Chapter 3: A Galerkin FEM for BVP (summary)

Goal: Provide an introduction to finite element methods (FEM) for BVP.

• Let *m* be a positive integer. Denote a partition of the interval [0, 1] into m+1 subintervals by $\tau_h : 0 = x_0 < x_1 < ... < x_m < x_{m+1} = 1$, where $h_j = x_j - x_{j-1}$ for j = 1, 2, ..., m+1 (we shall mainly consider the case of a uniform partition, where $h_j = h$ constant). We define the hat function $\{\varphi_j\}_{j=0}^{m+1}$ by

$$\varphi_{j}(x) = \begin{cases} \frac{x - x_{j-1}}{h_{j}} & \text{for } x_{j-1} \le x \le x_{j} \\ \frac{x - x_{j+1}}{-h_{j+1}} & \text{for } x_{j} \le x \le x_{j+1} \\ 0 & \text{else} \end{cases}$$

for j = 1, ..., m. The functions $\varphi_0(x)$ and $\varphi_{m+1}(x)$ are defined as half hat functions.

With the above, one then defines the space of continuous piecewise linear functions on [0, 1] by

$$V_h = V_h(0,1) = \operatorname{span}\left(\varphi_0,\varphi_1,\ldots,\varphi_{m+1}\right) = \left\{\nu \colon [0,1] \to \mathbb{R} : \nu \text{ cont. piecewise linear on } \tau_h\right\}.$$

As usual, one has $v(x) = \sum_{j=0}^{m+1} \zeta_j \varphi_j(x)$, where $\zeta_j = v(x_j)$, for any $v \in V_h$.

• In a nutshell, a Galerkin finite element method (FEM) for the BVP with homogeneous Dirichlet BC

$$\begin{cases} -u''(x) = f(x) & \text{for } x \in (0, 1) \\ u(0) = 0, u(1) = 0 \end{cases}$$

consists of the following

1. Multiply the DE by a test function $v \in H_0^1 = \{v : [0,1] \to \mathbb{R} : v, v' \in L^2(0,1) \text{ and } v(0) = v(1) = 0\}$. Integrate the above over the domain [0,1] and get the variational formulation of the problem (VF)

Find
$$u \in H_0^1$$
 such that $\int_0^1 u'(x) v'(x) dx = \int_0^1 f(x) v(x) dx$ for all $v \in H_0^1$

or shortly

Find $u \in H_0^1$ such that $(u', v')_{L^2(0,1)} = (f, v)_{L^2(0,1)} \quad \forall v \in H_0^1.$

2. Specify the finite dimensional space $V_h^0 \subset H_0^1$ defined as $V_h^0 = \text{span}(\varphi_1, \dots, \varphi_m)$, for the above hat functions φ_j . Consider the FE problem

Find
$$u_h \in V_h^0$$
 such that $(u'_h, v'_h)_{L^2(0,1)} = (f, v_h)_{L^2(0,1)} \quad \forall v_h \in V_h^0.$

3. Insert the ansatz

$$u_h(x) = \sum_{j=1}^m \zeta_j \varphi_j(x)$$

into the FE problem and take $v_h = \varphi_i$, for i = 1, ..., m, to get a linear system of equation for the unknown $\zeta = (\zeta_1, ..., \zeta_m)$:

$$S\zeta = b.$$

Here, $S = (s_{i,j})_{i,j=1}^m$ is termed the stiffness matrix (with entries $s_{ij} = (\varphi'_i, \varphi'_j)_{L^2(0,1)}$) and $b = (b_i)_{i=1}^m$ the load vector (with entries $b_i = (f, \varphi_i)_{L^2(0,1)}$).

Further resources:

- FE at wikiversity.org
- FE at github.io
- FEM course notes at web.stanford.edu
- FEM for BVP at amath.unc.edu
- FEM by Gilbert Strang on youtube, good!