Exercise 5.3

(Convergence rate of weak convergence)
We consider the model of geometric Brownian motion:

$$
X_{t}=x+\int_{0}^{t} \sigma X_{s} \mathrm{~d} W_{s}+\int_{0}^{t} \mu X_{s} \mathrm{~d} s
$$

with $x>0$.

1. Compute $\mathbb{E}\left(X_{T}^{2}\right)$.

Solution: We start by finding the exact solution for the equation. Apply Itô's formula on $f(x)=\ln (x)$ and note that

$$
\begin{aligned}
\ln \left(X_{t}\right) & =\ln \left(X_{0}\right)+\int_{0}^{t} \frac{1}{X_{s}} \mu X_{s}-\frac{1}{2 X_{s}^{2}} \sigma^{2} X_{s}^{2} \mathrm{~d} s+\int_{0}^{t} \frac{1}{X_{s}} \sigma X_{s} \mathrm{~d} W_{s} \\
& =\ln (x)+\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma W_{t}
\end{aligned}
$$

and thus $X_{T}=x e^{\left(\mu-\sigma^{2} / 2\right) T+\sigma W_{T}}$. Squaring this, we note that

$$
X_{T}^{2}=x^{2} e^{2 \mu T-\sigma^{2} T+2 \sigma W_{T}}
$$

Now, we use the fact that for a random variable $Z \sim \mathcal{N}\left(0, \xi^{2}\right)$ it holds that $\mathbb{E}\left(e^{c Z}\right)=e^{\frac{1}{2} c^{2} \sigma^{2}}$. Since $\operatorname{Var}\left(W_{T}\right)=T$, we get

$$
\begin{aligned}
\mathbb{E}\left(X_{T}^{2}\right) & =\mathbb{E}\left(x^{2} e^{2 \mu T-\sigma^{2} T+2 \sigma W_{T}}\right)=x^{2} e^{2 \mu T-\sigma^{2} T} \mathbb{E}\left(e^{2 \sigma W_{T}}\right) \\
& =x^{2} e^{2 \mu T-\sigma^{2} T} e^{2 \sigma^{2} T}=x^{2} e^{2 \mu T+\sigma^{2} T}
\end{aligned}
$$

2. Let $X^{(h)}$ be the related Euler scheme with time step h. Set $y_{i}=\mathbb{E}\left(\left(X_{i h}^{(h)}\right)^{2}\right)$. Find a relation between y_{i+1} and y_{i}.

Solution: We have that (by looking at the Euler scheme for $X_{(i+1) h}^{(h)}$ and moving the first term to the left hand side)

$$
\begin{aligned}
\mathbb{E}\left(\left(X_{(i+1) h}^{(h)}-X_{i h}^{(h)}\right)^{2}\right) & =\mathbb{E}\left(\left(b\left(X_{i h}^{(h)}\right) h+\sigma\left(X_{i h}^{(h)}\right)\left(W_{(i+1) h}-W_{i h}\right)\right)^{2}\right) \\
& =\mathbb{E}\left(\left(\mu X_{i h}^{(h)} h+\sigma X_{i h}^{(h)}\left(W_{(i+1) h}-W_{i h}\right)\right)^{2}\right) \\
& \left.=\mathbb{E}\left(\mu^{2}\left(X_{i h}^{(h)}\right)^{2} h^{2}+\sigma^{2}\left(X_{i h}^{(h)}\right)^{2}\left(W_{(i+1) h}-W_{i h}\right)^{2}\right)\right) \\
& =\mathbb{E}\left(\left(X_{i h}^{(h)}\right)^{2}\right)\left(\mu^{2} h^{2}+\sigma^{2} h\right) \\
& =y_{i}\left(\mu^{2} h^{2}+\sigma^{2} h\right),
\end{aligned}
$$

where in the third step the mixed term vanishes since the expected value of the Brownian increment is 0 . Next we note that

$$
\begin{aligned}
\mathbb{E}\left(X_{i h}^{(h)}\left(X_{(i+1) h}^{(h)}-X_{i h}^{(h)}\right)\right) & =\mathbb{E}\left(X_{i h}^{(h)}\left(\mu X_{i h}^{(h)} h+\sigma X_{i h}^{(h)}\left(W_{(i+1) h}-W_{i h}\right)\right)\right) \\
& =\mathbb{E}\left(\left(X_{i h}^{(h)}\right)^{2}\right) \mu h=y_{i} \mu h,
\end{aligned}
$$

where the second term vanished, once again, due to expectation 0 from the increments. Now, we can find a relation by writing

$$
\begin{aligned}
y_{i+1} & =\mathbb{E}\left(\left(X_{(i+1) h}^{(h)}\right)^{2}\right)=\mathbb{E}\left(\left(X_{(i+1) h}^{(h)}-X_{i h}^{(h)}+X_{i h}^{(h)}\right)^{2}\right) \\
& =\mathbb{E}\left(\left(X_{(i+1) h}^{(h)}-X_{i h}^{(h)}\right)^{2}+2 X_{i h}^{(h)}\left(X_{(i+1) h}^{(h)}-X_{i h}^{(h)}\right)+\left(X_{i h}^{(h)}\right)^{2}\right) \\
& =y_{i}\left(\mu^{2} h^{2}+\sigma^{2} h\right)+2 y_{i} \mu h+y_{i} \\
& =y_{i}\left(1+2 \mu h+\sigma^{2} h+\mu^{2} h^{2}\right) .
\end{aligned}
$$

3. Deduce that $\mathbb{E}\left(\left(X_{T}^{(h)}\right)^{2}\right)=\mathbb{E}\left(X_{T}^{2}\right)+\mathcal{O}(h)$.

Solution: From previous exercise, we deduce

$$
y_{i+1}=\left(1+\left(2 \mu+\sigma^{2}+\mu^{2} h\right) h\right) y_{i}=\left(1+\left(2 \mu+\sigma^{2}+\mu^{2} h\right) h\right)^{i+1} x^{2}
$$

since $y_{0}=x^{2}$. Moreover, if we set the number of time steps to N, we have $h=T / N$, and thus

$$
\begin{aligned}
\mathbb{E}\left\{\left(X_{T}^{(h)}\right)^{2}\right\}=y_{N} & =\left(1+\frac{\left(2 \mu+\sigma^{2}+\mu^{2} h\right) T}{N}\right)^{N} x^{2} \\
& \leq e^{\left(2 \mu+\sigma^{2}+\mu^{2} h\right) T} x^{2} \\
& =e^{\left(2 \mu+\sigma^{2}+\mu^{2} h\right) T} x^{2}+x^{2} e^{2 \mu T+\sigma^{2} T}-x^{2} e^{2 \mu T+\sigma^{2} T} \\
& \left.=\mathbb{E}\left\{X_{T}^{2}\right\}\right\}+x^{2}\left(e^{\left(2 \mu+\sigma^{2}+\mu^{2} h\right) T}-e^{2 \mu T+\sigma^{2} T}\right) \\
& \left.=\mathbb{E}\left\{X_{T}^{2}\right\}\right\}+x^{2}\left(e^{2 \mu T+\sigma^{2} T}\left(e^{\mu^{2} h T}-1\right)\right) \\
& \leq E\left\{X_{T}^{2}\right\}+\mathcal{O}(h),
\end{aligned}
$$

which concludes the exercise. Above we began by using the fact that $\lim _{n \rightarrow \infty}(1+x / n)^{n}=e^{x}$ is a monotone sequence. Further, we added and subtracted $\mathbb{E}\left\{X_{T}^{2}\right\}$, and in the end we utilized Taylor's formula to conclude that $e^{\mu^{2} h T}-1=\mu^{2} h T+\mathcal{O}\left(h^{2}\right)$, which in total gave us the $\mathcal{O}(h)$-term in the end.

