EXERCISE 5.3

(Convergence rate of weak convergence)

We consider the model of geometric Brownian motion:

$$X_t = x + \int_0^t \sigma X_s \, \mathrm{d}W_s + \int_0^t \mu X_s \, \mathrm{d}s,$$

with x > 0.

1. Compute $\mathbb{E}(X_T^2)$.

Solution: We start by finding the exact solution for the equation. Apply Itô's formula on $f(x) = \ln(x)$ and note that

$$\ln(X_t) = \ln(X_0) + \int_0^t \frac{1}{X_s} \mu X_s - \frac{1}{2X_s^2} \sigma^2 X_s^2 \, \mathrm{d}s + \int_0^t \frac{1}{X_s} \sigma X_s \, \mathrm{d}W_s$$

= $\ln(x) + \left(\mu - \frac{\sigma^2}{2}\right) t + \sigma W_t,$

and thus $X_T = x e^{(\mu - \sigma^2/2)T + \sigma W_T}$. Squaring this, we note that

$$X_T^2 = x^2 e^{2\mu T - \sigma^2 T + 2\sigma W_T}.$$

Now, we use the fact that for a random variable $Z \sim \mathcal{N}(0,\xi^2)$ it holds that $\mathbb{E}(e^{cZ}) = e^{\frac{1}{2}c^2\sigma^2}$. Since $\operatorname{Var}(W_T) = T$, we get

$$\mathbb{E}(X_T^2) = \mathbb{E}(x^2 e^{2\mu T - \sigma^2 T + 2\sigma W_T}) = x^2 e^{2\mu T - \sigma^2 T} \mathbb{E}(e^{2\sigma W_T})$$
$$= x^2 e^{2\mu T - \sigma^2 T} e^{2\sigma^2 T} = x^2 e^{2\mu T + \sigma^2 T}.$$

2. Let $X^{(h)}$ be the related Euler scheme with time step h. Set $y_i = \mathbb{E}((X_{ih}^{(h)})^2)$. Find a relation between y_{i+1} and y_i .

<u>Solution</u>: We have that (by looking at the Euler scheme for $X_{(i+1)h}^{(h)}$ and moving the first term to the left hand side)

$$\mathbb{E}\left((X_{(i+1)h}^{(h)} - X_{ih}^{(h)})^2\right) = \mathbb{E}\left((b(X_{ih}^{(h)})h + \sigma(X_{ih}^{(h)})(W_{(i+1)h} - W_{ih}))^2\right)$$

$$= \mathbb{E}\left((\mu X_{ih}^{(h)}h + \sigma X_{ih}^{(h)}(W_{(i+1)h} - W_{ih}))^2\right)$$

$$= \mathbb{E}\left(\mu^2 \left(X_{ih}^{(h)}\right)^2 h^2 + \sigma^2 \left(X_{ih}^{(h)}\right)^2 (W_{(i+1)h} - W_{ih})^2\right)\right)$$

$$= \mathbb{E}\left(\left(X_{ih}^{(h)}\right)^2\right)(\mu^2 h^2 + \sigma^2 h)$$

$$= y_i(\mu^2 h^2 + \sigma^2 h),$$

where in the third step the mixed term vanishes since the expected value of the Brownian increment is 0. Next we note that

$$\mathbb{E}(X_{ih}^{(h)}(X_{(i+1)h}^{(h)} - X_{ih}^{(h)})) = \mathbb{E}(X_{ih}^{(h)}(\mu X_{ih}^{(h)}h + \sigma X_{ih}^{(h)}(W_{(i+1)h} - W_{ih})))$$

= $\mathbb{E}((X_{ih}^{(h)})^2)\mu h = y_i\mu h,$

where the second term vanished, once again, due to expectation 0 from the increments. Now, we can find a relation by writing

$$y_{i+1} = \mathbb{E}\left(\left(X_{(i+1)h}^{(h)}\right)^2\right) = \mathbb{E}\left(\left(X_{(i+1)h}^{(h)} - X_{ih}^{(h)} + X_{ih}^{(h)}\right)^2\right)$$

= $\mathbb{E}\left(\left(X_{(i+1)h}^{(h)} - X_{ih}^{(h)}\right)^2 + 2X_{ih}^{(h)}\left(X_{(i+1)h}^{(h)} - X_{ih}^{(h)}\right) + \left(X_{ih}^{(h)}\right)^2\right)$
= $y_i(\mu^2 h^2 + \sigma^2 h) + 2y_i \mu h + y_i$
= $y_i(1 + 2\mu h + \sigma^2 h + \mu^2 h^2).$

3. Deduce that $\mathbb{E}((X_T^{(h)})^2) = \mathbb{E}(X_T^2) + \mathcal{O}(h).$

Solution: From previous exercise, we deduce

$$y_{i+1} = (1 + (2\mu + \sigma^2 + \mu^2 h)h)y_i = (1 + (2\mu + \sigma^2 + \mu^2 h)h)^{i+1}x^2$$

since $y_0 = x^2$. Moreover, if we set the number of time steps to N, we have h = T/N, and thus

$$\mathbb{E}\{(X_T^{(h)})^2\} = y_N = \left(1 + \frac{(2\mu + \sigma^2 + \mu^2 h)T}{N}\right)^N x^2$$

$$\leq e^{(2\mu + \sigma^2 + \mu^2 h)T} x^2$$

$$= e^{(2\mu + \sigma^2 + \mu^2 h)T} x^2 + x^2 e^{2\mu T + \sigma^2 T} - x^2 e^{2\mu T + \sigma^2 T}$$

$$= \mathbb{E}\{X_T^2\}\} + x^2 \left(e^{(2\mu + \sigma^2 + \mu^2 h)T} - e^{2\mu T + \sigma^2 T}\right)$$

$$= \mathbb{E}\{X_T^2\}\} + x^2 \left(e^{2\mu T + \sigma^2 T} (e^{\mu^2 hT} - 1)\right)$$

$$\leq E\{X_T^2\} + \mathcal{O}(h),$$

which concludes the exercise. Above we began by using the fact that $\lim_{n\to\infty}(1+x/n)^n = e^x$ is a monotone sequence. Further, we added and subtracted $\mathbb{E}\{X_T^2\}$, and in the end we utilized Taylor's formula to conclude that $e^{\mu^2 hT} - 1 = \mu^2 hT + \mathcal{O}(h^2)$, which in total gave us the $\mathcal{O}(h)$ -term in the end.