
Exercise 5.2
(Milstein scheme)

Denote by (Xt)t≥0 the solution of the stochastic differential equation

Xt = x+

∫ t

0

σ(Xs) dWs +

∫ t

0

b(Xs) ds,

where σ, b : R→ R are bounded C2-functions with bounded derivatives.

1. Show the short time L2-approximation

E
((
Xt − [x+ b(x)t+ σ(x)Wt]

)2)
=

(σσ′(x))2

2
t2 + o(t2).

Solution: First of all, there is a question on how to interpret o(·) here. In general, it is defined as
f(x) ∈ o(g(x)) if it holds that

lim
x→∞

f(x)

g(x)
= 0.

However, what makes sense here is that we are supposed to interpret t as the size of an interval in
the Milstein scheme, so we make the assumption that we consider the case when t→ 0, and proceed
the exercise given this.

We apply Itô’s formula on b and σ and integrate from 0 to t and note that∫ t

0

b(Xs) ds = b(x)t+

∫ t

0

∫ s

0

b′(Xr)b(Xr) +
1

2
b′′(Xr)σ(Xr)

2 dr ds

+

∫ t

0

∫ s

0

b′(Xr)σ(Xr) dWr ds,∫ t

0

σ(Xs) dWs = σ(x)Wt +

∫ t

0

∫ s

0

σ′(Xr)b(Xr) +
1

2
σ′′(Xr)σ(Xr)

2 dr dWs

+

∫ t

0

∫ s

0

σ′(Xr)σ(Xr) dWr dWs.

At this point, the integrals with drds and dWsdr can be neglected, and we only need to consider
the integrals with dWsdWr (since the other integrals grow faster and will hence be included in the
same o(·)). For example, looking at the first integral in the expression for b, we get

E

((∫ t

0

∫ s

0

(bounded integrand) dr ds

)2
)
∼ Ct4.

Hence, the expectation we seek will be equivalent to

E

((∫ t

0

∫ s

0

σ′(Xr)σ(Xr) dWr dWs

)2
)

=

∫ t

0

∫ s

0

E
(

(σ′(Xr)σ(Xr))
2
)

drds,
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where the Itô isometry has been applied twice. Next, consider Itô’s formula on the function f(x) = x2

with x = σ′(x)σ(x), and we find

(σ′(Xt)σ(Xt))
2 = (σ′(x)σ(x))2 +

∫ t

0

2σ′(Xs)σ(Xs)b(Xs) +
1

2
2σ(Xs)

2 ds+

∫ t

0

2σ′(Xs)σ(Xs)σ(Xs) dWs.

Here, the first constant stay as it is, the second term will in total join the o(t2) (since it itself is o(t)
and inserted in the double integral will become of order t3, hence o(t2)), and the last integral is the
expectation of a stochastic integral (thus centered) and is evaluated to 0. Thus we find that

E
(
(Xt − [x+ b(x)t+ σ(x)Wt])

2
)

=

∫ t

0

∫ s

0

E
(

(σ′(Xr)σ(Xr))
2
)

drds+ o(t2)

=
(σ′(x)σ(x))2

2
t2 + o(t2).

2. Similarly, show

E
((

Xt − [x+ b(x)t+ σ(x)Wt +
1

2
σσ′(x)(W 2

t − t)]
)2)

= O(t3).

Solution: For this task, we follow the procedure of the previous exercise (i.e. applying Itô’s formula
on b(x) and σ(x)), but note that∫ t

0

∫ s

0

σ′(Xr)σ(Xr) dWrdWs =

∫ t

0

∫ s

0

(
σ′(x)σ(x) +

∫ r

0

b(Xy) dy +

∫ r

0

σ(Xy) dWy

)
dWrdWs,

where we have simply written σ′(Xr)σ(Xr) as its expression as an Itô process. Here it suffices to
note that ∫ t

0

∫ s

0

σ′(x)σ(x) dWrdWs = σ′(x)σ(x)

∫ t

0

Ws dWs =
1

2
σ′(x)σ(x)(W 2

t − t),

and that the expectation squared of the other integrals become as

E
(∫ t

0

∫ s

0

∫ r

0

b(Xy) dydWrdWs

)2

= E
∫ t

0

∫ s

0

(∫ r

0

b(Xy) dy︸ ︷︷ ︸
=O(t)

)2

drds = O(t4),

E
(∫ t

0

∫ s

0

∫ r

0

σ(Xy) dWydWrdWs

)2

= E
∫ t

0

∫ s

0

∫ r

0

σ(Xy)2 dydrds = O(t3).

Hence we find that

E
((

Xt − [x+ b(x)t+ σ(x)Wt +
1

2
σσ′(x)(W 2

t − t)]
)2)

= O(t3),

since the remaining integrals that appear from the Itô formula on b(x) and σ(x) can be found to
be of O(t3) when squaring them and taking the expectation. The reason why it suffices to check
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the expectation of the square of each integral for itself is that we can simply apply the convexity
inequality on the expression.

3. The estimate in previous task leads to a high-order scheme, called the Milstein scheme, which is
written

X
(h,M)
0 = x,

Xh,M
(i+1)h = X

(h,M)
ih + b(X

(h,M)
ih )h+ σ(X

(h,M)
ih )(W(i+1)h −Wih)

+
1

2
σσ′(X

(h,M)
ih )[(W(i+1)h −Wih)2 − h].

Use the estimate derived in previous task to prove that

sup
0≤i≤N

E(|X(h,M)
ih −Xih|2) = O(h2).

Solution: We split the error as

Xnh −X(h,M)
nh = Xnh −X(n−1)h +X

(h,M)
nh −X(h,M)

(n−1)h +X(n−1)h −X
(h,M)
(n−1)h, (1)

and start by analyzing the contribution from the last part, i.e., X(n−1)h −X
(h,M)
(n−1)h. This is done by

proof of induction. That is, we begin by assuming that

E{(Xih −X(h,M)
ih )2} = O(h3)

holds for i. For i+ 1, we then have

E{(X(i+1)h−X
(h,M)
(i+1)h)2}

= E{X(i+1)h − (Xih + b(Xih)h+ σ(Xih)∆W(i+1)h +
1

2
σσ′(Xih)(∆W 2

(i+1)h − h)

+ (Xih + b(Xih)h+ σ(Xih)∆W(i+1)h +
1

2
σσ′(Xih)(∆W 2

(i+1)h − h)

− (X
(h,M)
ih + b(X

(h,M)
ih )h+ σ(X

(h,M)
ih )∆W(i+1)h +

1

2
σσ′(X

(h,M)
ih )(∆W 2

(i+1)h − h)))2}

≤ 2Ch3 + 2·4E{(Xih −X(h,M)
ih )2}(1 + Lip2

bh
2 + Lip2

σh+
1

4
Lip2

σσ′h2) = O(h3).

Here, we first added and subtracted the two center terms, followed by the convex inequality to
separate the two parts. We then used the estimate derived in previous exercise for the first part,
and finally used the Lipschitz continuity of b and σ for the second part.

3



For the contribution of the first two terms in (1), we have

E{((X(i+1)h −Xih) + (X
(h,M)
(i+1)h −X

(h,M)
ih ))2}

= E{(X(i+1)h −Xih − (b(Xih)h+ σ(Xih)∆W(i+1)h +
1

2
σσ′(Xih)(∆W 2

(i+1)h − h))

+ (b(Xih)h+ σ(Xih)∆W(i+1)h +
1

2
σσ′(Xih)(∆W 2

(i+1)h − h))

− (b(X
(h,M)
ih )h+ σ(X

(h,M)
ih )∆W(i+1)h +

1

2
(∆W 2

(i+1)h − h)))2}

≤ 2Ch3 + 2h[Lip2
bh+ Lip2

σ +
1

4
Lip2

σσ′h]E{(Xih −X(h,M)
ih )2}︸ ︷︷ ︸

≤C(ih)·h2

≤ 2Ch3 + 2Ch3(ih).

Above, we first added and subtracted the two middle terms, used earlier results, and the Lipschitz
continuity of b and σ. In total, we have

sup
n≤i+1

E{(Xnh−X(h,M)
nh )2}

≤ sup
n≤i

2 · E{(Xih −X(h,M)
ih )2}+ 2 · E{(X(i+1)h −Xih + (X

(h,M)
(i+1)h −X

(h,M)
ih ))2}

≤ 2C · ih · h2 + 2Ch3 + 2Ch2 · ih = O(h2),

since we can bound ih ≤ T for a finite time T .
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