Mathematics Chalmers \& GU

TMA372/MMG800: Partial Differential Equations, 2020-06-09, 14:00-18:00

Telephone: Mohammad Asadzadeh: ankn 3517

An open book exam.

Each problem gives max 6 p. Valid bonus poits will be added to the scores.
Breakings for Chalmers; 3: 15-21p, 4: 22-28p, 5: 29p-, and for GU; G: 15-26p, VG: 27p-

1. Consier the following Dirichlet boundary value problem

$$
-u^{\prime \prime}=f, \quad x \in I=(0,1), \quad u(0)=u(1)=0
$$

Let u_{h} be a finite element approximation of the solution u and show the a posteriori error estimte

$$
\left\|\left(u-u_{h}\right)^{\prime}\right\|^{2} \leq C \sum_{j=1}^{N} r_{j}^{2}\left(u_{h}\right),
$$

where r_{j} is the L_{2}-norm of the elementwise residual in a partition $0=x_{0}<x_{1}<x_{2}<\ldots<x_{N}=1$ of $I=\cup_{j} I_{j} ; I_{j}=\left(x_{j-1}, x_{j}\right), j=1,2, \ldots N$, given by $r_{j}\left(u_{h}\right)=h_{j}\left\|f+u_{h}^{\prime \prime}\right\|_{L_{2}\left(I_{j}\right)}$.
2. A model problem for the traffic flow of cars with speed u and density ρ can be written as

$$
\begin{equation*}
\dot{\rho}+\left(u \rho^{\prime}\right)=0 \tag{1}
\end{equation*}
$$

Assuming $u=c-\varepsilon\left(\rho^{\prime} / \rho\right) \quad\left({ }^{* *}\right)$, yields convection-diffusion equation $\dot{\rho}+c \rho^{\prime}-\varepsilon \rho^{\prime \prime}=0$. Give a full motivation for this choice $\left({ }^{* *}\right)$ of u.
3. Determine the two point boundary value problem having FEM linear system of equations, viz.

$$
S \xi=\mathbf{a}+\mathbf{b}+\mathbf{c},
$$

where S is $(m+1) \times(m+1)$ matrix with EVEN m and with $s_{i i}=2 / h ; i=1, \ldots m$, and $s_{m+1, m+1}=1 / h, s_{i, i+1}=s_{i+1, i}=-1 / h, i=1, \ldots m$. Further \mathbf{a}, \mathbf{b} and \mathbf{c} are $(m+1) \times 1$ vectors:

$$
a_{i}=0, \quad i=1,2, \ldots m, \quad a_{m+1}=1
$$

$$
b_{i}=7 h, \quad i=1, \ldots, \frac{m}{2}+1, \quad b_{i}=0, \quad i=\frac{m}{2}+2, \ldots, m+1
$$

$$
c_{1}=-\frac{5}{h}, \quad c_{i}=0, \quad i=2, \ldots m+1
$$

4. Formulate and prove the Lax-Milgram theorem in full details for the $2 d$-problem

$$
-\Delta u+\alpha u=f, \quad x \in \Omega, \quad n \cdot \nabla u=0, \quad x \in \partial \Omega
$$

5. a) Consider the Schrödinger equation

$$
i \dot{u}-\Delta u=0, \quad \text { in } \Omega, \quad u=0, \quad \text { on } \partial \Omega,
$$

where $i=\sqrt{-1}$ and $u=u_{1}+u_{2}$. Show that the total probability: $\|u\|_{L_{2}(\Omega)}$ is time independent.
b) Consider the corresponding eigenvalue problem:

$$
-\Delta u=\lambda u, \quad \text { in } \Omega, \quad u=0, \quad \text { on } \partial \Omega .
$$

Show that for the eigenpair $(\lambda, u), \lambda>0$. Give the relation between $\|u\|$ and $\|\nabla u\|$.
c) Give the smallest constant C in $\|u\| \leq C\|\nabla u\|$ in terms of the smallest eigenvalue λ_{1}.
6. Consider the problem

$$
-\varepsilon u^{\prime \prime}+x u^{\prime}+u=f \quad \text { in } I=(0,1), \quad u(0)=u^{\prime}(1)=0
$$

where ε in a positive constant, and $f \in L_{2}(I)$. Prove the following L_{2}-stability:

$$
\left\|\varepsilon u^{\prime \prime}\right\| \leq\|f\|
$$

MA

