Chapter 2: Mathematical tools (summary)

January 20, 2022

Goal: Introduce some (abstract) spaces and various mathematical tools and results. This will help us to solve (numerically) differential equations in the next chapters.

- A set V is called a vector space or linear space (VS) if, for all $u, v, w \in V$ and for all $\alpha, \beta \in \mathbb{R}$ one has

0. $u+\alpha v \in V$ (linearity)
1. $(u+v)+w=u+(v+w)=u+v+w$ (associativity)
2. There exists an element $0 \in V$ such that $u+0=0+u=u$ for all $u \in V$ (zero element)
3. $u+v=v+u$ (commutativity)
4. For all $u \in V$, there exists an element $(-u) \in V$ such that $u+(-u)=0$ (inverse element)
5. $(\alpha+\beta) u=\alpha u+\beta u$
6. There exists $1 \in \mathbb{R}$ such that $1 v=v$
7. $\alpha(u+v)=\alpha u+\beta v$
8. $\alpha(\beta u)=(\alpha \beta) u=\alpha \beta u$
9. There exists $l \in \mathbb{R}$ such that $l u=u$ for all $u \in V$.

The elements in V are called vectors (but they can be something else, like "normal" vectors, matrices, functions, or sequences) and the ones in \mathbb{R} scalars. The above axioms (rules) tell us that we can do anything reasonable with vectors and scalars.

Example: The vector space of all polynomials, defined on \mathbb{R}, of degree $\leq n$ is denoted by

$$
\mathscr{P}^{(n)}(\mathbb{R})=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}: a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}\right\} .
$$

- A subset $U \subset V$ of a VS V is called a subspace of V if $\alpha u+\beta v \in U$ for all $u, v \in U$ and $\alpha, \beta \in \mathbb{R}$.
- Let V be a VS. The space of all linear combinations of the elements $\nu_{1}, v_{2}, \ldots, v_{n} \in V$ is denoted by

$$
\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)=\left\{a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}: a_{1}, \ldots, a_{n} \in \mathbb{R}\right\}
$$

Example: $\operatorname{span}\left(1, x, x^{2}\right)=\left\{a_{0} 1+a_{1} x+a_{2} x^{2}: a_{0}, a_{1}, a_{2} \in \mathbb{R}\right\}=\mathscr{P}^{(2)}(\mathbb{R})$.

- A set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ in a VS V is linearly independent if the equation

$$
a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}=0 \in V
$$

has only the trivial solution $a_{1}=a_{2}=\ldots=a_{n}=0 \in \mathbb{R}$. Else it is called linearly dependent.
Example: The set $\left\{1, x, x^{2}\right\} \subset \mathscr{P}^{(2)}(\mathbb{R})$ is linearly independent.

- A set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ in a VS V is called a basis of V if the set is linearly independent and $\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)=$ V. The dimension of V is then given by the number of elements of the basis, here $\operatorname{dim}(V)=n$.
Example: The set $\left\{1, x, x^{2}\right\}$ is a basis of $\mathscr{P}^{(2)}(\mathbb{R})$ and thus $\operatorname{dim}\left(\mathscr{P}^{(2)}(\mathbb{R})\right)=3$.
- A scalar product or inner product on a VS V is a map $(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$ such that, for all $u, v, w \in V$ and $\alpha \in \mathbb{R}$,

1. $(u, v)=(v, u)$ (symmetry)
2. $(u+\alpha v, w)=(u, w)+\alpha(v, w)$ (linearity)
3. $(u, u) \geq 0$ (positivity)
4. $(u, u)=0 \in \mathbb{R}$ if and only if $u=0 \in V$.

- A VS V with an inner product is called an inner product space, which is denoted by $(V,(\cdot, \cdot))$ or $\left(V,(\cdot, \cdot)_{V}\right)$ or $\left.(V,\langle\cdot, \cdot\rangle\rangle_{V}\right)$.
Such space has a norm defined by $\|v\|=\sqrt{(v, v)}$ for all $v \in V$.
- Let $(V,(\cdot, \cdot))$ be an inner product space and $u, v \in V . u$ and v are orthogonal if $(u, v)=0$. Notation: $u \perp v$.
- Let $(V,(\cdot, \cdot))$ be an inner product space and $u, v \in V$. Cauchy-Schwarz inequality (CS) reads

$$
|(u, v)| \leq\|u\| \cdot\|v\|
$$

- Let $(V,(\cdot, \cdot))$ be an inner product space and $u, v \in V$. The triangle inequality (Δ) reads

$$
\|u+v\| \leq\|u\|+\|v\|
$$

- Example of a VS: The space of square integrable functions defined on the interval $[a, b]$ is denoted by

$$
L^{2}([a, b])=L^{2}(a, b)=L_{2}(a, b)=\left\{f:[a, b] \rightarrow \mathbb{R}: \int_{a}^{b}|f(x)|^{2} \mathrm{~d} x<\infty\right\}
$$

It is equipped with the inner product

$$
(f, g)_{L^{2}}=\int_{a}^{b} f(x) g(x) \mathrm{d} x
$$

which induces the norm

$$
\|f\|_{L^{2}}=\sqrt{(f, f)_{L^{2}}}=\sqrt{\int_{a}^{b}|f(x)|^{2} \mathrm{~d} x}
$$

More generally, for a domain $\Omega \subset \mathbb{R}^{n}$, one defines

$$
L^{2}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R}:\|f\|_{L^{2}(\Omega)}<\infty\right\}
$$

where $\|f\|_{L^{2}}=\sqrt{(f, f)_{L^{2}(\Omega)}}$ and $(f, g)_{L^{2}(\Omega)}=\int_{\Omega} f(x) g(x) \mathrm{d} x$.
Similarly, one can also define the spaces $L^{p}(\Omega)$, for a real number $1 \leq p<\infty$, as well as the space $L^{\infty}(\Omega)$. These two spaces are equipped with their corresponding norms.

- The space of continuous function defined on $[a, b]$ is given by

$$
C^{0}([a, b])=\mathscr{C}^{0}([a, b])=\mathscr{C}^{(0)}(a, b)=\{f:[a, b] \rightarrow \mathbb{R}: f \text { is continuous }\}
$$

and equipped with the norm

$$
\|f\|_{C^{0}([a, b])}=\max _{a \leq x \leq b}|f(x)|
$$

Similarly, for $\Omega \subset \mathbb{R}^{n}$ a (bounded) domain and k a positive integer, one defines the space of k th continuously differentiable functions

$$
C^{k}(\Omega)=\mathscr{C}^{k}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R}: D^{\alpha} f \text { are continuous for all }|\alpha| \leq k\right\}
$$

and equipped with the norm

$$
\|f\|_{C^{k}(\Omega)}=\sum_{|\alpha| \leq k} \sup _{x \in \Omega}\left|D^{\alpha} f(x)\right|
$$

One shall also use the following space

$$
C^{k}(\bar{\Omega})=\mathscr{C}^{k}(\bar{\Omega})=\left\{f \in C^{k}(\Omega): D^{\alpha} f \text { can be extended from } \Omega \text { to its closure } \bar{\Omega}\right\}
$$

and equipped with the norm

$$
\|f\|_{C^{k}(\bar{\Omega})}=\sum_{|\alpha| \leq k} \sup _{x \in \bar{\Omega}}\left|D^{\alpha} f(x)\right|
$$

- For a positive integer k and $\Omega \subset \mathbb{R}^{n}$ open, one considers the Sobolev space

$$
H^{k}(\Omega)=\left\{f \in L^{2}(\Omega): D^{\alpha} f \in L^{2}(\Omega) \text { for }|\alpha| \leq k\right\}
$$

with the inner product

$$
(f, g)_{H^{k}}=\sum_{|\alpha| \leq k} \int_{\Omega} D^{\alpha} f(x) D^{\alpha} g(x) \mathrm{d} x
$$

and norm

$$
\|f\|_{H^{k}}=\sqrt{(f, f)_{H^{k}}}
$$

For $k=1$ and $n=1$ and in dimension one, the above norm reads

$$
\|f\|_{H^{1}}^{2}=\|f\|_{L^{2}}^{2}+\left\|f^{\prime}\right\|_{L^{2}}^{2}
$$

- The triangle inequality as well as Cauchy-Schwarz can be extended to L^{p} spaces.

Minkowski's inequality: Consider a domain $\Omega \subset \mathbb{R}^{n}, 1 \leq p \leq \infty$ and $f, g \in L^{p}(\Omega)$. One then has

$$
\|f+g\|_{L^{p}} \leq\|f\|_{L^{p}}+\|g\|_{L^{p}}
$$

Hölder's inequality: Consider a domain $\Omega \subset \mathbb{R}^{n}, 1 \leq p, q<\infty$ with $\frac{1}{p}+\frac{1}{q}=1, f \in L^{p}(\Omega)$, and $g \in$ $L^{q}(\Omega)$. One then has

$$
\|f g\|_{L^{1}} \leq\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

This is Cauchy-Schwarz for $p=q=2$.

- Poincaré inequality $(1 d)$: Let $L>0$ and consider the open interval $\Omega=(0, L)$. One then has

$$
\|u\|_{L^{2}(\Omega)} \leq \frac{L}{\sqrt{2}}\left\|u^{\prime}\right\|_{L^{2}(\Omega)}
$$

for all $u \in H_{0}^{1}=\left\{v \in H^{1}(\Omega): v(0)=0, v(L)=0\right\}$.

- Trace theorem $(p=2)$: Let $\Omega \subset \mathbb{R}^{n}$ (bounded domain with Lipschitz boundary). One then has

$$
\|u\|_{L^{2}(\partial \Omega)}^{2} \leq C\|u\|_{L^{2}(\Omega)}\|u\|_{H^{1}(\Omega)}
$$

for all $u \in H^{1}(\Omega)$.

- The strong form of Poisson's equation in dimension one reads

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=f(x) \quad \text { for } x \in \Omega=(0,1) \\
u(0)=0, u(1)=0
\end{array}\right.
$$

where $f: \Omega \rightarrow \mathbb{R}$ is a given function (bounded and continuous for instance).
The weak form or variational formulation (VF) reads

$$
\text { Find } u \in H_{0}^{1}(\Omega) \text { s.t. }\left(u^{\prime}, v^{\prime}\right)_{L^{2}(\Omega)}=(f, v)_{L^{2}(\Omega)} \text { for all } v \in H_{0}^{1}(\Omega)
$$

The minimisation problem (MP) reads

$$
\text { Find } u \in H_{0}^{1}(\Omega) \text { s.t. } F(u) \text { is minimal, }
$$

where the functional $F: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ is defined by $F(v)=\frac{1}{2}\left(v^{\prime}, v^{\prime}\right)_{L^{2}(\Omega)}-(f, v)_{L^{2}(\Omega)}$ for $v \in H_{0}^{1}(\Omega)$.
We have proved that

$$
\text { Strong }=\Rightarrow \mathrm{VF} \Longleftrightarrow \mathrm{MP}
$$

and if in addition $u \in C^{2}(\Omega)$

$$
\text { Strong } \Longleftarrow=\mathrm{VF} \text {. }
$$

- Lax-Milgram theorem: Consider a Hilbert space H, a bounded and coercive bilinear form $a: H \times$ $H \rightarrow \mathbb{R}$, and a bounded linear functional $\ell: H \rightarrow \mathbb{R}$. Then, there exists a unique element $u \in H$ solution to the equation

$$
a(u, v)=\ell(v) \quad \text { for all } v \in H
$$

Lax-Milgram's theorem can be used, for instance, to find a unique solution to the VF of Poisson's equation seen above.

Further resources:

- wikipedia.se VS
- wikipedia.se InnerProduct
- wikipedia.se Lp spaces
- wikipedia.se CS
- VS and InnerProduct
- function spaces by Terry Tao
- Sobolev spaces and PDE (a little bit more advanced)
- application and proof of LM (more advanced)

