
MVE565/MMA630

Exercise sessions

This document contains the exercises that are to be presented on the exercise sessions in the
course Computational Methods for Stochastic Differential Equations (MVE565/MMA630). The ex-
ercises are taken directly from the course literature ”Monte-Carlo Methods and Stochastic Processes:
From Linear to Non-Linear” by Emmanuel Gobet. This document has further provided hints to
some of the exercises. However, it should be clarified that several of the exercises are not restricted
to a unique solution, and it is not required to follow given hints.

By solving the exercises, there is a possibility to gain bonus points for the final exam. For each
exercise (or sub-exercise) that is solved, one gains a credit, and a certain amount of credits will in
turn yield bonus points. To obtain the credits, one must be ready to present the exercises on the
blackboard on the exercise sessions. By the end of the course, 40% (12/30) of the credits will grant
1 bonus point for the final exam, and 60% (18/30) will grant 2 bonus points.
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Exercise session 1

Exercise 4.1 (Linear transformation of Brownian motion)

i) Let W be a standard d-dimensional Brownian motion and let U be an orthogonal matrix (i.e.
UT = U−1). Prove that UW defines a new standard d-dimensional Brownian motion. (1 credit)

ii) Let W1 and W2 be two independent Brownian motions. For any ρ ∈ [−1, 1], justify that ρW1 +√
1− ρ2W2 and −

√
1− ρ2W1 + ρW2 are two independent Brownian motions. (1 credit)

Hints: None.

Exercise 4.2 (Approximation of the integral of a stochastic process)

For a standard Brownian motion, we study the convergence rate of the approximation

∆In :=

∫ 1

0

Ws ds− 1

n

n−1∑
i=0

W i
n
,

as n→ +∞.

i) (Rough estimate). Prove that

E(|∆In|) ≤
n−1∑
i=0

E

(∫ i+1
n

i
n

∣∣∣Ws −W i
n

∣∣∣ ds

)
= O(n−1/2). (1 credit)

Hints: For the inequality, one can start by dividing the integral
∫ 1

0
Ws ds into a sum of n integrals,

partitioned on [0, 1], and continue from there. For the last equality, one can apply Fubini’s theorem
and calculate E(|X|) for X ∼ N (0, σ2).

ii) Using Lemma A.1.4, prove that ∆In is Gaussian distributed. Compute its parameters and
conclude that

E(|∆In|) = O(n−1). (1 credit)

Hints: One can write ∆In as a sum of n integrals (as in the hint in previous task). For one of these
integrals, one can view it as the limit of a Riemann sum, called SM . Show SM is Gaussian and
compute its expectation and variance, and apply Lemma A.1.4 by taking corresponding limits as
M →∞. The last part can then be computed since you have shown ∆In is Gaussian and you know
its expectation and variance.

iii) A more generic proof of the above estimate consists of writing

∆In :=

n−1∑
i=0

∫ i+1
n

i
n

( i+ 1

n
− s
)

dWs.

Show this by applying the Itô formula to s 7→ ( i+1
n − s)(Ws −W i

n
) on each interval [ in ,

i+1
n ]. Using

the Itô isometry, derive E(|∆In|2) = O(n−2) and therefore the announced estimate. (1 credit)

Hints: None.
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iv) Proceeding as in (iii), extend the previous estimate to

∆I ′n :=

∫ 1

0

Xs ds− 1

n

n−1∑
i=0

X i
n
,

where X is a scalar Itô process with bounded coefficients. (1 credit)

Hints: As earlier, one can write ∆I ′n as a sum of n integrals. Apply Itô’s formula using f(s,Xs) =
( i+1
n −s)(Xs−X i

n
), and bound ∆I ′n using the fact that the coefficients are bounded. Use this bound

to further show the sought estimate E(|∆I ′n|2) = O(n−2). When showing this, you can use the fact
that E(|∆In|2) = 1

3n2 .

3



Exercise session 2

Exercise 4.3 (Approximation of stochastic integral)

We consider the convergence rate of the approximation

∆Jn :=

∫ 1

0

Zs dWs −
n−1∑
i=0

Z i
n

(W i+1
n
−W i

n
)

where Zs := f(s,Ws) for some function f , such that E
∫ 1

0
|Zs|2 ds + supi<n E(|Z i

n
|2) < +∞. We

illustrate that the convergence order is, under mild conditions, equal to 1/2 but it can be smaller
for irregular f .

i) Show that

E(|∆Jn|2) = E
( n−1∑
i=0

∫ i+1
n

i
n

|Zs − Z i
n
|2 ds

)
. (1 credit)

Hints: Note that
∫ (i+1)/n

i/n
dWs = W i+1

n
−W i

n
, so the terms in the sum of ∆Jn can be written as

stochastic integrals. One may then write ∆Jn as one integral and apply Itô isometry.

ii) When Zs = Ws, show that E(|∆Jn|2) ∼ Cstn−1 for some positive constant. (1 credit)

Hints: Start by using the result from (i).

iii) Assuming that f is bounded, smooth with bounded derivatives, prove that E(|∆Jn|2) = O(n−1).
(1 credit)

Hints: Bound Zs − Z i
n

by using Itô’s formula. Use the result from (i) in combination with the

derived bound.

iv) Assume that Z is a square-integrable martingale. Show that E(|Zs − Z i
n
|2) ≤ E(|Z i+1

n
|2) −

E(|Z i
n
|2), and thus E(|∆Jn|2) ≤ (E(|Z1|2)− E(|Z0|2)n−1. (1 credit)

Hints: For the first part, use towering property to show that E(|Zs−Z i
n
|2) = E(Z2

s )−E(Z2
i
n

). Then

show that E(Z2
s ) ≤ E(Z2

i+1
n

) to get the sought inequality. Use the derived inequality, in combination

with the result from (i) to compute the last inequality.

Exercise 4.4 (Exact simulation of Ornstein–Uhlenbeck process)

Let us consider the Ornstein–Uhlenbeck process (Xt)t≥0, the solution of

Xt = x0 − a
∫ t

0

Xs ds+ σWt,

where x0 ∈ R, σ > 0, and (Wt)t≥0 is a standard Brownian motion.

i) By applying the Itô formula to eatXt, give an explicit representation for Xt in terms of stochastic
integrals. (1 credit)
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Hints: None.

ii) Deduce the explicit distribution of (Xt1 , ..., Xtn). (1 credit)

Hints: The sought representation ofXt from previous task is given byXt = x0e
−at+σ

∫ t
0
ea(s−t) dWs.

For the computation of the covariance, it is convenient to apply the covariance property (stated on
page 136 in the course literature).

iii) Find two functions α(t) and β(t) such that (Xt)t≥0 has the same distribution as (Yt)t≥0 with
Yt = α(t)(x0 +Wβ(t)). (1 credit)

Hints: The result in (ii) is that Xt is Gaussian with expectation E(Xt) = x0e
−at and covariance

Cov(XtXs) = σ2

2a e
−a(t−s)(1− e−2as).
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Exercise session 3

Exercise 4.5 (Transformations of SDE and PDE)

For any t ∈ [0, T ) and x ∈ R, we denote by (Xt,x
s , s ∈ [t, T ]) the solution to

Xs = x+

∫ s

t

b(Xr) dr +

∫ s

t

σ(Xr) dWr, t ≤ s ≤ T,

where the coefficients b, σ : R → R are smooth with bounded derivatives, and σ(x) ≥ c > 0. For
a given Borel set A ⊂ R we define u(t, x) := P(Xt,x

T ∈ A). We assume in the following u(t, x) > 0
for any (t, x) ∈ [0, T ) × R, and that appropriate smoothness assumptions are satisfied (namely,
u ∈ C1,2([0, T )× R)).

i) Let x0 ∈ R and f be a bounded continuous function. Using the PDE satisfied by u on [0, T )×R,
show that

E(f(Xt)|XT ∈ A) =
E(f(Xt)u(t,Xt))

u(0, x0)
, ∀t < T,

where Xt = X0,x0

t to simplify. (1 credit)

Hints: Use definition of conditional expectation, and apply towering property with a filtration Ft.

ii) We assume that for any s ≤ t < T the equation

Xr = x+

∫ r

s

(
b(Xw) + σ2(Xw)

∂xu

u
(w,Xw)

)
dw +

∫ r

s

σ(Xw) dWw, s ≤ r ≤ t

has a unique solution, denoted by (X
s,x

r , s ≤ r ≤ t). We set vt(s, x) := E
(
f(X

s,x

t )
)
.

a) What is the PDE solved by (s, x) 7→ vt(s, x) on [0, t)× R? (1 credit)

Hints: None.

b) Applying the Itô formula to u(s,Xs) and vt(s, x), 0 ≤ s ≤ t, and then to u(s,Xs)vt(s,Xs),
show

E(f(Xt)u(t,Xt)) = vt(0, x0)u(0, x0), ∀t < T. (1 credit)

Hints: Apply Itô’s lemma in the sense of product rule for Itô processes on d(vt(s,Xs)u(s,Xs)).
Find an expression for dvt. For the du term, one can first show u(s,Xs) is a martingale, and
then see what happens to the du term by analyzing the Riemann sum. Integrate and take
expectation of the expression for d(vt(s,Xs)u(s,Xs)).

c) Conclude that for any t < T , the distribution of Xt given {XT ∈ A} is the distribution of

X
0,x0

t . (1 credit)

Hints: None.

iii) We skip this one.
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Exercise 5.1 (Strong convergence)

Show that in Theorem 5.2.1, the convergence rate is of order 1 if σ is constant and b is C2 in space
and C1 in time.

We divide the exercise into two separate parts.

i) Show that the error E
(h)
t := X

(h)
t −Xt can be bounded in Lp-norm as

‖E(h)
t ‖p ≤

∥∥∥∥∫ t

0

b(ϕs, X
(h)
ϕs

)− b(s,X(h)
s ) ds︸ ︷︷ ︸

=:α(t)

∥∥∥∥
p

+ C

∫ t

0

∥∥E(h)
s

∥∥
p

ds. (1 credit)

Hints: None.

ii) Show that ‖α(t)‖p ≤ Ch. (1 credit).

Hints: One can show that |α(t)| ≤ Ch+ C
∫ t
0
|Ws −Wϕs |ds by using the Lipschitz continuity of b.

To further bound ‖α(t)‖pp, one can use a generalization of the convexity inequality.
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Exercise session 4

Exercise 5.2 (Milstein scheme)

Denote by (Xt)t≥0 the solution of the stochastic differential equation

Xt = x+

∫ t

0

σ(Xs) dWs +

∫ t

0

b(Xs) ds,

where σ, b : R→ R are bounded C2-functions with bounded derivatives.

1. Show the short time L2-approximation

E
((
Xt − [x+ b(x)t+ σ(x)Wt]

)2)
=

(σσ′(x))2

2
t2 + o(t2). (1 credit)

Hints: Itô’s formula is your friend here. Start by applying it to b and σ and work your way from
there.

2. Similarly, show

E
((

Xt − [x+ b(x)t+ σ(x)Wt +
1

2
σσ′(x)(W 2

t − t)]
)2)

= O(t3). (1 credit)

Hints: Start similarly with Itô’s formula on b and σ. Then try to write σ′σ as an Itô process and
analyze the expectation of each term that comes with it.

3. The estimate in previous task leads to a high-order scheme, called the Milstein scheme, which is
written

X
(h,M)
0 = x,

Xh,M
(i+1)h = X

(h,M)
ih + b(X

(h,M)
ih )h+ σ(X

(h,M)
ih )(W(i+1)h −Wih)

+
1

2
σσ′(X

(h,M)
ih )[(W(i+1)h −Wih)2 − h].

Use the estimate derived in previous task to prove that

sup
0≤i≤N

E(|X(h,M)
ih −Xih|2) = O(h2). (1 credit)

Hints: One can split the error as Xnh −X(h,M)
nh = Xnh −X(n−1)h +X

(h,M)
nh −X(h,M)

(n−1)h +X(n−1)h −
X

(h,M)
(n−1)h. The contribution from the last part can be shown to satisfy E{(Xih −X(h,M)

ih )2} = O(h3)

by proof of induction. For the induction, as well as later for the remaining contribution of the error
split, the Lipschitz continuity of b and σ can be of use.

Exercise 5.3 (Convergence rate of weak convergence)

We consider the model of geometric Brownian motion:

Xt = x+

∫ t

0

σXs dWs +

∫ t

0

µXs ds,

with x > 0.
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1. Compute E(X2
T ). (1 credit)

Hints: Apply Itô’s formula on f(x) = ln(x).

2. Let X(h) be the related Euler scheme with time step h. Set yi = E((X
(h)
ih )2). Find a relation

between yi+1 and yi. (1 credit)

Hints: One way is to take +Xih −Xih in yi+1, and derive expressions for each term in terms of yi.

3. Deduce that E((X
(h)
T )2) = E(X2

T ) +O(h). (1 credit)

Hints: Derive an expression for E{(X(h)
T )2} = yN in terms of y0 = x2. One can then add and

subtract E{X2
T }, and show the last part satisfies O(h) convergence rate.
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Exercise session 5

Exercise 6.1 (Central limit theorem for varying h and M)

We study the CLT-type convergence of

Errorh,M =
1

M

M∑
m=1

E(f, g, k,X(h,m))− E(E(f, g, k,X))

by varying both the number of simulation M and the time step h. We consider the asymptotics
M → +∞ and h→ 0, with different regimes on Mh2.

i) Assume Mh2 → 0, that f, g, k are bounded continuous functions, and that the weak error is of
order 1 w.r.t. h. Show a central limit theorem on

√
MErrorh,M with a limit equal to a centered

Gaussian random variable with variance Var(E(f, g, k,X)). (1 credit)

Hints: Decompose the error into stastical and discretization errors, and conclude which part is
sufficient to consider. To deduce the variance (and the fact that it is a Gaussian random variable),
one can use a characteristic function.

ii) Assume that Mh2 = Cst 6= 0, and prove a central limit theorem but with a non-centered Gaussian
random variable at the limit. For this, we assume that the weak error can be expanded at order 1
w.r.t. h. (1 credit)

Hints: None.

Exercise 6.2 (Multi-level method with various strong convergence order)

Assume that the strong convergence of the Euler scheme is of order 1 w.r.t. h, and the weak con-
vergence order is still 1 w.r.t h.

i) By a similar analysis to that of Theorem 6.3.1, determine the optimal allocation of computational
effort within the different levels (as a function of number of simulations). (1 credit)

Hints: Follow the calculations on page 200 in the course literature, but utilize the fact the we have
higher order of convergence for the strong error. Find corresponding expressions for E{Error2h,M}
and Ccost, and deduce optimal choice of Ml. This can be done by solving the optimization problem
to minimize Ccost subject to E{Error2h,M} ≤ ε2, using, e.g., Lagrange multiplier method.

ii) What is the global complexity Ccost as a function of the tolerance error ε? (1 credit)

Hints: Adapt the calculations made on page 201 in the course literature.

iii) More generally, assume that the Euler scheme converges strongly at order α ∈ (0, 1], and weakly
of order β ∈ (0, 1] (observe that α ≤ β). Derive the complexity/accuracy analysis associated with
a multi-level method. What are the configurations of (α, β) for which (after optimizing the effort
within levels)

Ccost ∼c ε−2,

i.e. we retrieve the standard Monte-Carlo convergence rate? (1 credit)

Hints: One can make similar calculations as in (i), but with new convergence orders α and β, and
then optimize using Lagrange multipliers to find a more general result of the one in (i).
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