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Chapter 5: FEM for BVP in 1d (summary)

January 31, 2022

Goal: Present and analyse FEM for several classical BVPs.

¢ Consider the BVP
—(ax)u'(x) =fx) for x€(0,1)
u(0)=0,u(1) =0,

where the given functions f, a are nice (for instance f is continuous or in I%(0,1), a(x) = ay >0
continuous or piecewise continuous on (0, 1) and bounded on [0, 1]).

The above BVP has the following variational formulation (VF)

1

1
Find uEHO1 such that f ax)u' (x)v' (x) dx:f fxv(x)dx forall ve HOI.
0

0

The corresponding FE problem (FE) reads

1 1
Find upeV) such thatf a(x)uy, (x) v, (x) dx :f f@vp(0)dx Yo, e V).
0 0

Recall that the above is called a cG(1) FEM, for continuous Galerkin (using linear approximation).

Observing that V}? c H&, one gets Galerkin orthogonality condition (GO)
1
f a(x) (u'(x) - u),(0) v),(x)dx=0 Yv,eV)
0
which says that the error of the FE approximation is orthogonal to V}? in the energy inner product

that we now define.

s For f,g € H} and a as above, one defines

the weighted L2 inner product )
(f,8)a= fo f(x)gx)a(x)dx

the energy inner product
(f,8e=(f"8)a

and the corresponding norms

1fla=(f:a and | fllz=\/(f Pk

Observe that the definition of the energy norm || g is problem dependent.

e A priori error estimate for cG(1): Let u, uy, be the solutions to (VF), resp. (FE). Assume u" € Li(O, 1).
Then, there exists a constant C > 0 such that

lu—uplg<Clhu"|,,

where we recall that & = h(x) is the mesh function of the FE approximation.


david.cohen@chalmers.se

TTMA372/MMG800 VT 2022
David Cohen (david. cohen@chalmers. se) Chalmers & GU

* A posteriori error estimate for cG(1): Under technical assumptions on # and u, one has the fol-

lowing error estimate
1/2

1
||u-uh||Esc(f L RRwwdx|
0o a(x)

where R denotes the residual R(uy,) = f(x) + (a(x)u'(x))" of the FE approximation to the BVP.

* The concept of adaptivity uses the above a posteriori error estimates to locally refine or modify the
mesh in order to obtain a better numerical approximation uy,.

* Let us now derive a FE approximation for the BVP

—u"(x)+4u(x)=0 for x€(0,1)
u(=a and u(l)=4,

where a, § # 0 are given real numbers. Such boundary conditions are called non-homogeneous
Dirichlet boundary conditions.

The derivation of a numerical approximation for solutions to the above problem is given by

1. Define the trial space V = {v: [0,1] = R: ve H'(0,1),v(0) = a, v(1) = B} and the test space
VO={v:10,11—=R: ve H(0,1),v(0) = v(1) = 0}. Multiply the DE with a test function v € V?,
integrate over the domain [0, 1] and get the VF

1 1
Find ueV such that fu'(x)v'(x)dx+4f uxvx)dx=0 VYveVO
0 0

2. Next, define the finite dimensional spaces
Vi ={v: (0,11 = R: vis cont. pw. linear on T; andv(0) = a, v(1) = B} and
V,S ={v: 10,11 = R: vis cont. pw. linear on T, v(0) = v(1) = 0}, where as before T}, is a uni-
form partition with mesh h = ﬁ Observe that V}, = span(@o, @1,..-,@m, Pm+1) < V and
V) =span(g,...,¢m,m) < VO with the hat functions ¢ ;.

The FE problem then reads

1 1
Find wuj €V, such that f u), (xX) v}, (x) dx+4f up(x)vy(x)dx VYuvpe V}?.
0 0

m+1
3. Choosing vy, = @;, writing uy(x) = Z Cjpjx) with (o = @ and {41 = B (due to the non-
j=0
homogeneous Dirichlet BC), and inserting everything into the FE problem gives the following
linear system of equations

(S+4M){ = b,
1
where the m x m stiffness matrix S has entries s;; = f (p'i (x)(p’j (x)dx, the m x m mass matrix
0

1
M has entries m;; = f ®i(x)@;(x)dx, and the m x 1 vector b has entries b; = —a(@y, ¢}) 2 —
0

B, ) 12— 40, 9i) 12— 4P (@ m+1,¢}) 12. Detailed formulas for these entries can be found
in the book. Solving this system gives the vector ¢ and in turn the numerical approximation
u.
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¢ Let us finally consider the problem of finding a numerical approximation of solutions to the BVP

—au"(x)+bu'(x)=r for x€(0,1)
w0 =0 and u'(1) =4,

where 8 #0, a,b > 0, and r are given real numbers. One has a homogeneous Dirichlet boundary
conditions for x = 0 and non-homogeneous Neumann boundary conditions for x = 1.
For ease of presentation we take a = b = r = 1 and derive a FE approximation as follows

1. Define the space V = {v: [0,1] = R: ve H'(0,1), v(0) = 0}. Multiply the DE with a test func-
tion v € V, integrate over the domain [0, 1] and get the VF

1
Find ueV such that (u',v')Lz+(u’,v)Lz=[ v(x)dx+pv(l) VveV.
0

2. Next, define the finite dimensional space Vj, = {v: [0,1] — R : v is cont. pw. linear on T}, v(0) = 0},
where as before T}, is a uniform partition with mesh h = ﬁ

Observe that Vj, = span(gy,...,@m, @m+1) < V, with the hat functions ¢ ;.
The FE problem then reads

1
Find up€Vj, suchthat (u),v))+ ), vy =f vp(x)dx+ Bvy(1) Vv, € V.
0

m+1
3. Choosing vy, = ¢;, writing up(x) = Z (jpj(x), observing that ¢, is a half hat function, and
j=1
inserting everything into the FE problem gives the following linear system of equations

(S+C){=b,

1
where the (m +1) x (m + 1) stiffness matrix S has entries s;; = f ¥ (x)(p'j(x) dx, the (m+1) x
0

1
(m +1) convection matrix C has entries ¢;; = f (p’j(x)(pi(x) dx, and the (m + 1) x 1 vector b
0

1
has entries b; = f @i(x)dx + Be;(1). Detailed formulas for these entries can be found in the

book. Solving this system gives the vector ¢ and in turn the numerical approximation uy,.

e For indication, and for a uniform partition of [0,1] denoted by Tj: X =0< X1 < X2 < ... < X <
Xm+1 = 1 with element length/mesh denoted by h, we summarise the possible choices for the FE

spaces:
1. Dirichlet BC u(0) =0, u(1) = 0: test and trial spaces given by span(ei,...,m)-
2. Dirichlet BC u(0) = a # 0, u(1) = 0: trial given by span(pg, ¢1,...,¢n) and testby span(pi,...,om).
3. Dirichlet BC u(0) =0, u(1) = B # 0: trial given by span(¢y, ..., 9m, Pm+1) and testby span(pi,...,@m).
4. Dirichlet BC u(0) = a # 0, u(1) = B # 0: trial given by span(@g, ¢1,...,Pm+1) and testby span(@i,...,@mn).
5. Dirichlet/Neumann BC u(0) = 0, /(1) = f (zero or not): trial given by span(¢y,...,@m+1) and

test by span(@i,...,@m+1).
6. Neumann/Dirichlet BC u'(0) = a (zero or not), u(1) = 0: trial given by span(¢y, ..., ¢») and
test by span(@o,...,m).
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7. Dirichlet/Neumann BC u(0) = @ # 0, u/(1) = B (zero or not): trial given by span(¢q, ..., Qm+1)
and test by span(¢i1,...,Om+1)-

8. Neumann/Dirichlet BC u/(0) = a (zero or not), u(1) =  # 0: trial given by span(@o, ..., O m+1)
and test by span(@g,...,Pm).

9. Neumann BC u/(0) = a, u'(1) = B (zero or not): trial given by span(¢y,...,@m+1) and test by
span(@o, ..., Pm+1).

Further resources:
* Galerkin method at wikipedia.org
¢ Error estimation at csc.kth-se

» Adaptivity at csc.kth-se
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https://en.wikipedia.org/wiki/Galerkin_method
http://www.csc.kth.se/utbildning/kth/kurser/DN2260/fem12/M5.pdf
http://www.csc.kth.se/utbildning/kth/kurser/DN2260/fem12/M6.pdf

