Exercise 4.5

(Transformations of SDE and PDE)
For any $t \in[0, T)$ and $x \in \mathbb{R}$, we denote by $\left(X_{s}^{t, x}, s \in[t, T]\right)$ the solution to

$$
X_{s}=x+\int_{t}^{s} b\left(X_{r}\right) \mathrm{d} r+\int_{t}^{s} \sigma\left(X_{r}\right) \mathrm{d} W_{r}, \quad t \leq s \leq T
$$

where the coefficients $b, \sigma: \mathbb{R} \rightarrow \mathbb{R}$ are smooth with bounded derivatives, and $\sigma(x) \geq c>0$. For a given Borel set $A \subset \mathbb{R}$ we define $u(t, x):=\mathbb{P}\left(X_{T}^{t, x} \in A\right)$. We assume in the following $u(t, x)>0$ for any $(t, x) \in[0, T) \times \mathbb{R}$, and that appropriate smoothness assumptions are satisfied (namely, $\left.u \in \mathcal{C}^{1,2}([0, T) \times \mathbb{R})\right)$.
i) Let $x_{0} \in \mathbb{R}$ and f be a bounded continuous function. Using the PDE satisfied by u on $[0, T) \times \mathbb{R}$, show that

$$
\mathbb{E}\left(f\left(X_{t}\right) \mid X_{T} \in A\right)=\frac{\mathbb{E}\left(f\left(X_{t}\right) u\left(t, X_{t}\right)\right)}{u\left(0, x_{0}\right)}, \quad \forall t<T,
$$

where $X_{t}=X_{t}^{0, x_{0}}$ to simplify.

Solution: Using the definition of conditional expectation, and applying the towering property with a filtration \mathcal{F}_{t}, we find that

$$
\begin{aligned}
\mathbb{E}\left(f\left(X_{t}\right) \mid X_{T} \in A\right) & =\frac{\mathbb{E}\left(f\left(X_{t}\right) \mathbb{1}_{X_{T} \in A}\right)}{\mathbb{P}\left(X_{T} \in A\right)}=\frac{\mathbb{E}\left(\mathbb{E}\left(f\left(X_{t}\right) \mathbb{1}_{X_{T} \in A} \mid \mathcal{F}_{t}\right)\right)}{u\left(0, x_{0}\right)} \\
& =\frac{\mathbb{E}\left(f\left(X_{t}\right) \mathbb{E}\left(\mathbb{1}_{X_{T} \in A} \mid \mathcal{F}_{t}\right)\right)}{u\left(0, x_{0}\right)}=\frac{\mathbb{E}\left(f\left(X_{t}\right) \mathbb{P}\left(X_{T}^{t, X_{t}} \in A\right)\right)}{u\left(0, x_{0}\right)} \\
& =\frac{\mathbb{E}\left(f\left(X_{t}\right) u\left(t, X_{t}\right)\right)}{u\left(0, x_{0}\right)} .
\end{aligned}
$$

ii) We assume that for any $s \leq t<T$ the equation

$$
\bar{X}_{r}=x+\int_{s}^{r}\left(b\left(\bar{X}_{w}\right)+\sigma^{2}\left(\bar{X}_{w}\right) \frac{\partial_{x} u}{u}\left(w, \bar{X}_{w}\right)\right) \mathrm{d} w+\int_{s}^{r} \sigma\left(\bar{X}_{w}\right) \mathrm{d} W_{w}, \quad s \leq r \leq t
$$

has a unique solution, denoted by $\left(\bar{X}_{r}^{s, x}, s \leq r \leq t\right)$. We set $v_{t}(s, x):=\mathbb{E}\left(f\left(\bar{X}_{t}^{s, x}\right)\right)$.
a) What is the PDE solved by $(s, x) \mapsto v_{t}(s, x)$ on $[0, t) \times \mathbb{R}$?
b) Applying the Itô formula to $u\left(s, X_{s}\right)$ and $v_{t}(s, x), 0 \leq s \leq t$, and then to $u\left(s, X_{s}\right) v_{t}\left(s, X_{s}\right)$, show

$$
\mathbb{E}\left(f\left(X_{t}\right) u\left(t, X_{t}\right)\right)=v_{t}\left(0, x_{0}\right) u\left(0, x_{0}\right), \quad \forall t<T
$$

c) Conclude that for any $t<T$, the distribution of X_{t} given $\left\{X_{T} \in A\right\}$ is the distribution of $\bar{X}_{t}^{0, x_{0}}$.

Solution:

a) The Feynman-Kac formula states that the solution to

$$
\left\{\begin{array}{l}
\partial_{t} u(t, x)+\mathcal{L} u(t, x)-k(t, x) u(t, x)+g(t, x)=0, \quad t<T, x \in \mathbb{R}^{d} \\
u(T, x)=f(x), \quad x \in \mathbb{R}^{d}
\end{array}\right.
$$

is given by

$$
u(t, x)=\mathbb{E}\left(f\left(X_{T}^{t, x}\right) e^{-\int_{t}^{T} k\left(r, X_{r}^{t, x}\right) \mathrm{d} r}+\int_{t}^{T} g\left(s, X_{s}^{t, x}\right) e^{-\int_{t}^{s} k\left(r, X_{r}^{t, x}\right) \mathrm{d} r} \mathrm{~d} s\right)
$$

We consider $v_{t}(s, x):=\mathbb{E}\left(f\left(\bar{X}_{t}^{s, x}\right)\right)$, i.e. above $k=0$ and $g=0$, and hence the corresponding equation is

$$
\left\{\begin{array}{l}
\partial_{s} v_{t}(s, x)+\mathcal{L} v_{t}(s, x)=0, \quad t<T, x \in \mathbb{R}^{d} \\
u(T, x)=f(x), \quad x \in \mathbb{R}^{d}
\end{array}\right.
$$

where the operator is defined by

$$
\mathcal{L}=\frac{\sigma(x)^{2}}{2} \partial_{x x}+\left(b(x)+\sigma(x)^{2} \frac{\partial_{x} u(s, x)}{u(s, x)}\right) \partial_{x} .
$$

b) At first, we note that Itô's formula on $v_{t}(s, x) u(s, x)$ gives

$$
\begin{equation*}
\mathrm{d}\left(v_{t}\left(s, X_{s}\right) u\left(s, X_{s}\right)\right)=v_{t}\left(s, X_{s}\right) \mathrm{d}\left(u\left(s, X_{s}\right)\right)+u\left(s, X_{s}\right) \mathrm{d}\left(v_{t}\left(s, X_{s}\right)\right)+\mathrm{d}\left\langle v_{t}\left(s, X_{s}\right), u\left(s, X_{s}\right)\right\rangle . \tag{1}
\end{equation*}
$$

To find an expression for $\mathrm{d} v_{t}$, we note that Itô's formula on $f\left(\bar{X}_{t}\right)$ is

$$
\mathrm{d} f\left(\bar{X}_{t}\right)=\left(\partial_{t}+\mathcal{L}\right) f\left(\bar{X}_{t}\right) \mathrm{d} t+\{\text { Diffusion }\} \mathrm{d} W_{t} .
$$

When taking the expected value of above expression, the diffusion term vanishes and we find that

$$
\mathrm{d} v_{t}=\left(\partial_{t}+\mathcal{L}\right) v_{t} \mathrm{~d} t
$$

Next, we want to see what happens to the $\mathrm{d} u$-term. Note that $u\left(s, X_{s}\right)$ is a martingale, since for any $r<s$ we have that

$$
\mathbb{E}\left(u\left(s, X_{s}\right) \mid \mathcal{F}_{r}\right)=\mathbb{E}\left(\mathbb{E}\left(\mathbb{1}_{X_{T} \in A} \mid \mathcal{F}_{s}\right) \mid \mathcal{F}_{r}\right)=\mathbb{E}\left(\mathbb{1}_{X_{T} \in A} \mid \mathcal{F}_{r}\right)=u\left(r, X_{r}\right),
$$

where in the first step we used the definition of $u(t, x)$, and in the second step the fact that we "only know" \mathcal{F}_{r} which cancels the additional information of \mathcal{F}_{s}. Since $u\left(s, X_{s}\right)$ is a martingale, it holds that

$$
\mathbb{E}\left(\int_{0}^{r} v_{t}\left(s, X_{s}\right) \mathrm{d}\left(u\left(s, X_{s}\right)\right)\right)=0
$$

which can be seen by analyzing its corresponding Riemann sum. Moreover, the covariance term vanishes since

$$
\mathrm{d}\left\langle v_{t}, u\right\rangle=\ldots \mathrm{d} t^{2}+\ldots \mathrm{d} t \mathrm{~d} W_{t}+0 \mathrm{~d} W_{t}^{2},
$$

since v_{t} has no diffusion term. Hence, integrating (1) and taking the expectation yields

$$
\begin{aligned}
\mathbb{E}\left(v_{t}\left(r, X_{r}\right) u\left(r, X_{r}\right)\right) & =\mathbb{E}\left(v_{t}\left(0, x_{0}\right) u\left(0, x_{0}\right)\right)+\mathbb{E}\left(\int_{0}^{r} u\left(r, X_{r}\right)\left(\partial_{t} v_{t}\left(s, X_{s}\right)+\mathcal{L} u\left(s, X_{s}\right)\right) \mathrm{d} t\right) \\
& =v_{t}\left(0, x_{0}\right) u\left(0, x_{0}\right)
\end{aligned}
$$

since the integrand is equal to zero due to the $\operatorname{PDE} v_{t}$ satisfies.
c) Using the previous tasks, we find that

$$
\mathbb{E}\left(f\left(X_{t}\right) \mid X_{T} \in A\right)=\frac{\mathbb{E}\left(f\left(X_{t}\right) u\left(t, X_{t}\right)\right)}{u\left(0, x_{0}\right)}=\frac{v_{t}\left(0, x_{0}\right) u\left(0, x_{0}\right)}{u\left(0, x_{0}\right)}=v_{t}\left(0, x_{0}\right)=\mathbb{E}\left(f\left(\bar{X}_{t}^{0, x_{0}}\right)\right) .
$$

Since this holds for any continuous bounded function f, the two distributions coincide.
iii) In the case $b=0, \sigma(x)=1$ and $A=(y-R, y+R)$, show that $\frac{\partial_{x} u(t, x)}{u(t, x)} \rightarrow-\frac{x-y}{T-t}$ for any (t, x) as $R \rightarrow 0$. Interpret the solution to the following equation in terms of a Brownian bridge:

$$
\bar{X}_{t}=x_{0}-\int_{0}^{t} \frac{\bar{X}_{s}-y}{T-s} \mathrm{~d} s+W_{t}
$$

Solution: Given the coefficients, we have that

$$
X_{T}^{t, x}=x+W_{T}-W_{t} \sim \mathcal{N}(0, T-t)
$$

Given $Y \sim \mathcal{N}(0, T-t)$ we have the c.d.f $\Phi(x)=\mathbb{P}(Y \leq x)$. We find that

$$
\begin{aligned}
\frac{\partial_{x} u(t, x)}{u(t, x)} & =\frac{\partial_{x}(\mathbb{P}(Y \leq y-x+R)-\mathbb{P}(Y \leq y-x-R))}{\mathbb{P}(Y \leq y-x+R)-\mathbb{P}(Y \leq y-x-R)} \\
& =\frac{\Phi^{\prime}(y-x+R)-\Phi^{\prime}(y-x+R)}{\Phi(y-x+R)-\Phi(y-x+R)} \xrightarrow[R \rightarrow 0]{\longrightarrow} \frac{\Phi^{\prime \prime}(y-x)}{\Phi^{\prime}(y-x)} .
\end{aligned}
$$

Now we have that $\Phi^{\prime}(x)$ is a Gaussian pdf, so we can insert the formulas

$$
\begin{aligned}
\Phi^{\prime}(x) & =\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{x^{2}}{2 \sigma^{2}}} \\
\Phi^{\prime \prime}(x) & =\frac{1}{\sigma \sqrt{2 \pi}}\left(-\frac{x}{\sigma^{2}}\right) e^{-\frac{x^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

and hence get that

$$
\frac{\Phi^{\prime \prime}(y-x)}{\Phi^{\prime}(y-x)}=-\frac{y-x}{T-t}
$$

Since we showed that the conditional expectation coincide, and due to the convergence we just showed, we find that the solution \bar{X}_{t} of the SDE can be interpreted as the distribution of the Brownian bridge starting at x_{0} and reaching y at time T.

