Chapter 3: A Galerkin FEM for BVP (summary)

January 24, 2022

Goal: Provide an introduction to finite element methods (FEM) for BVP.

- Let m be a positive integer. Denote a partition of the interval [0, 1] into $m+1$ subintervals by $\tau_{h}: 0=$ $x_{0}<x_{1}<\ldots<x_{m}<x_{m+1}=1$, where $h_{j}=x_{j}-x_{j-1}$ for $j=1,2, \ldots, m+1$ (we shall mainly consider the case of a uniform partition, where $h_{j}=h$ constant). We define the hat function $\left\{\varphi_{j}\right\}_{j=0}^{m+1}$ by

$$
\varphi_{j}(x)= \begin{cases}\frac{x-x_{j-1}}{h_{j}} & \text { for } x_{j-1} \leq x \leq x_{j} \\ \frac{x-x_{j+1}}{-h_{j+1}} & \text { for } x_{j} \leq x \leq x_{j+1} \\ 0 & \text { else }\end{cases}
$$

for $j=1, \ldots, m$. The functions $\varphi_{0}(x)$ and $\varphi_{m+1}(x)$ are defined as half hat functions.
With the above, one then defines the space of continuous piecewise linear functions on $[0,1]$ by

$$
V_{h}=V_{h}(0,1)=\operatorname{span}\left(\varphi_{0}, \varphi_{1}, \ldots, \varphi_{m+1}\right)=\left\{v:[0,1] \rightarrow \mathbb{R} \quad: v \text { cont. piecewise linear on } \tau_{h}\right\}
$$

As usual, one has $v(x)=\sum_{j=0}^{m+1} \zeta_{j} \varphi_{j}(x)$, where $\zeta_{j}=v\left(x_{j}\right)$, for any $v \in V_{h}$.

- In a nutshell, a Galerkin finite element method (FEM) for the BVP with homogeneous Dirichlet BC

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=f(x) \text { for } x \in(0,1) \\
u(0)=0, u(1)=0
\end{array}\right.
$$

consists of the following

1. Multiply the DE by a test function $v \in H_{0}^{1}=\left\{v:[0,1] \rightarrow \mathbb{R}: v, v^{\prime} \in L^{2}(0,1)\right.$ and $\left.v(0)=v(1)=0\right\}$. Integrate the above over the domain $[0,1]$ and get the variational formulation of the problem (VF)

$$
\text { Find } \quad u \in H_{0}^{1} \quad \text { such that } \int_{0}^{1} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x=\int_{0}^{1} f(x) v(x) \mathrm{d} x \text { for all } v \in H_{0}^{1}
$$

or shortly

$$
\text { Find } \quad u \in H_{0}^{1} \quad \text { such that } \quad\left(u^{\prime}, v^{\prime}\right)_{L^{2}(0,1)}=(f, v)_{L^{2}(0,1)} \quad \forall v \in H_{0}^{1}
$$

2. Specify the finite dimensional space $V_{h}^{0} \subset H_{0}^{1}$ defined as $V_{h}^{0}=\operatorname{span}\left(\varphi_{1}, \ldots, \varphi_{m}\right)$, for the above hat functions φ_{j}. Consider the FE problem

$$
\text { Find } \quad u_{h} \in V_{h}^{0} \quad \text { such that } \quad\left(u_{h}^{\prime}, v_{h}^{\prime}\right)_{L^{2}(0,1)}=\left(f, v_{h}\right)_{L^{2}(0,1)} \quad \forall v_{h} \in V_{h}^{0}
$$

3. Insert the ansatz

$$
u_{h}(x)=\sum_{j=1}^{m} \zeta_{j} \varphi_{j}(x)
$$

into the FE problem and take $v_{h}=\varphi_{i}$, for $i=1, \ldots, m$, to get a linear system of equation for the unknown $\zeta=\left(\zeta_{1}, \ldots, \zeta_{m}\right)$:

$$
S \zeta=b .
$$

Here, $S=\left(s_{i, j}\right)_{i, j=1}^{m}$ is termed the stiffness matrix (with entries $\left.s_{i j}=\left(\varphi_{i}^{\prime}, \varphi_{j}^{\prime}\right)_{L^{2}(0,1)}\right)$ and $b=$ $\left(b_{i}\right)_{i=1}^{m}$ the load vector (with entries $\left.b_{i}=\left(f, \varphi_{i}\right)_{L^{2}(0,1)}\right)$.

Further resources:

- FE at wikiversity.org
- FE at github.io
- FEM course notes at web.stanford.edu
- FEM for BVP at amath.unc.edu
- FEM by Gilbert Strang on youtube, good!

