
Exercise 6.2
(Multi-level method with various strong convergence order)

Assume that the strong convergence of the Euler scheme is of order 1 w.r.t. h, and the weak con-
vergence order is still 1 w.r.t h.

i) By a similar analysis to that of Theorem 6.3.1, determine the optimal allocation of computational
effort within the different levels (as a function of number of simulations).

Solution: Repeating the calculations on page 200 in the course literature, we get similar results but
with a few other details. The multi-level Monte-Carlo estimator is defined as
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To derive an expression for the variance of the estimator, we first note that we can write the variance
of a Monte-Carlo estimator as
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since the mixed terms become zero due to independence between simulations. The variance is thus
written as
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by using the independence of the simulations between the levels (to split the Var between the levels)
and within the levels (to rewrite each estimator as above). One numerator within the sum can
moreover be estimated as
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since in this case we have the strong convergence of order 1 instead of 1/2. We thus get an upper
bound on the squared quadratic error
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where in the last step the weak convergence order of 1 was applied. At the same time, the cost of

the algorithm is (denoting the cost on each level by C(l)cost ∼c Ml(h
−1
l + h−1

l−1) ∼c Mlh
−1
l )
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Comparing these two, we find the relationship (lowering the error and cost at the same rate) Ml =
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l , so that the rate is given as

Ml = M0 · 2−3l/2.

This result can be seen by applying Lagrange multiplier method on the problem
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i.e. construct the Lagrangian L(M1, ...ML, λ) = f +λg, where g is given by the constraint, and then
analyzing the partial derivatives,
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and since Ml = M0 · hcll , we conclude that we set λ = M0 (more rigorously, this can be seen by
looking at ∂L/∂λ = 0 and noting that λ ∼ ε−2, and then noting that M0 ∼ ε−2 in next part, so we
set λ = M0). (follows if we set λ = M0 in the end).

ii) What is the global complexity Ccost as a function of the tolerance error ε?

Solution: By the above expression
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where we applied the formula for geometric sum, bounded it by passing L → +∞ and rewrote the
limit. Moreover, we wish to have

√
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where C̃ = Var(f(X
(h0)
T )). For this to be satisfied, we note that 2−L = ε gives us L = | log(ε)|/ log(2),

and for the square root expression we note that it suffices to choose M0 ∼c ε−2. One difference in
this result in comparison with the book (when we do it with lower order of strong convergence), is
that we can skip the L within the square root expression, and hence get better asymptotic choice
for M0.

iii) More generally, assume that the Euler scheme converges strongly at order α ∈ (0, 1], and weakly
of order β ∈ (0, 1] (observe that α ≤ β). Derive the complexity/accuracy analysis associated with
a multi-level method. What are the configurations of (α, β) for which (after optimizing the effort
within levels)

Ccost ∼c ε−2,
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i.e. we retrieve the standard Monte-Carlo convergence rate?

Solution: Similar calculations, but with convergence orders α and β give us
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and for the cost we still have
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Applying the Lagrange multiplier method once more, we find the more general result
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The sum in (1) is bounded by L in this case so we get the cost Ccost ∼c ε−2| log(ε)|2 (the square
comes from the L).

If α < 1/2, we have the same relation on L, and the sum becomes (after rewriting the geometric
sum)
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Using the relation on L we can rewrite the numerator as
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Set the sum equal to ε2 and we find that
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which gives a cost of Ccost ∼c ε−3ε
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(the extra ε comes from the sum in (1)).
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At last, for α > 1/2 we get (let a ∈ (0, 1/2] here for convenient notation)
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Hence we get M0 ∼c ε−2 and moreover Ccost ∼c ε−2. We conclude that the desired result follows in
the case of α ∈ (1/2, 1] and β ∈ [α, 1].
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