Mathematics Chalmers \& GU

TMA372/MMG800: Partial Differential Equations, 2020-03-16, 8:30-12:30
Telephone: Mohammad Asadzadeh: ankn 3517
Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 5 p. Valid bonus poits will be added to the scores.
Breakings for Chalmers; 3: 15-21p, 4: 22-28p, 5: 29p-, and for GU; G: 15-26p, VG: 27 p -

1. Prove that for $0<b-a \leq 1$,

$$
\|f\|_{L_{1}(a, b)} \leq\|f\|_{L_{2}(a, b)} \leq\|f\|_{L_{\infty}(a, b)}
$$

2. Show that there is a natural energy, associted with the solution u of the equation below, which is preserved in time (as t increases) for $b=0$, and decreases as time increases for $b>0$.

$$
\ddot{u}+b \dot{u}-u^{\prime \prime}=0 \quad 0<x<1, \quad u(0, t)=u(1, t)=0, \quad(b>0)
$$

3. Solution of problem: $-\left(a u^{\prime}\right)^{\prime}=f, 0<x<1, \quad u(0)=u^{\prime}(1)=0$, minimizes total energy: $F(v)=\frac{1}{2} \int_{0}^{1} a\left(v^{\prime}\right)^{2}-\int_{0}^{1} f v$, i.e., $F(u)=\min _{v \in V} F(v) ; u \in V$ where V is some function space.
(a) Show that for corresponding discrete minimum: $F(U)=\min _{v \in V_{h}} F(v), U \in V_{h} \subset V,(a=1)$:

$$
F(U)=F(u)+\frac{1}{2}\left\|(u-U)^{\prime}\right\|^{2}, \quad a \equiv 1 .
$$

(b) Let $a=1$ and show an a posteriori error estimate for the discrete energy minimum: i.e., for $|F(U)-F(u)|$. Note that V_{h} is the space of piecewise linear functions on subintervals of length h.
4. Let \mathbf{n} be the outward unit normal to $\Gamma:=\partial \Omega$ and consider the boundary value problem

$$
-\Delta u+u=f, \quad \text { in } \Omega \subset \mathbb{R}^{d}, \mathbf{n} \cdot \nabla u=g, \text { on } \Gamma:=\partial \Omega
$$

(a) Show the following stability estimate: for some constant C,

$$
\|\nabla u\|_{L_{2}(\Omega)}^{2}+\|u\|_{L_{2}(\Omega)}^{2} \leq C\left(\|f\|_{L_{2}(\Omega)}^{2}+\|g\|_{L_{2}(\Gamma)}^{2}\right)
$$

(b) Formulate a finite element method for the $1 D$-case and derive the resulting system of equations for $\Omega=[0,1], f(x)=1, g(0)=3$ and $g(1)=0$.
5. Compute the stiffness and mass matrices as well as load vector for the $\mathrm{cG}(1)$ approximation for

$$
-\varepsilon \Delta u+u=3, \quad x \in \Omega ; \quad u=0, \quad x \in \partial \Omega \backslash\left(\Gamma_{1} \cup \Gamma_{2}\right), \quad \nabla u \cdot \mathbf{n}=0, \quad x \in \Gamma_{1} \cup \Gamma_{2},
$$

where $\varepsilon>0$ and \mathbf{n} is the outward unit normal to $\partial \Omega$, (obs! 3 nodes N_{1}, N_{2} and N_{3}, see Fig.)

6. Formulate and prove the Lax-Milgram Theorem (same version as in the compendium).
void!

TMA372/MMG800: Partial Differential Equations, 2020-03-16, 8:30-12:30.

Solutions.

1. Using the definition of L_{p}-norms we write

$$
\begin{aligned}
\|f\|_{L_{1}(a, b)} & =\int_{a}^{b}|f(x)| b x=\int_{a}^{b} 1 \cdot|f(x)| b x \leq\{\mathrm{C}-\mathrm{S}\} \leq\left(\int_{a}^{b} 1^{2} d x\right)^{1 / 2}\left(\int_{a}^{b} f^{2}(x) d x\right)^{1 / 2} \\
& =\sqrt{b-a}\left(\int_{a}^{b} f^{2}(x) d x\right)^{1 / 2}=\sqrt{b-a}\|f\|_{L_{2}(a, b)} \\
& \leq \sqrt{b-a}\left(\int_{a}^{b} \max _{x \in[a, b]} f^{2}(x) d x\right)^{1 / 2}=\sqrt{b-a}\left(\int_{a}^{b} \max _{x \in[a, b]}|f(x)|^{2} d x\right)^{1 / 2} \\
& =\sqrt{b-a} \max _{x \in[a, b]}|f(x)| \cdot\left(\int_{a}^{b} d x\right)^{1 / 2}=(b-a)\|f\|_{L_{\infty}(a, b)}
\end{aligned}
$$

Thus, we have proved that

$$
\|f\|_{L_{1}(a, b)} \leq \sqrt{b-a}\|f\|_{L_{2}(a, b)} \leq(b-a)\|f\|_{L_{\infty}(a, b)}
$$

If now $0<(b-a) \leq 1$ then $0<\sqrt{b-a} \leq 1$, then we get'

$$
\|f\|_{L_{1}(a, b)} \leq\|f\|_{L_{2}(a, b)} \leq\|f\|_{L_{\infty}(a, b)}
$$

2. Some description: $\ddot{u}+b \dot{u}-u^{\prime \prime}=0$ models, e.g. the transversal oscillation of a wire fixed at its two endpoints, where $u(x, t)$ is the displacement coordinates.
The terms are corresponding to inertia, friction (from the surrounding media) and the resultant powers of all tension and stress, respectively.

Multiplying the equation by \dot{u} and integrating in spatial variable over [0,1$]$ yields

$$
\frac{1}{2} \frac{d}{d t}\left(\|\dot{u}\|^{2}+\left\|u^{\prime}\right\|^{2}\right)+b\|\dot{u}\|^{2}=0
$$

Hence considering the energy as

$$
E(u)=\frac{1}{2}\|\dot{u}\|^{2}+\frac{1}{2}\left\|u^{\prime}\right\|^{2},
$$

we have that

$$
\frac{d}{d t} E(u)=-b\|\dot{u}\|^{2}
$$

Thus

$$
\frac{d}{d t} E(u)=0, \quad \text { if } b=0, \quad \text { and } \quad \frac{d}{d t} E(u) \leq 0 \quad \text { if } b>0
$$

3. (a) Let $a=1$ and use the following Galerkin orthogonality:

$$
\begin{equation*}
\int_{0}^{1}(u-U)^{\prime} v^{\prime} d x=0, \quad \forall v \in V_{h} \tag{1}
\end{equation*}
$$

with v replaced by $2 U$ (as in the second equality below) we get

$$
\begin{align*}
\left\|(u-U)^{\prime}\right\|^{2} & =\int_{0}^{1}(u-U)^{\prime}(u-U)^{\prime} d x \\
& =\int_{0}^{1}(u-U)^{\prime}(u-U+2 U)^{\prime} d x=\int_{0}^{1}(u-U)^{\prime}(u+U)^{\prime} d x \tag{2}\\
& =\int_{0}^{1}\left(u^{\prime}\right)^{2} d x-\int_{0}^{1}\left(U^{\prime}\right)^{2} d x=-2 F(u)+2 F(U)
\end{align*}
$$

where we have used the identities

$$
\begin{equation*}
2 F(u)=\left\|u^{\prime}\right\|^{2}-2 \int_{0}^{1} f u d x=\{\text { with } w=u \text { and } a=1 \text { in }(1)\}=-\left\|u^{\prime}\right\|^{2} \tag{3}
\end{equation*}
$$

and similarly $2 F(U)=-\left\|U^{\prime}\right\|^{2}$.
(b) Recall that in the one dimensional case, we have the interpolation estimate,

$$
\left\|u^{\prime}-U^{\prime}\right\| \leq C_{i}\|h f\|
$$

where C_{i} is an interpolation constant. This gives using (b) that

$$
|F(U)-F(u)| \leq C_{i}^{2}\|h f\|^{2}
$$

4. a) Multiplying the equation by u and performing partial integration we get

$$
\int_{\Omega} \nabla u \cdot \nabla u+u u-\int_{\Gamma} n \cdot \nabla u u=\int_{\Omega} f u,
$$

i.e.,

$$
\begin{equation*}
\|\nabla u\|^{2}+\|u\|^{2}=\int_{\Omega} f u+\int_{\Gamma} g u \leq\|f\|\|u\|+\|g\|_{\Gamma} C_{\Omega}(\|\nabla u\|+\|u\|) \tag{4}
\end{equation*}
$$

where $\|\cdot\|=\|\cdot\|_{L_{2}(\Omega)}$ and we have used the inequality $\|u\| \leq C_{\Omega}(\|\nabla u\|+\|u\|)$. Further using the inequality $a b \leq a^{2}+b^{2} / 4$ we have

$$
\|\nabla u\|^{2}+\|u\|^{2} \leq\|f\|^{2}+\frac{1}{4}\|u\|^{2}+C\|g\|_{\Gamma}^{2}+\frac{1}{4}\|\nabla u\|^{2}+\frac{1}{4}\|u\|^{2}
$$

which gives the desired inequality.
b) Consider the variational formulation

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla v+u v=\int_{\Omega} f v+\int_{\Gamma} g v \tag{5}
\end{equation*}
$$

set $U(x)=\sum U_{j} \psi_{j}(x)$ and $v=\psi_{i}$ in (7) to obtain

$$
\sum_{j=1}^{N} U_{j} \int_{\Omega} \nabla \psi_{j} \cdot \nabla \psi_{i}+\psi_{j} \psi_{i}=\int_{\Omega} f \psi_{i}+\int_{\Gamma} g \psi_{i}, \quad i=1, \ldots, N
$$

This gives $A U=b$ where $U=\left(U_{1}, \ldots, U_{N}\right)^{T}, b=\left(b_{i}\right)$ with the elements

$$
b_{i}=h, i=2, \ldots, N-1, \quad b(N)=h / 2, \quad b(1)=h / 2+3,
$$

and $A=\left(a_{i j}\right)$ with the elements

$$
a_{i j}=\left\{\begin{array}{lll}
-1 / h+h / 6, & \text { for } i=j+1 & \text { and } i=j-1 \\
2 / h+2 h / 3, & \text { for } i=j & \text { and } i=2, \ldots, N-1 \\
0, & \text { else. } &
\end{array}\right.
$$

5. Let V be the linear function space defined by

$$
V_{h}:=\left\{v: v \text { is continuous in } \Omega, v=0, \text { on } \partial \Omega \backslash\left(\Gamma_{1} \cup \Gamma_{2}\right)\right\} .
$$

Multiplying the differential equation by $v \in V$ and integrating over Ω we get that

$$
-(\Delta u, v)+(u, v)=(f, v), \quad \forall v \in V
$$

Now using Green's formula we have that

$$
\begin{aligned}
-(\Delta u, \nabla v) & =(\nabla u, \nabla v)-\int_{\partial \Omega}(n \cdot \nabla u) v d s \\
& =(\nabla u, \nabla v)-\int_{\partial \Omega \backslash\left(\Gamma_{1} \cup \Gamma_{2}\right)}(n \cdot \nabla u) v d s-\int_{\Gamma_{1} \cup \Gamma_{2}}(n \cdot \nabla u) v d s \\
& =(\nabla u, \nabla v), \quad \forall v \in V .
\end{aligned}
$$

Thus the variational formulation is:

$$
(\nabla u, \nabla v)+(u, v)=(f, v), \quad \forall v \in V
$$

Let V_{h} be the usual finite element space consisting of continuous piecewise linear functions satisfying the boundary condition $v=0$ on $\partial \Omega \backslash\left(\Gamma_{1} \cup \Gamma_{2}\right)$: The $c G(1)$ method is: Find $U \in V_{h}$ such that

$$
(\nabla U, \nabla v)+(U, v)=(f, v) \quad \forall v \in V_{h}
$$

Making the "Ansatz" $U(x)=\sum_{j=1}^{3} \xi_{j} \varphi_{j}(x)$, where φ_{i} are the standard basis functions, we obtain the system of equations

$$
\sum_{j=1}^{3} \xi_{j}\left(\int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} d x+\int_{\Omega} \varphi_{i} \varphi_{i} d x\right)=\int_{\Omega} f \varphi_{j} d x, \quad i=1,2,3
$$

or, in matrix form,

$$
(S+M) \xi=F,
$$

where $S_{i j}=\left(\nabla \varphi_{i}, \nabla \varphi_{j}\right)$ is the stiffness matrix, $M_{i j}=\left(\varphi_{i}, \varphi_{j}\right)$ is the mass matrix, and $F_{i}=\left(f, \varphi_{i}\right)$ is the load vector.

We first compute the mass and stiffness matrix for the reference triangle T. The local basis functions are

$$
\begin{array}{rlrl}
\phi_{1}\left(x_{1}, x_{2}\right)=1-\frac{x_{1}}{h}-\frac{x_{2}}{h}, & \nabla \phi_{1}\left(x_{1}, x_{2}\right) & =-\frac{1}{h}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \\
\phi_{2}\left(x_{1}, x_{2}\right) & =\frac{x_{1}}{h}, & \nabla \phi_{2}\left(x_{1}, x_{2}\right) & =\frac{1}{h}\left[\begin{array}{l}
1 \\
0
\end{array}\right], \\
\phi_{3}\left(x_{1}, x_{2}\right) & =\frac{x_{2}}{h}, & \nabla \phi_{3}\left(x_{1}, x_{2}\right) & =\frac{1}{h}\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
\end{array}
$$

Hence, with $|T|=\int_{T} d z=h^{2} / 2$,

$$
\begin{aligned}
& m_{11}=\left(\phi_{1}, \phi_{1}\right)=\int_{T} \phi_{1}^{2} d x=h^{2} \int_{0}^{1} \int_{0}^{1-x_{2}}\left(1-x_{1}-x_{2}\right)^{2} d x_{1} d x_{2}=\frac{h^{2}}{12} \\
& s_{11}=\left(\nabla \phi_{1}, \nabla \phi_{1}\right)=\int_{T}\left|\nabla \phi_{1}\right|^{2} d x=\frac{2}{h^{2}}|T|=1
\end{aligned}
$$

Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 (precision $3)$:

$$
m_{11}=\left(\phi_{1}, \phi_{1}\right)=\int_{T} \phi_{1}^{2} d x=\frac{|T|}{3} \sum_{j=1}^{3} \phi_{1}\left(\hat{x}_{j}\right)^{2}=\frac{h^{2}}{6}\left(0+\frac{1}{4}+\frac{1}{4}\right)=\frac{h^{2}}{12},
$$

where \hat{x}_{j} are the midpoints of the edges. Similarly we can compute the other elements and obtain

$$
m=\frac{h^{2}}{24}\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right], \quad s=\frac{1}{2}\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] .
$$

We can now assemble the global matrices M and S from the local ones m and s :

$$
\begin{array}{ll}
M_{11}=8 m_{22}=\frac{8}{12} h^{2}, & S_{11}=8 s_{22}=4 \\
M_{12}=2 m_{12}=\frac{1}{12} h^{2}, & S_{12}=2 s_{12}=-1 \\
M_{13} & =0, \\
S_{13} & =2 s_{23}=0 \\
M_{22} & =4 m_{11}=\frac{4}{12} h^{2}, \\
S_{22} & =4 s_{11}=4 \\
M_{23} & =2 m_{12}=\frac{1}{12} h^{2}, \\
S_{23} & =2 s_{12}=-1 \\
M_{33} & =2 m_{22}=\frac{2}{12} h^{2},
\end{array}
$$

The remaining matrix elements are obtained by symmetry $M_{i j}=M_{j i}, S_{i j}=S_{j i}$. Hence,

$$
M=\frac{h^{2}}{12}\left[\begin{array}{lll}
8 & 1 & 0 \\
1 & 4 & 1 \\
0 & 1 & 2
\end{array}\right], \quad S=\varepsilon\left[\begin{array}{rrr}
4 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
\left(1, \varphi_{1}\right) \\
\left(1, \varphi_{2}\right) \\
\left(1, \varphi_{3}\right)
\end{array}\right]=\left[\begin{array}{l}
8 \cdot \frac{1}{3} \cdot \frac{1}{2}=\frac{4}{3} \\
4 \cdot \frac{1}{3} \cdot \frac{1}{2}=\frac{2}{3} \\
2 \cdot \frac{1}{3} \cdot \frac{1}{2}=\frac{1}{3}
\end{array}\right]
$$

6. See the book.

MA

