Mathematics Chalmers \& GU

MVE455: Partial Differential Equations, 2020-06-09, 14:00-18:00

Telephone: Mohammad Asadzadeh: ankn 3517

An open book exam.

Each problem gives max 6 p. Valid bonus points will be added to the scores.
Breakings 3: $15-21 \mathrm{p}, 4$: $22-28 \mathrm{p}, 5: 29 \mathrm{p}-$

1. Prove that if f has square integrable second derivatives, then its L_{2}-projection $P_{h} f$ satisfies

$$
\left\|f-P_{h} f\right\|^{2} \leq C \sum_{K \in \mathcal{T}_{h}} h_{K}^{4}\left\|D^{2} f\right\|_{K}^{2}
$$

2. A model problem for the traffic flow of cars with speed u and density ρ can be written as (1)

$$
\dot{\rho}+\left(u \rho^{\prime}\right)=0
$$

Assume that $u=c-\varepsilon\left(\rho^{\prime} / \rho\right) \quad\left({ }^{* *}\right)$, and derive convection-diffusion equation $\dot{\rho}+c \rho^{\prime}-\varepsilon \rho^{\prime \prime}=0$. Give a full motivation for this choice $\left({ }^{* *}\right)$ of u.
3. Determine the two point boundary value problem having FEM linear system of equations, viz.

$$
S \xi=\mathbf{a}+\mathbf{b},
$$

where S is $(m+1) \times(m+1)$ matrix with EVEN m and with $s_{i i}=2 / h ; i=1, \ldots m$, and $s_{m+1, m+1}=1 / h, s_{i, i+1}=s_{i+1, i}=-1 / h, i=1, \ldots m$. Further \mathbf{a}, and \mathbf{b} are $(m+1) \times 1$ vectors:

$$
\begin{aligned}
a_{i}=0, \quad i=1,2, \ldots m, & a_{m+1}=1 \\
b_{i}=0, \quad i=1, \ldots, \frac{m}{2}+1, & b_{i}=-3 h, \quad i=\frac{m}{2}+2, \ldots, m+1
\end{aligned}
$$

4. Formulate and prove the Lax-Milgram theorem in full details for the $2 d$-problem

$$
-\Delta u+\alpha u^{\prime}=f, \quad x \in \Omega, \quad n \cdot \nabla u=0, \quad x \in \partial \Omega
$$

5. a) Consider the Schrödinger equation

$$
i \dot{u}-\Delta u=0, \quad \text { in } \Omega, \quad u=0, \quad \text { on } \partial \Omega,
$$

where $i=\sqrt{-1}$ and $u=u_{1}+u_{2}$. Show that the total probability: $\|u\|_{L_{2}(\Omega)}$ is time independent.
b) Consider the corresponding eigenvalue problem:

$$
-\Delta u=\lambda u, \quad \text { in } \Omega, \quad u=0, \quad \text { on } \partial \Omega
$$

Show that for the eigenpair $(\lambda, u), \lambda>0$. Give the relation between $\|u\|$ and $\|\nabla u\|$.
6. Consider the problem

$$
-u^{\prime \prime}+x u^{\prime}+u=f \quad \text { in } I=(0,1), \quad u(0)=u^{\prime}(1)=0
$$

where ε in a positive constant, and $f \in L_{2}(I)$. Prove the following L_{2}-stability:

$$
\left\|u^{\prime \prime}\right\| \leq\|f\|
$$

MA

