TTMA372/MMG800 VT 2022
David Cohen (david. cohen@chalmers. se) Chalmers & GU

Chapter 2: Mathematical tools (summary)

January 20, 2022

Goal: Introduce some (abstract) spaces and various mathematical tools and results. This will help us
to solve (numerically) differential equations in the next chapters.

* Aset Vis called a vector space or linear space (VS) if, for all u, v, w € V and for all a, f € R one has

u+av eV (linearity)

(u+v)+w=u+(v+w)=u+v+ w (associativity)

There exists an element 0 e V suchthat u+0=0+ u = u for all u € V (zero element)
u+ v = v+ u (commutativity)

For all u € V, there exists an element (—u) € V such that u + (—u) = 0 (inverse element)
(a+Plu=au+fu

There exists 1 e Rsuch that 1v = v

a(u+v)=au+pfv

a(fu) =(af)u=afu

There exists 1 e Rsuch that lu=uforallue V.
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The elements in V are called vectors (but they can be something else, like "normal" vectors, matri-
ces, functions, or sequences) and the ones in R scalars. The above axioms (rules) tell us that we can
do anything reasonable with vectors and scalars.

Example: The vector space of all polynomials, defined on R, of degree < n is denoted by

PYR) ={ag+ayx+ arx* +...+ a,x": ag,ay,...,a, € R}

* Asubset Uc V ofaVS Vis called a subspace of Vifau+ fve U forall u,v € U and a, f € R.

* Let V be aVS. The space of all linear combinations of the elements vy, vy,..., v, € V is denoted by

span(vy,...,vp) ={a1v1 + agv2+...+ayvy,: ay,...,a, €R}.

Example: span(l, x, x?) = {apl + a1 x + ap x* : ag, ai, a, € R} = PP (R).
e Aset{vy, vy,..., Vst ina VS Vis linearly independent if the equation
aivi+ave+...+ayv,=0€V
has only the trivial solution a; = a, =... = a; = 0 € R. Else it is called linearly dependent.
Example: The set {1, x, x*} ¢ 2% (R) is linearly independent.

e Aset{vy, vo,...,v,}inaVS Vis called a basis of V if the setis linearly independent and span(vy, ..., v;) =
V. The dimension of V is then given by the number of elements of the basis, here dim(V) = n.
Example: The set {1, x, x*} is a basis of 22® (R) and thus dim(2® (R)) = 3.

e A scalar product or inner product on a VS Visamap (,,-): V x V — R such that, for all u,v,w € V
and a € R,
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1. (4, v) = (v, u) (symmetry)

2. (u+av,w) = (u,w) + a(v, w) (linearity)
3. (u,u) =0 (positivity)

4. (u,u)=0€eRifandonlyifu=0€V.

A VS V with an inner product is called an inner product space, which is denoted by (V,(-,-)) or
(V. )v) or (V, €, ) y).

Such space has a norm defined by [|v|| = /(v,v) forall ve V.

Let (V, (+,-)) be an inner product space and u, v € V. u and v are orthogonal if (1, v) = 0. Notation:
ulwv.

Let (V, (-,+)) be an inner product space and u, v € V. Cauchy-Schwarz inequality (CS) reads

[(w, V)| = ull-lvl.

Let (V, (-,+)) be an inner product space and u, v € V. The triangle inequality (A) reads

lu+ vl <lul+Ilvl.

Example of a VS: The space of square integrable functions defined on the interval [a, b] is denoted
by

b
L?([a, b)) = L*(a,b) = Ly(a, b) = {f: la,b] - R: f |f(x)|2dx<oo}.

It is equipped with the inner product

b
(f, 812 =f fxgx)dx

b
£l 2=/ Pre = \/fa |f ()12 dx.

More generally, for a domain Q c R", one defines

which induces the norm

12(Q) = {f: Q=R: | f] 2@ <°°}’

where || £ . = VU Nz and (F, 8) 2@ = fo(x)g(x) dx.

Similarly, one can also define the spaces L (Q), for a real number 1 < p < oo, as well as the space
L*®(Q). These two spaces are equipped with their corresponding norms.

The space of continuous function defined on [a, b] is given by
C(la, b)) =€ (la,b) =€ (a,b) = {f: [a,b] — R : fis continuous}
and equipped with the norm

11l cotan = max If ).

=X
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Similarly, for Q ¢ R” a (bounded) domain and k a positive integer, one defines the space of kth
continuously differentiable functions

c*(@) =65 ={f: Q—R: D are continuous for all |a| < k}

and equipped with the norm
”f”ck(Q) =) sug|D“f(x)|'
Xe

lal<k

One shall also use the following space
ck@=¢5Q) = { f € C*Q) : D¥f can be extended from Q to its closure 5}
and equipped with the norm

”f”ck(ﬁ) = Z sungaf(x)|_

lal<k xeQ

* For a positive integer k and Q2 < R” open, one considers the Sobolev space
H*Q) = {f e [*(Q): D*f € [*(Q) for |a| < k}

with the inner product

(f,8pue= ), fD“f(x)D“g(x)dx
lal<k Y

“f”Hk =V (f, D -

For k=1 and n =1 and in dimension one, the above norm reads

[0 = D0 + 02

and norm

 The triangle inequality as well as Cauchy-Schwarz can be extended to L” spaces.

Minkowski’s inequality: Consider a domain Q cR”,1 < p <ocoand f, g € LP(Q). One then has
17+ &l =5l +1elL-

Holder’s inequality: Consider a domain Q c R”, 1 < p, g < oo with % + % =1, felP(Q),and g€
L9(Q). One then has
Ifel =718l

This is Cauchy-Schwarz for p = g = 2.

e Poincaré inequality (1d): Let L > 0 and consider the open interval Q = (0, L). One then has

Il < —= |||
= 2
@ NG I2(Q)
forallue Hy ={ve H'(Q) : v(0) =0, v(L) = 0}.
e Trace theorem (p =2): Let Q c R" (bounded domain with Lipschitz boundary). One then has

||u||22 = C”u”LZ(Q) ||M||H1(Q)
L2(0Q))

forall ue HY(Q).


david.cohen@chalmers.se

TTMA372/MMG800 VT 2022
David Cohen (david.cohen@chalmers. se) Chalmers & GU

* The strong form of Poisson’s equation in dimension one reads

—u"(x)=f(x) forxeQ=(0,1)
u0)=0,u(1) =0,

where f: Q — Ris a given function (bounded and continuous for instance).

The weak form or variational formulation (VF) reads

Find u € Hy (Q) s.t. (W, v") ;2 = (f, V) 12(q for all v € Hy ().

The minimisation problem (MP) reads
Find u € Hy (Q) s.t. F() is minimal,

where the functional F: H}(Q) — Ris defined by F(v) = 3(v/, V) 12(q) — (f, ) 12(q for v € H} (Q).

We have proved that
Strong == VF <= MP

and if in addition u € C?(Q)
Strong <= VF.

Lax-Milgram theorem: Consider a Hilbert space H, a bounded and coercive bilinear form a: H x
H — R, and a bounded linear functional ¢: H — R. Then, there exists a unique element u € H
solution to the equation

a(u,v)=¢(v) forallve H.

Lax-Milgram’s theorem can be used, for instance, to find a unique solution to the VF of Poisson’s
equation seen above.

Further resources:

wikipedia.se VS

wikipedia.se InnerProduct

wikipedia.se Lp spaces

wikipedia.se CS

VS and InnerProduct

function spaces by Terry Tao

Sobolev spaces and PDE (a little bit more advanced)

application and proof of LM (more advanced)
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https://sv.wikipedia.org/wiki/Linj%C3%A4rt_rum
https://sv.wikipedia.org/wiki/Inre_produktrum
https://sv.wikipedia.org/wiki/Lp-rum
https://sv.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_olikhet
https://web.auburn.edu/holmerr/2660/Textbook/innerproduct-print.pdf
https://terrytao.files.wordpress.com/2008/03/function_spaces1.pdf
https://www.icts.res.in/sites/default/files/MAH2019-08-26-Patrizia.pdf
https://www.math.tamu.edu/~phoward/m612/s20/elliptic2.pdf

