ExERCISE 5.1

(Strong convergence)
Show that in Theorem 5.2.1, the convergence rate is of order 1 if σ is constant and b is \mathcal{C}^{2} in space and \mathcal{C}^{1} in time.

Solution: By Proposition 5.1.2, we can write the Euler solution as an Itô process

$$
X_{t}^{(h)}=x+\int_{0}^{t} b\left(\varphi_{s}, X_{\varphi_{s}}^{(h)}\right) \mathrm{d} s+\int_{0}^{t} \sigma\left(\varphi_{s}, X_{\varphi_{s}}^{(h)}\right) \mathrm{d} W_{s}
$$

We can thus decompose the error as

$$
\begin{aligned}
E_{t}^{(h)} & :=X_{t}^{(h)}-X_{t}=\int_{0}^{t} b\left(\varphi_{s}, X_{\varphi_{s}}^{(h)}\right)-b\left(s, X_{s}\right) \mathrm{d} s \\
& =\int_{0}^{t} b\left(\varphi_{s}, X_{\varphi_{s}}^{(h)}\right)-b\left(s, X_{s}^{(h)}\right)+b\left(s, X_{s}^{(h)}\right)-b\left(s, X_{s}\right) \mathrm{d} s
\end{aligned}
$$

where the initial value x and volatility σ vanish since they are constant. Due to the continuity assumptions on b, we can apply the mean value theorem to the second part and bound the derivative, i.e.

$$
b\left(s, X_{s}^{(h)}\right)-b\left(s, X_{s}\right)=b_{s}^{\prime}\left(X_{s}^{(h)}-X_{s}\right)=b_{s}^{\prime} E_{s}^{(h)} \leq(\underbrace{\max _{s \in[0, t]} b_{s}^{\prime}}_{=C}) E_{s}^{(h)} .
$$

Hence, we have that

$$
E_{t}^{(h)} \leq \int_{0}^{t} b\left(\varphi_{s}, X_{\varphi_{s}}^{(h)}\right)-b\left(s, X_{s}^{(h)}\right) \mathrm{d} s+C \int_{0}^{t} E_{s}^{(h)} \mathrm{d} s
$$

We seek to bound the L^{p}-norm of the error. Thus, we apply Minkowski's inequality to get

$$
\begin{aligned}
\left\|E_{t}^{(h)}\right\|_{p} & \leq\left\|\int_{0}^{t} b\left(\varphi_{s}, X_{\varphi_{s}}^{(h)}\right)-b\left(s, X_{s}^{(h)}\right) \mathrm{d} s\right\|_{p}+C\left\|\int_{0}^{t} E_{s}^{(h)} \mathrm{d} s\right\|_{p} \\
& \leq\|\underbrace{\int_{0}^{t} b\left(\varphi_{s}, X_{\varphi_{s}}^{(h)}\right)-b\left(s, X_{s}^{(h)}\right) \mathrm{d} s}_{=: \alpha(t)}\|_{p}+C \int_{0}^{t}\left\|E_{s}^{(h)}\right\|_{p} \mathrm{~d} s .
\end{aligned}
$$

The goal here is to apply Gronwall's lemma and be done, but it requires first that $\|\alpha(t)\|_{p} \leq C h$, since then the lemma gives us

$$
\left\|E_{t}^{(h)}\right\|_{p} \leq C h
$$

where C comes from the integral in the lemma. Now we note that applying the Lipschitz continuity
of b, and inserting the definition of the Euler scheme, we get

$$
\begin{aligned}
|\alpha(t)| & =\int_{0}^{t}\left|b\left(\varphi_{s}, X_{\varphi_{s}}^{(h)}\right)-b\left(s, X_{s}^{(h)}\right)\right| \mathrm{d} s \\
& \leq C_{b, \sigma} \int_{0}^{t} \underbrace{\left|s-\varphi_{s}\right|}_{\leq h}+\left|X_{\varphi_{s}}^{(h)}-X_{s}^{(h)}\right| \mathrm{d} s \\
& \leq C_{b, \sigma} T h+C_{b, \sigma} \int_{0}^{t}\left|X_{\varphi_{s}}^{(h)}-X_{s}^{(h)}\right| \mathrm{d} s \\
& =C h+C \int_{0}^{t}\left|b\left(\varphi_{s}, X_{\varphi_{s}}^{(h)}\right)\left(s-\varphi_{s}\right)+\sigma\left(\varphi_{s}, X_{\varphi_{s}}^{(h)}\right)\left(W_{s}-W_{\varphi_{s}}\right)\right| \mathrm{d} s \\
& \leq C h+C b_{\max } \int_{0}^{t} \underbrace{\left|s-\varphi_{s}\right|}_{\leq h} \mathrm{~d} s+C \sigma \int_{0}^{t}\left|W_{s}-W_{\varphi_{s}}\right| \mathrm{d} s \\
& \leq C h+C \int_{0}^{t}\left|W_{s}-W_{\varphi_{s}}\right| \mathrm{d} s .
\end{aligned}
$$

Hence, the norm of $\alpha(t)$ becomes (by applying a generalization of the convexity inequality)

$$
\begin{aligned}
\|\alpha(t)\|_{p}^{p} & \leq \mathbb{E}\left(\left(C h+C \int_{0}^{t}\left|W_{s}-W_{\varphi_{s}}\right| \mathrm{d} s\right)^{p}\right) \\
& \leq \mathbb{E}\left(2^{p-1}\left(C h^{p}+\left(C \int_{0}^{t}\left|W_{s}-W_{\varphi_{s}}\right| \mathrm{d} s\right)^{p}\right)\right) \\
& \leq C h^{p}+C \mathbb{E}\left(\left(\int_{0}^{t}\left|W_{s}-W_{\varphi_{s}}\right| \mathrm{d} s\right)^{p}\right)
\end{aligned}
$$

We are now done if the second term can be bounded by $C h^{p}$. This is seen by

$$
\begin{aligned}
\mathbb{E}\left(\left(\int_{0}^{t} \mid W_{s}-\right.\right. & \left.\left.W_{\varphi_{s}} \mid \mathrm{d} s\right)^{p}\right) \\
& =\mathbb{E}\left(\left(\int_{0}^{t} \operatorname{sgn}\left\{W_{s}-W_{\varphi_{s}}\right\}\left(W_{s}-W_{\varphi_{s}}\right) \mathrm{d} s\right)^{p}\right) \\
& =\mathbb{E}\left(\left(\int_{0}^{t} \int_{\varphi_{s}}^{s} \operatorname{sgn}\left\{W_{s}-W_{\varphi_{s}}\right\} \mathrm{d} W_{r} \mathrm{~d} s\right)^{p}\right) \\
& =\mathbb{E}\left(\left(\int_{0}^{t} \int_{0}^{t} \operatorname{sgn}\left\{W_{s}-W_{\varphi_{s}}\right\} \mathbb{1}_{\left\{\varphi_{s}, s\right\}} \mathrm{d} W_{r} \mathrm{~d} s\right)^{p}\right) \\
& =\mathbb{E}\left(\left(\int_{0}^{t} \int_{0}^{t} \operatorname{sgn}\left\{W_{s}-W_{\varphi_{s}}\right\} \mathbb{1}_{\left\{\varphi_{s}, s\right\}} \mathrm{d} s \mathrm{~d} W_{r}\right)^{p}\right) \\
& =\mathbb{E}\left(\left(\int_{0}^{t}\left|\int_{0}^{t} \operatorname{sgn}\left\{W_{s}-W_{\varphi_{s}}\right\} \mathbb{1}_{\left\{\varphi_{s}, s\right\}} \mathrm{d} s\right|^{2} \mathrm{~d} r\right)^{p / 2}\right) \\
& =\mathbb{E}((\int_{0}^{t}|\underbrace{s-\varphi_{s}}_{\leq h}|^{2} \mathrm{~d} r)^{p / 2})=\left(C h^{2}\right)^{p / 2}=C h^{p}
\end{aligned}
$$

