Chapter 5: FEM for BVP in 1d (summary)

January 31, 2022

Goal: Present and analyse FEM for several classical BVPs.

- Consider the BVP

$$
\left\{\begin{array}{l}
-\left(a(x) u^{\prime}(x)\right)^{\prime}=f(x) \quad \text { for } \quad x \in(0,1) \\
u(0)=0, u(1)=0,
\end{array}\right.
$$

where the given functions f, a are nice (for instance f is continuous or in $L^{2}(0,1), a(x) \geq \alpha_{0}>0$ continuous or piecewise continuous on $(0,1)$ and bounded on $[0,1]$).

The above BVP has the following variational formulation (VF)

$$
\text { Find } \quad u \in H_{0}^{1} \quad \text { such that } \int_{0}^{1} a(x) u^{\prime}(x) v^{\prime}(x) \mathrm{d} x=\int_{0}^{1} f(x) v(x) \mathrm{d} x \text { for all } v \in H_{0}^{1}
$$

The corresponding FE problem (FE) reads

$$
\text { Find } \quad u_{h} \in V_{h}^{0} \quad \text { such that } \int_{0}^{1} a(x) u_{h}^{\prime}(x) v_{h}^{\prime}(x) \mathrm{d} x=\int_{0}^{1} f(x) v_{h}(x) \mathrm{d} x \quad \forall v_{h} \in V_{h}^{0}
$$

Recall that the above is called a cG(1) FEM, for continuous Galerkin (using linear approximation). Observing that $V_{h}^{0} \subset H_{0}^{1}$, one gets Galerkin orthogonality condition (GO)

$$
\int_{0}^{1} a(x)\left(u^{\prime}(x)-u_{h}^{\prime}(x)\right) v_{h}^{\prime}(x) \mathrm{d} x=0 \quad \forall v_{h} \in V_{h}^{0}
$$

which says that the error of the FE approximation is orthogonal to V_{h}^{0} in the energy inner product that we now define.

- For $f, g \in H_{0}^{1}$ and a as above, one defines
the weighted L_{a}^{2} inner product

$$
(f, g)_{a}=\int_{0}^{1} f(x) g(x) a(x) \mathrm{d} x
$$

the energy inner product

$$
(f, g)_{E}=\left(f^{\prime}, g^{\prime}\right)_{a}
$$

and the corresponding norms

$$
\|f\|_{a}=\sqrt{(f, f)_{a}} \quad \text { and } \quad\|f\|_{E}=\sqrt{(f, f)_{E}}
$$

Observe that the definition of the energy norm $\|\cdot\|_{E}$ is problem dependent.

- A priori error estimate for $\mathrm{cG}(1)$: Let u, u_{h} be the solutions to (VF), resp. (FE). Assume $u^{\prime \prime} \in L_{a}^{2}(0,1)$. Then, there exists a constant $C>0$ such that

$$
\left\|u-u_{h}\right\|_{E} \leq C\left\|h u^{\prime \prime}\right\|_{a}
$$

where we recall that $h=h(x)$ is the mesh function of the FE approximation.

- A posteriori error estimate for $\mathrm{cG}(1)$: Under technical assumptions on u and u_{h}, one has the following error estimate

$$
\left\|u-u_{h}\right\|_{E} \leq C\left(\int_{0}^{1} \frac{1}{a(x)} h^{2}(x) R^{2}\left(u_{h}(x)\right) \mathrm{d} x\right)^{1 / 2}
$$

where R denotes the residual $R\left(u_{h}\right)=f(x)+\left(a(x) u^{\prime}(x)\right)^{\prime}$ of the FE approximation to the BVP.

- The concept of adaptivity uses the above a posteriori error estimates to locally refine or modify the mesh in order to obtain a better numerical approximation u_{h}.
- Let us now derive a FE approximation for the BVP

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)+4 u(x)=0 \quad \text { for } \quad x \in(0,1) \\
u(0)=\alpha \quad \text { and } \quad u(1)=\beta
\end{array}\right.
$$

where $\alpha, \beta \neq 0$ are given real numbers. Such boundary conditions are called non-homogeneous Dirichlet boundary conditions.

The derivation of a numerical approximation for solutions to the above problem is given by

1. Define the trial space $V=\left\{v:[0,1] \rightarrow \mathbb{R}: v \in H^{1}(0,1), v(0)=\alpha, v(1)=\beta\right\}$ and the test space $V^{0}=\left\{v:[0,1] \rightarrow \mathbb{R}: v \in H^{1}(0,1), v(0)=v(1)=0\right\}$. Multiply the DE with a test function $v \in V^{0}$, integrate over the domain $[0,1]$ and get the VF

$$
\text { Find } \quad u \in V \quad \text { such that } \int_{0}^{1} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x+4 \int_{0}^{1} u(x) v(x) \mathrm{d} x=0 \quad \forall v \in V^{0} .
$$

2. Next, define the finite dimensional spaces
$V_{h}=\left\{v:[0,1] \rightarrow \mathbb{R}: v\right.$ is cont. pw. linear on T_{h} and $\left.v(0)=\alpha, v(1)=\beta\right\}$ and $V_{h}^{0}=\left\{v:[0,1] \rightarrow \mathbb{R}: v\right.$ is cont. pw. linear on $\left.T_{h}, v(0)=v(1)=0\right\}$, where as before T_{h} is a uniform partition with mesh $h=\frac{1}{m+1}$. Observe that $V_{h}=\operatorname{span}\left(\varphi_{0}, \varphi_{1}, \ldots, \varphi_{m}, \varphi_{m+1}\right) \subset V$ and $V_{h}^{0}=\operatorname{span}\left(\varphi_{1}, \ldots, \varphi_{m}\right) \subset V^{0}$ with the hat functions φ_{j}.
The FE problem then reads

$$
\text { Find } \quad u_{h} \in V_{h} \quad \text { such that } \int_{0}^{1} u_{h}^{\prime}(x) v_{h}^{\prime}(x) \mathrm{d} x+4 \int_{0}^{1} u_{h}(x) v_{h}(x) \mathrm{d} x \quad \forall v_{h} \in V_{h}^{0}
$$

3. Choosing $v_{h}=\varphi_{i}$, writing $u_{h}(x)=\sum_{j=0}^{m+1} \zeta_{j} \varphi_{j}(x)$ with $\zeta_{0}=\alpha$ and $\zeta_{m+1}=\beta$ (due to the nonhomogeneous Dirichlet BC), and inserting everything into the FE problem gives the following linear system of equations

$$
(S+4 M) \zeta=b
$$

where the $m \times m$ stiffness matrix S has entries $s_{i j}=\int_{0}^{1} \varphi_{i}^{\prime}(x) \varphi_{j}^{\prime}(x) \mathrm{d} x$, the $m \times m$ mass matrix M has entries $m_{i j}=\int_{0}^{1} \varphi_{i}(x) \varphi_{j}(x) \mathrm{d} x$, and the $m \times 1$ vector b has entries $b_{i}=-\alpha\left(\varphi_{0}^{\prime}, \varphi_{i}^{\prime}\right)_{L^{2}}-$ $\beta\left(\varphi_{m+1}^{\prime}, \varphi_{i}^{\prime}\right)_{L^{2}}-4 \alpha\left(\varphi_{0}, \varphi_{i}\right)_{L^{2}}-4 \beta\left(\varphi_{m+1}, \varphi_{i}^{\prime}\right)_{L^{2}}$. Detailed formulas for these entries can be found in the book. Solving this system gives the vector ζ and in turn the numerical approximation u_{h}.

- Let us finally consider the problem of finding a numerical approximation of solutions to the BVP

$$
\left\{\begin{array}{l}
-a u^{\prime \prime}(x)+b u^{\prime}(x)=r \quad \text { for } \quad x \in(0,1) \\
u(0)=0 \quad \text { and } \quad u^{\prime}(1)=\beta
\end{array}\right.
$$

where $\beta \neq 0, a, b>0$, and r are given real numbers. One has a homogeneous Dirichlet boundary conditions for $x=0$ and non-homogeneous Neumann boundary conditions for $x=1$.

For ease of presentation we take $a=b=r=1$ and derive a FE approximation as follows

1. Define the space $V=\left\{v:[0,1] \rightarrow \mathbb{R}: v \in H^{1}(0,1), v(0)=0\right\}$. Multiply the DE with a test function $v \in V$, integrate over the domain $[0,1]$ and get the VF

$$
\text { Find } \quad u \in V \text { such that }\left(u^{\prime}, v^{\prime}\right)_{L^{2}}+\left(u^{\prime}, v\right)_{L^{2}}=\int_{0}^{1} v(x) \mathrm{d} x+\beta v(1) \quad \forall v \in V \text {. }
$$

2. Next, define the finite dimensional space $V_{h}=\left\{v:[0,1] \rightarrow \mathbb{R}: v\right.$ is cont. pw. linear on $\left.T_{h}, v(0)=0\right\}$, where as before T_{h} is a uniform partition with mesh $h=\frac{1}{m+1}$.
Observe that $V_{h}=\operatorname{span}\left(\varphi_{1}, \ldots, \varphi_{m}, \varphi_{m+1}\right) \subset V$, with the hat functions φ_{j}.
The FE problem then reads
Find $u_{h} \in V_{h}$ such that $\left(u_{h}^{\prime}, v_{h}^{\prime}\right)_{L^{2}}+\left(u_{h}^{\prime}, v_{h}\right)_{L^{2}}=\int_{0}^{1} v_{h}(x) \mathrm{d} x+\beta v_{h}(1) \quad \forall v_{h} \in V_{h}$.
3. Choosing $v_{h}=\varphi_{i}$, writing $u_{h}(x)=\sum_{j=1}^{m+1} \zeta_{j} \varphi_{j}(x)$, observing that φ_{m+1} is a half hat function, and inserting everything into the FE problem gives the following linear system of equations

$$
(S+C) \zeta=b,
$$

where the $(m+1) \times(m+1)$ stiffness matrix S has entries $s_{i j}=\int_{0}^{1} \varphi_{i}^{\prime}(x) \varphi_{j}^{\prime}(x) \mathrm{d} x$, the $(m+1) \times$ ($m+1$) convection matrix C has entries $c_{i j}=\int_{0}^{1} \varphi_{j}^{\prime}(x) \varphi_{i}(x) \mathrm{d} x$, and the $(m+1) \times 1$ vector b has entries $b_{i}=\int_{0}^{1} \varphi_{i}(x) \mathrm{d} x+\beta \varphi_{i}(1)$. Detailed formulas for these entries can be found in the book. Solving this system gives the vector ζ and in turn the numerical approximation u_{h}.

- For indication, and for a uniform partition of [0,1] denoted by T_{h} : $x_{0}=0<x_{1}<x_{2}<\ldots<x_{m}<$ $x_{m+1}=1$ with element length/mesh denoted by h, we summarise the possible choices for the FE spaces:

1. Dirichlet $\mathrm{BC} u(0)=0, u(1)=0$: test and trial spaces given by $\operatorname{span}\left(\varphi_{1}, \ldots, \varphi_{m}\right)$.
2. Dirichlet $\mathrm{BC} u(0)=\alpha \neq 0, u(1)=0$: trial given by $\operatorname{span}\left(\varphi_{0}, \varphi_{1}, \ldots, \varphi_{m}\right)$ and test by $\operatorname{span}\left(\varphi_{1}, \ldots, \varphi_{m}\right)$.
3. Dirichlet $\mathrm{BC} u(0)=0, u(1)=\beta \neq 0$: trial given by $\operatorname{span}\left(\varphi_{1}, \ldots, \varphi_{m}, \varphi_{m+1}\right)$ and test by $\operatorname{span}\left(\varphi_{1}, \ldots, \varphi_{m}\right)$.
4. Dirichlet $\mathrm{BC} u(0)=\alpha \neq 0, u(1)=\beta \neq 0$: trial given by $\operatorname{span}\left(\varphi_{0}, \varphi_{1}, \ldots, \varphi_{m+1}\right)$ and test by $\operatorname{span}\left(\varphi_{1}, \ldots, \varphi_{m}\right)$.
5. Dirichlet/Neumann BC $u(0)=0, u^{\prime}(1)=\beta$ (zero or not): trial given by $\operatorname{span}\left(\varphi_{1}, \ldots, \varphi_{m+1}\right)$ and test by $\operatorname{span}\left(\varphi_{1}, \ldots, \varphi_{m+1}\right)$.
6. Neumann/Dirichlet BC $u^{\prime}(0)=\alpha$ (zero or not), $u(1)=0$: trial given by $\operatorname{span}\left(\varphi_{0}, \ldots, \varphi_{m}\right)$ and test by $\operatorname{span}\left(\varphi_{0}, \ldots, \varphi_{m}\right)$.
7. Dirichlet/Neumann BC $u(0)=\alpha \neq 0, u^{\prime}(1)=\beta$ (zero or not): trial given by $\operatorname{span}\left(\varphi_{0}, \ldots, \varphi_{m+1}\right)$ and test by $\operatorname{span}\left(\varphi_{1}, \ldots, \varphi_{m+1}\right)$.
8. Neumann/Dirichlet BC $u^{\prime}(0)=\alpha$ (zero or not), $u(1)=\beta \neq 0$: trial given by $\operatorname{span}\left(\varphi_{0}, \ldots, \varphi_{m+1}\right)$ and test by $\operatorname{span}\left(\varphi_{0}, \ldots, \varphi_{m}\right)$.
9. Neumann $\mathrm{BC} u^{\prime}(0)=\alpha, u^{\prime}(1)=\beta$ (zero or not): trial given by $\operatorname{span}\left(\varphi_{0}, \ldots, \varphi_{m+1}\right)$ and test by $\operatorname{span}\left(\varphi_{0}, \ldots, \varphi_{m+1}\right)$.

Further resources:

- Galerkin method at wikipedia.org
- Error estimation at csc.kth-se
- Adaptivity at csc.kth-se

