Mathematics Chalmers & GU

TMA372/MMG800: Partial Differential Equations, 2020-06-09, 14:00-18:00

Telephone: Mohammad Asadzadeh: ankn 3517

An open book exam.

Each problem gives max 6p. Valid bonus poits will be added to the scores.

Breakings for Chalmers; 3: 15-21p, 4: 22-28p, 5: 29p-, and for GU; G: 15-26p, VG: 27p-

1. Consier the following Dirichlet boundary value problem

$$-u'' = f$$
, $x \in I = (0,1)$, $u(0) = u(1) = 0$.

Let u_h be a finite element approximation of the solution u and show the a posteriori error estimate

$$||(u-u_h)'||^2 \le C \sum_{j=1}^N r_j^2(u_h),$$

where r_j is the L_2 -norm of the elementwise residual in a partition $0 = x_0 < x_1 < x_2 < \ldots < x_N = 1$ of $I = \bigcup_j I_j$; $I_j = (x_{j-1}, x_j), \ j = 1, 2, \ldots N$, given by $r_j(u_h) = h_j ||f + u_h''||_{L_2(I_j)}$.

2. A model problem for the traffic flow of cars with speed u and density ρ can be written as

$$\dot{\rho} + (u\rho') = 0.$$

Assuming $u = c - \varepsilon(\rho'/\rho)$ (**), yields convection-diffusion equation $\dot{\rho} + c\rho' - \varepsilon\rho'' = 0$. Give a full motivation for this choice (**) of u.

3. Determine the two point boundary value problem having FEM linear system of equations, viz.

$$S\xi = \mathbf{a} + \mathbf{b} + \mathbf{c}$$
,

where S is $(m+1) \times (m+1)$ matrix with EVEN m and with $s_{ii} = 2/h$; i = 1, ... m, and $s_{m+1,m+1} = 1/h$, $s_{i,i+1} = s_{i+1,i} = -1/h$, i = 1, ... m. Further **a**, **b** and **c** are $(m+1) \times 1$ vectors:

$$a_i = 0, \quad i = 1, 2, \dots m, \qquad a_{m+1} = 1$$

 $b_i = 7h, \quad i = 1, \dots, \frac{m}{2} + 1, \qquad b_i = 0, \quad i = \frac{m}{2} + 2, \dots, m + 1$
 $c_1 = -\frac{5}{h}, \qquad c_i = 0, \quad i = 2, \dots m + 1.$

4. Formulate and prove the Lax-Milgram theorem in full details for the 2d-problem

$$-\Delta u + \alpha u = f, \quad x \in \Omega, \qquad n \cdot \nabla u = 0, \quad x \in \partial \Omega.$$

5. a) Consider the Schrödinger equation

$$i\dot{u} - \Delta u = 0$$
, in Ω , $u = 0$, on $\partial\Omega$,

where $i = \sqrt{-1}$ and $u = u_1 + u_2$. Show that the total probability: $||u||_{L_2(\Omega)}$ is time independent.

b) Consider the corresponding eigenvalue problem:

$$-\Delta u = \lambda u$$
, in Ω , $u = 0$, on $\partial \Omega$.

Show that for the eigenpair (λ, u) , $\lambda > 0$. Give the relation between ||u|| and $||\nabla u||$.

- c) Give the smallest constant C in $||u|| \le C||\nabla u||$ in terms of the smallest eigenvalue λ_1 .
- 6. Consider the problem

$$-\varepsilon u'' + xu' + u = f$$
 in $I = (0, 1),$ $u(0) = u'(1) = 0,$

where ε in a positive constant, and $f \in L_2(I)$. Prove the following L_2 -stability:

$$\|\varepsilon u''\| \le \|f\|.$$