W_{\frac{i+1}{n}}-W_{\frac{i}{n}}\right)=\sum_{i=0}^{n-1} \int_{\frac{i}{n}}^{\frac{i+1}{n}} Z_{\frac{i}{n}} \mathrm{~d} W_{s}=\int_{0}^{1} \sum_{i=0}^{n-1} Z_{\frac{i}{n}} \mathbb{1}_{\left\{\frac{i}{n}, \frac{i+1}{n}\right\}} \mathrm{d} W_{s} .
$$

Thus, replacing this expression in $\Delta J_{n}$ and applying Itô isometry, we get

$$
\begin{aligned}
\mathbb{E}\left(\left|\Delta J_{n}\right|^{2}\right) & =\mathbb{E}\left(\left(\int_{0}^{1} Z_{s} \mathrm{~d} W_{s}-\sum_{i=0}^{n-1} Z_{\frac{i}{n}}\left(W_{\frac{i+1}{n}}-W_{\frac{i}{n}}\right)^{2}\right)\right. \\
& =\mathbb{E}\left(\left(\int_{0}^{1}\left(Z_{s}-\sum_{i=0}^{n-1} Z_{\frac{i}{n}} \mathbb{1}_{\left\{\frac{i}{n}, \frac{i+1}{n}\right\}}\right) \mathrm{d} W_{s}\right)^{2}\right) \\
& =\mathbb{E}\left(\int_{0}^{1}\left(Z_{s}-\sum_{i=0}^{n-1} Z_{\frac{i}{n}} \mathbb{1}_{\left\{\frac{i}{n}, \frac{i+1}{n}\right\}}\right)^{2} \mathrm{~d} s\right) \\
& =\mathbb{E}\left(\sum_{i=0}^{n-1} \int_{\frac{i}{n}}^{\frac{i+1}{n}}\left(Z_{s}-Z_{\frac{i}{n}}\right)^{2} \mathrm{~d} s\right) .
\end{aligned}
$$

ii) When $Z_{s}=W_{s}$, show that $\mathbb{E}\left(\left|\Delta J_{n}\right|^{2}\right) \sim \operatorname{Cst} n^{-1}$ for some positive constant.

Solution: This is seen as

$$
\begin{aligned}
\mathbb{E}\left(\left|\Delta J_{n}\right|^{2}\right) & =\sum_{i=0}^{n-1} \mathbb{E}\left(\int_{\frac{i}{n}}^{\frac{i+1}{n}}\left|W_{s}-W_{\frac{i}{n}}\right|^{2} \mathrm{~d} s\right)=\sum_{i=0}^{n-1} \int_{\frac{i}{n}}^{\frac{i+1}{n}} \mathbb{E}(\left.\underbrace{W_{s}-W_{\frac{i}{n}}}_{\sim \mathcal{N}\left(0, s-\frac{i}{n}\right)}\right|^{2}) \mathrm{d} s \\
& =\sum_{i=0}^{n-1} \int_{\frac{i}{n}}^{\frac{i+1}{n}}\left(s-\frac{i}{n}\right) \mathrm{d} s=\sum_{i=0}^{n-1}\left[\frac{1}{2}\left(s-\frac{i}{n}\right)^{2}\right]_{\frac{i}{n}}^{\frac{i+1}{n}}=\sum_{i=0}^{n-1} \frac{1}{2 n^{2}} \\
& =\frac{1}{2 n} .
\end{aligned}
$$

Here we first used the result from (i), then Fubini to move the expectation inside the integral, followed by noting that we have the variance as integrand (since $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$ and we have zero expectation from the increment).
iii) Assuming that $f$ is bounded, smooth with bounded derivatives, prove that $\mathbb{E}\left(\left|\Delta J_{n}\right|^{2}\right)=\mathcal{O}\left(n^{-1}\right)$.

Solution: Since we are given the condition on smooth bounded derivatives, we are encouraged to apply Itô's formula on $Z_{s}:=f\left(s, W_{s}\right)$. Applying the formula on the interval $\left[\frac{i}{n}, s\right]$ gives

$$
\begin{aligned}
Z_{s}-Z_{\frac{i}{n}} & =\int_{\frac{i}{n}}^{s} \partial_{t} f\left(s, W_{s}\right)+b\left(s, W_{s}\right) \nabla_{x} f\left(s, W_{s}\right)+\frac{1}{2} \sum_{k, l=1}^{q}(\ldots) \mathrm{d} s+\int_{\frac{i}{n}}^{s} \sigma\left(s, W_{s}\right) \nabla_{x} f\left(s, W_{s}\right) \mathrm{d} W_{s} \\
& \leq C_{1}\left(s-\frac{i}{n}\right)+C_{2}\left(W_{s}-W_{\frac{i}{n}}\right)
\end{aligned}
$$

since everything is nice and bounded. Hence, by inserting this into the expression $\Delta J_{n}$ and applying Fubini to move the expectation into the integral, we find that

$$
\begin{aligned}
\mathbb{E}\left(\left|\Delta J_{n}\right|^{2}\right) & =\mathbb{E}\left(\sum_{i=0}^{n-1} \int_{\frac{i}{n}}^{\frac{i+1}{n}}\left|Z_{s}-Z_{\frac{i}{n}}\right|^{2} \mathrm{~d} s\right) \\
& \leq \sum_{i=0}^{n-1} \int_{\frac{i}{n}}^{\frac{i+1}{n}}\left(C_{1}^{2}\left(s-\frac{i}{n}\right)^{2}+2 C_{1} C_{2}\left(s-\frac{i}{n}\right) \mathbb{E}\left(W_{s}-W_{\frac{i}{n}}\right)+C_{2}^{2} \mathbb{E}\left(\left|W_{s}-W_{\frac{i}{n}}\right|^{2}\right)\right) \mathrm{d} s \\
& =\sum_{i=0}^{n-1}\left(\frac{C_{1}^{2}}{3 n^{3}}+\frac{C_{2}^{2}}{2 n^{2}}\right)=\mathcal{O}\left(n^{-1}\right),
\end{aligned}
$$

where the mixed term vanished due to the zero expectation of the increment of Brownian motion. iv) Assume that $Z$ is a square-integrable martingale. Show that $\mathbb{E}\left(\left|Z_{s}-Z_{\frac{i}{n}}\right|^{2}\right) \leq \mathbb{E}\left(\left|Z_{\frac{i+1}{n}}\right|^{2}\right)-$ $\mathbb{E}\left(\left|Z_{\frac{i}{n}}\right|^{2}\right)$, and thus $\mathbb{E}\left(\left|\Delta J_{n}\right|^{2}\right) \leq\left(\mathbb{E}\left(\left|Z_{1}\right|^{2}\right)-\mathbb{E}\left(\left|Z_{0}\right|^{2}\right) n^{-1}\right.$.

Solution: First of all, we note that for $s<t$ we have

$$
\mathbb{E}\left(Z_{t} Z_{s} \mid \mathcal{F}_{s}\right)=Z_{s} \mathbb{E}\left(Z_{t} \mid \mathcal{F}_{s}\right)=Z_{s}^{2},
$$

since $Z_{s}$ is $\mathcal{F}_{s}$-measurable. Thus, by applying the towering property with a filtration $\mathcal{F}_{\frac{i}{n}}$ we find that

$$
\begin{aligned}
\mathbb{E}\left(\left|Z_{s}-Z_{\frac{i}{n}}\right|^{2}\right) & =\mathbb{E}\left(\mathbb{E}\left(\left.\left(Z_{s}-Z_{\frac{i}{n}}^{2}\right)^{2} \right\rvert\, \mathcal{F}_{\frac{i}{n}}\right)\right)=\mathbb{E}\left(\mathbb{E}\left(\left.Z_{s}^{2}-2 Z_{s} Z_{\frac{i}{n}}+Z_{\frac{i}{n}}^{2} \right\rvert\, \mathcal{F}_{\frac{i}{n}}\right)\right) \\
& =\mathbb{E}\left(\mathbb{E}\left(\left.Z_{s}^{2}+Z_{\frac{i}{n}}^{2} \right\rvert\, \mathcal{F}_{\frac{i}{n}}\right)-\mathbb{E}\left(2 Z_{s} Z_{\frac{i}{n}} \left\lvert\, \mathcal{F}_{\frac{i}{n}}\right.\right)\right)=\mathbb{E}\left(\mathbb{E}\left(\left.Z_{s}^{2}-Z_{\frac{i}{n}}^{2} \right\rvert\, \mathcal{F}_{\frac{i}{n}}\right)\right) \\
& =\mathbb{E}\left(Z_{s}^{2}-Z_{\frac{i}{n}}^{2}\right)=\mathbb{E}\left(Z_{s}^{2}\right)-\mathbb{E}\left(Z_{\frac{i}{n}}^{2}\right),
\end{aligned}
$$

by linearity of the conditional expectation. Moreover, note that this result implies that

$$
0 \leq \mathbb{E}\left(\left|Z_{\frac{i+1}{n}}-Z_{s}\right|^{2}\right)=\mathbb{E}\left(Z_{\frac{i+1}{n}}^{2}\right)-\mathbb{E}\left(Z_{s}^{2}\right),
$$

so $\mathbb{E}\left(Z_{s}^{2}\right) \leq \mathbb{E}\left(Z_{\frac{i+1}{n}}^{2}\right)$, and thus we find that

$$
\mathbb{E}\left(\left|Z_{s}-Z_{\frac{i}{n}}\right|^{2}\right)=\mathbb{E}\left(Z_{s}^{2}\right)-\mathbb{E}\left(Z_{\frac{i}{n}}^{2}\right) \leq \mathbb{E}\left(Z_{\frac{i+1}{n}}^{2}\right)-\mathbb{E}\left(Z_{\frac{i}{n}}^{2}\right)
$$

An easy consequence of this is

$$
\begin{aligned}
\mathbb{E}\left(\left|\Delta J_{n}\right|^{2}\right) & =\sum_{i=0}^{n-1} \int_{\frac{i}{n}}^{\frac{i+1}{n}} \mathbb{E}\left(\left|Z_{s}-Z_{\frac{i+1}{n}}\right|^{2}\right) \mathrm{d} s \leq \sum_{i=0}^{n-1} \int_{\frac{i}{n}}^{\frac{i+1}{n}} \mathbb{E}\left(\left|Z_{\frac{i+1}{n}}\right|^{2}\right)-\mathbb{E}\left(\left|Z_{\frac{i}{n}}\right|^{2}\right) \mathrm{d} s \\
& =\sum_{i=0}^{n-1}\left(\mathbb{E}\left(\left|Z_{\frac{i+1}{n}}\right|^{2}\right)-\mathbb{E}\left(\left|Z_{\frac{i}{n}}\right|^{2}\right)\right) \frac{1}{n}=\left(\mathbb{E}\left(\left|Z_{1}\right|^{2}\right)-\mathbb{E}\left(\left|Z_{0}\right|^{2}\right)\right) n^{-1} .
\end{aligned}
$$

