ExERCISE 6.2

(Multi-Level method with various strong convergence order)
Assume that the strong convergence of the Euler scheme is of order 1 w.r.t. h, and the weak convergence order is still 1 w.r.t h.
i) By a similar analysis to that of Theorem 6.3.1, determine the optimal allocation of computational effort within the different levels (as a function of number of simulations).

Solution: Repeating the calculations on page 200 in the course literature, we get similar results but with a few other details. The multi-level Monte-Carlo estimator is defined as

To derive an expression for the variance of the estimator, we first note that we can write the variance of a Monte-Carlo estimator as

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{M} \sum_{m=1}^{M} f\left(X_{T}^{(m)}\right)\right) & =\mathbb{E}\left(\left(\frac{1}{M} \sum_{m=1}^{M} f\left(X_{T}^{(m)}\right)-\mathbb{E}\left(f\left(X_{T}\right)\right)\right)^{2}\right) \\
& =\frac{1}{M^{2}} \mathbb{E}\left(\left(\sum_{m=1}^{M}\left(f\left(X_{T}^{(m)}\right)-\mathbb{E}\left(f\left(X_{T}\right)\right)\right)\right)^{2}\right) \\
& =\frac{1}{M^{2}} \sum_{m=1}^{M} \mathbb{E}\left(\left(f\left(X_{T}^{(m)}\right)-\mathbb{E}\left(f\left(X_{T}\right)\right)\right)^{2}\right)=\frac{1}{M} \mathbb{V a r}\left(f\left(X_{T}\right)\right),
\end{aligned}
$$

since the mixed terms become zero due to independence between simulations. The variance is thus written as
by using the independence of the simulations between the levels (to split the \mathbb{V} ar between the levels) and within the levels (to rewrite each estimator as above). One numerator within the sum can moreover be estimated as

$$
\begin{aligned}
\operatorname{Var}\left(f\left(X_{T}^{\left(h_{l}\right)}\right)-f\left(X_{T}^{\left(h_{l-1}\right)}\right)\right) & \leq \mathbb{E}\left(\left|f\left(X_{T}^{\left(h_{l}\right)}\right)-f\left(X_{T}^{\left(h_{l-1}\right)}\right)\right|^{2}\right) \\
& \leq 2 \mathbb{E}\left(\left|f\left(X_{T}^{\left(h_{l}\right)}\right)-f\left(X_{T}\right)\right|^{2}\right)+2 \mathbb{E}\left(\left|f\left(X_{T}^{\left(h_{l-1}\right)}\right)-f\left(X_{T}\right)\right|^{2}\right) \\
& =\mathcal{O}\left(h_{l}^{2}\right)+\mathcal{O}\left(h_{l-1}^{2}\right)=\mathcal{O}\left(h_{l}^{2}\right),
\end{aligned}
$$

since in this case we have the strong convergence of order 1 instead of $1 / 2$. We thus get an upper bound on the squared quadratic error

$$
\begin{aligned}
\mathbb{E}\left(\operatorname{Error}_{h, M}^{2}\right) & :=\mathbb{E}\left(\left|{\overline{f\left(X_{T}\right)}{ }_{M_{0}} h_{0}, \ldots, h_{L}}^{M_{L}}-\mathbb{E}\left(f\left(X_{T}\right)\right)\right|^{2}\right) \\
& =\operatorname{Var}\left({\left.\overline{f\left(X_{T}\right.}\right)_{M_{0}}, \ldots, h_{L}}_{h_{0}, \ldots, M_{L}}-\mathbb{E}\left(f\left(X_{T}\right)\right)\right)+\left(\mathbb { E } \left({\left.\left.\left.\overline{f\left(X_{T}\right.}\right)_{M_{0}, \ldots, M_{L}}^{h_{0}, \ldots, h_{L}}\right)-\mathbb{E}\left(f\left(X_{T}\right)\right)\right)^{2}}_{M_{0}}\right.\right. \\
& \leq_{c} h_{L}^{2}+\frac{\operatorname{Var}\left(f\left(X_{T}^{\left(h_{0}\right)}\right)\right)}{M_{l=1}^{L}} \frac{h_{l}^{2}}{M_{l}},
\end{aligned}
$$

where in the last step the weak convergence order of 1 was applied. At the same time, the cost of the algorithm is (denoting the cost on each level by $\mathcal{C}_{\text {cost }}^{(l)} \sim_{c} M_{l}\left(h_{l}^{-1}+h_{l-1}^{-1}\right) \sim_{c} M_{l} h_{l}^{-1}$)

$$
\mathcal{C}_{\text {cost }}=\sum_{l=0}^{L} \mathcal{C}_{\text {cost }}^{(l)} \sim_{c} \sum_{l=0}^{L} \frac{M_{l}}{h_{l}} .
$$

Comparing these two, we find the relationship (lowering the error and cost at the same rate) $M_{l}=$ $h_{l}^{3 / 2}$, so that the rate is given as

$$
M_{l}=M_{0} \cdot 2^{-3 l / 2}
$$

This result can be seen by applying Lagrange multiplier method on the problem

$$
\begin{array}{ll}
\operatorname{minimize} & \mathcal{C}_{\text {cost }}=: f\left(M_{1}, \ldots, M_{L}\right) \\
\text { subject to } & \sum_{l=1}^{L} \frac{h_{l}^{2}}{M_{l}}=\varepsilon^{2}
\end{array}
$$

i.e. construct the Lagrangian $\mathcal{L}\left(M_{1}, \ldots M_{L}, \lambda\right)=f+\lambda g$, where g is given by the constraint, and then analyzing the partial derivatives,

$$
\frac{\partial \mathcal{L}}{\partial M_{l}}=0 \Longrightarrow \frac{1}{h_{l}}-\lambda \frac{h_{l}^{2}}{M_{l}^{2}}=0 \Longrightarrow M_{l}=\lambda h_{l}^{3 / 2}
$$

and since $M_{l}=M_{0} \cdot h_{l}^{c l}$, we conclude that we set $\lambda=M_{0}$ (more rigorously, this can be seen by looking at $\partial \mathcal{L} / \partial \lambda=0$ and noting that $\lambda \sim \varepsilon^{-2}$, and then noting that $M_{0} \sim \varepsilon^{-2}$ in next part, so we set $\lambda=M_{0}$). (follows if we set $\lambda=M_{0}$ in the end).
ii) What is the global complexity $\mathcal{C}_{\text {cost }}$ as a function of the tolerance error ε ?

Solution: By the above expression

$$
\mathcal{C}_{\mathrm{cost}} \sim_{c} \sum_{l=0}^{L} \frac{M_{l}}{h_{l}}=M_{0} \sum_{l=0}^{L} h_{l}^{1 / 2}=M_{0} \sum_{l=0}^{L}\left(\frac{1}{\sqrt{2}}\right)^{l}=M_{0} \frac{1-(1 / \sqrt{2})^{L+1}}{1-1 / \sqrt{2}}<M_{0}(2+\sqrt{2})=: M_{0} C
$$

where we applied the formula for geometric sum, bounded it by passing $L \rightarrow+\infty$ and rewrote the limit. Moreover, we wish to have

$$
\sqrt{\mathbb{E}\left(\operatorname{Error}_{h, M}^{2}\right)} \leq_{c} 2^{-L}+\sqrt{\frac{\tilde{C}+C}{M_{0}}}<\varepsilon
$$

where $\tilde{C}=\operatorname{Var}\left(f\left(X_{T}^{\left(h_{0}\right)}\right)\right)$. For this to be satisfied, we note that $2^{-L}=\varepsilon$ gives us $L=|\log (\varepsilon)| / \log (2)$, and for the square root expression we note that it suffices to choose $M_{0} \sim_{c} \varepsilon^{-2}$. One difference in this result in comparison with the book (when we do it with lower order of strong convergence), is that we can skip the L within the square root expression, and hence get better asymptotic choice for M_{0}.
iii) More generally, assume that the Euler scheme converges strongly at order $\alpha \in(0,1]$, and weakly of order $\beta \in(0,1]$ (observe that $\alpha \leq \beta$). Derive the complexity/accuracy analysis associated with a multi-level method. What are the configurations of (α, β) for which (after optimizing the effort within levels)

$$
\mathcal{C}_{\text {cost }} \sim_{c} \varepsilon^{-2}
$$

i.e. we retrieve the standard Monte-Carlo convergence rate?

Solution: Similar calculations, but with convergence orders α and β give us

$$
\mathbb{E}\left(\operatorname{Error}_{h, M}^{2}\right) \leq_{c} h_{L}^{2 \beta}+\frac{\operatorname{Var}\left(f\left(X_{T}^{\left(h_{0}\right)}\right)\right)}{M_{0}}+\sum_{l=1}^{L} \frac{h_{l}^{2 \alpha}}{M_{l}}
$$

and for the cost we still have

$$
\mathcal{C}_{\mathrm{cost}} \sim_{c} \sum_{l=0}^{L} \frac{M_{l}}{h_{l}} .
$$

Applying the Lagrange multiplier method once more, we find the more general result

$$
M_{l}=M_{0} h_{l}^{\alpha+1 / 2}=M_{0} \cdot 2^{-(\alpha+1 / 2) l} .
$$

The sum in the quadratic error thus becomes

$$
\frac{1}{M_{0}} \sum_{l=1}^{L} h_{l}^{2 \alpha-(\alpha+1 / 2)}=\frac{1}{M_{0}} \sum_{l=1}^{L} h_{l}^{\alpha-1 / 2} .
$$

and the cost can be written as

$$
\begin{equation*}
\mathcal{C}_{\mathrm{cost}} \sim_{c} M_{0} \sum_{l=1}^{L} 2^{-l(\alpha-1 / 2)} . \tag{1}
\end{equation*}
$$

In the case $\alpha=1 / 2$ we get

$$
\begin{gathered}
h_{L}^{2 \beta}=2^{-2 \beta L}=\varepsilon^{2} \Longrightarrow L=\frac{|\log (\varepsilon)|}{\beta \log (2)} \\
\frac{1}{M_{0}} \sum_{l=1}^{L} h_{l}^{\alpha-1 / 2}=\frac{L}{M_{0}}=\varepsilon^{2} \Longrightarrow M_{0}=\varepsilon^{-2} L \sim_{c} \varepsilon^{-2}|\log (\varepsilon)| .
\end{gathered}
$$

The sum in (1) is bounded by L in this case so we get the cost $\mathcal{C}_{\text {cost }} \sim_{c} \varepsilon^{-2}|\log (\varepsilon)|^{2}$ (the square comes from the L).

If $\alpha<1 / 2$, we have the same relation on L, and the sum becomes (after rewriting the geometric sum)

$$
\frac{1}{M_{0}} \sum_{l=1}^{L} h_{l}^{\alpha-1 / 2}=\frac{1}{M_{0}} \sum_{l=1}^{L} 2^{l(1 / 2-\alpha)}=\frac{2^{(1 / 2-\alpha)(L+1)}}{M_{0}} \sim_{c} \frac{2^{L(1 / 2-\alpha)}}{M_{0}} .
$$

Using the relation on L we can rewrite the numerator as

$$
2^{L(1 / 2-\alpha)}=\left(2^{L}\right)^{1 / 2-\alpha}=\exp \left(\frac{|\log (\varepsilon)|}{\beta \log (2)} \log (2)\right)^{1 / 2-\alpha}=\varepsilon^{\left(\frac{1-2 \alpha}{\beta}\right)}
$$

Set the sum equal to ε^{2} and we find that

$$
M_{0}=\varepsilon^{-2} \varepsilon\left(\frac{1-2 \alpha}{\beta}\right),
$$

which gives a cost of $\mathcal{C}_{\text {cost }} \sim_{c} \varepsilon^{-3} \varepsilon\left(\frac{1-2 \alpha}{\beta}\right)$ (the extra ε comes from the sum in (1)).

At last, for $\alpha>1 / 2$ we get (let $a \in(0,1 / 2]$ here for convenient notation)

$$
\frac{1}{M_{0}} \sum_{l=1}^{L} h_{l}^{\alpha-1 / 2}=\frac{1}{M_{0}} \sum_{l=1}^{L} 2^{-a l}=\frac{1}{M_{0}}\left(\frac{1-2^{-a(L+1)}}{1-2^{-a}}-1\right) \leq_{c} \frac{1}{M_{0}} .
$$

Hence we get $M_{0} \sim_{c} \varepsilon^{-2}$ and moreover $\mathcal{C}_{\text {cost }} \sim_{c} \varepsilon^{-2}$. We conclude that the desired result follows in the case of $\alpha \in(1 / 2,1]$ and $\beta \in[\alpha, 1]$.

