Problems in PDE1 (mostly from CDE, by Estep el al)

Galerkin's Method

1. Let $V^{(q)}=\mathcal{P}^{q}(0,1)$ be the set of polynomials of degree $\leq q$. Define

$$
V_{0}^{(q)}:=\left\{v: v \in V^{(q)}, v(0)=0\right\} .
$$

Prove that $V_{0}^{(q)}$ is a subspace of $V^{(q)}$.
2. Consider the initial value problem

$$
\left\{\begin{array}{l}
\dot{u}(t)=\lambda u(t) \quad 0<t \leq 1, \tag{1}\\
u(0)=u_{0} .
\end{array}\right.
$$

Compute the Galerkin approximation for $q=1,2,3$ and 4 assuming that $u_{0}=\lambda=1$.
3. Compute the $L_{2}(0,1)$ projection into $\mathcal{P}^{3}(0,1)$ of the exact solution u for (1) and compare it with the Galerkin's solution U.
4. Consider the boundary value problem

$$
\left\{\begin{array}{l}
-\left(a(x) u^{\prime}(x)\right)^{\prime}=f(x) \quad 0<x \leq 1 \tag{2}\\
u(0)=u(1)=0
\end{array}\right.
$$

Let $a \equiv 1$ and $f=x$. Use the uniform mesh with $h=1 / 4$, and compute the Galerkin approximation for u.
5. Prove that $V^{(q)}=\operatorname{span}\{\sin (i \pi x), 1 \leq i \leq q\}$ is a subspace of the continuous functions on $[0,1]$ that satisfy the vanishing boundary conditions and show that $\{\sin (i \pi x)\}_{i=1}^{q}$ is an orthogonal basis for $V^{(q)}$ with respect to the L_{2} inner product.

Polynomial interpolation

6. Prove the following $L_{p}(a, b)$ error estimates for the interpolation, with $p=1$ and 2 :

$$
\begin{equation*}
\left\|f-\pi_{1} f\right\|_{L_{p}(a, b)} \leq(b-a)^{2}\left\|f^{\prime \prime}\right\|_{L_{p}(a, b)} \tag{3}
\end{equation*}
$$

7. Write down a basis for the set of piecewise quadratic polynomials $W_{h}^{(2)}$ on (a, b) and plot a sample of the functions.
8. Prove that specifying the information $p(a), p^{\prime}(a), p(b)$, and $p^{\prime}(a)$ suffices to determine polynomials $\mathcal{P}^{3}(a, b)$ uniquely.
9. Let $I=(a, b)$ and consider a partition of I as $\left\{x_{i}\right\}_{i=0}^{m+1}$ of (a, b) with mesh function $h(x)=h_{i}=\left(x_{i}-x_{i-1}\right)$. Prove that any value
of f on the subinterval can be used to define $\pi_{h} f$ satisfying the error bound:

$$
\begin{equation*}
\left\|f-\pi_{h} f\right\|_{L_{\infty}(a, b)} \leq \max _{1 \leq i \leq m+1} h_{i}\left\|f^{\prime}\right\|_{L_{\infty}\left(I_{i}\right)}=\left\|h f^{\prime}\right\|_{L_{\infty}(a, b)} \tag{4}
\end{equation*}
$$

Prove that choosing the midpoint improves the bound by an extra factor $1 / 2$.
10. Construct a piecewise cubic polynomial function with a continuous first derivative that interpolates a function and its first derivative at the nodes of a partition.

Two-point boundary value problems

11. Compute the stiffness matrix and load vector for the cG(1) method on a uniform triangulation for the problem (2) with $a(x)=1+x$ and $f(x)=\sin (x)$.
12. An elastic string on $(0,1)$ with spring coefficient $c(x)>0$ can be modeled as

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)+c(x) u(x)=f(x), \quad 0<x \leq 1 \tag{5}\\
u(0)=u(1)=0
\end{array}\right.
$$

Formulate a $\mathrm{cG}(1)$ method for (5). Compute the stiffness matrix when c is a constant. Is the stiffness matrix still symmetric, positive-definite, and tridiagonal?
13. Show that the minimization problem for (2): Find $U \in V_{h}$ such that if

$$
F(U) \leq F(v), \quad \forall v \in V_{h}
$$

where

$$
F(w)=\frac{1}{2} \int_{0}^{1} a\left(w^{\prime}\right)^{2} d x-\int_{0}^{1} f w d x
$$

takes the matrix form: Find $\chi=\left(\chi_{j}\right) \in \mathbb{R}^{M}$ that minimizes the quadratic function $\frac{1}{2} \eta^{T} A \eta-b^{T} \eta$ for $\eta \in \mathbb{R}^{M}$.
14. Consider the Neumann problem

$$
\left\{\begin{array}{l}
-\left(a(x) u^{\prime}(x)\right)^{\prime}=f(x) \quad 0<x \leq 1, \tag{6}\\
u(0)=0, \quad a(1) u^{\prime}(1)=g_{1},
\end{array}\right.
$$

The discrete variational formulation is formulated as: Find $U \in$ V_{h}, (where V_{h} is the space of continuous functions v that are piecewise linear with respect to a partition \mathcal{T}_{h} on $(0,1):\left(\left\{x_{i}\right\}_{i=0}^{M+1}\right)$ such that $v(0)=0$, such that

$$
\begin{equation*}
-g_{1} v(1)+\int_{0}^{1} a U^{\prime} v^{\prime} d x=\int_{0}^{1} f v d x, \quad \forall v \in V_{h} \tag{7}
\end{equation*}
$$

Compute the coefficients of the stiffness matrix for the finite element method (7) using a uniform partition and assuming $a=$ $f=g_{1}=1$. Check if the discrete equation corresponding to the test function φ_{M+1} at $x=1$ looks like a discrete analogue of the Neumann condition.
15. Consider the Robin problem

$$
\begin{cases}-\left(a(x) u^{\prime}(x)\right)^{\prime}=f(x) & 0<x \leq 1, \tag{8}\\ u(0)=0, \quad a(1) u^{\prime}(1)+\gamma\left(u(1)-u_{1}\right)=g_{1}, & \end{cases}
$$

where $\gamma>0$ is a given boundary heat conductivity, u_{1} is a given outside temperature and g_{1} a given heat flux. Show that the variational formulation to this problem is given as

$$
\begin{gather*}
\int_{0}^{1} a u^{\prime} v^{\prime} d x+\gamma u(1) v(1)=\int_{0}^{1} f v d x+g_{1} v(1)+\gamma u_{1} v(1), \quad \forall v \in V \tag{9}\\
V=\left\{v: \int_{0}^{1}\left(v(x)^{2}+v^{\prime}(x)\right)^{2} d x<\infty, \quad v(0)=0\right\}
\end{gather*}
$$

16. Use the trapezoidal rule to evaluate integrals involving a and f and recompute the coefficients of A and b in problem 11.
17. Prove the following inequality for functions $v(x)$ on $I=(0,1)$ with $v(0)=0$,

$$
\begin{equation*}
v(y)=\int_{0}^{y} v^{\prime}(x) d x \leq\left(\int_{0}^{y} a^{-1} d x\right)^{1 / 2}\left(\int_{0}^{y} a\left(v^{\prime}\right)^{2} d x\right)^{1 / 2}, \quad y \in I, \tag{10}
\end{equation*}
$$

where $a(x)>0$ and a^{-1} denotes the multiplicative inverse of a, i.e. $a^{-1}=1 / a$. Use this inequality to show that if a^{-1} is integrable on $I=(0,1)$, that is, $\int_{I} a^{-1} d x<\infty$, then a function v is small in the supremum norm on $[0,1]$ if $\|v\|_{E}$ is small and $v(0)=0$.
18. Prove an a priori and an a posteriori error estimate for the $\mathrm{cG}(1)$ method applied to the boundary value problem

$$
\begin{gather*}
-u^{\prime \prime}+b u^{\prime}+u=f \quad \text { in }(0,1) \tag{11}\\
u(0)=u(1)=0
\end{gather*}
$$

19. Consider the problem (11)
a) with non-homogeneous Dirichlet boundary conditions: $u(0)=$ u_{0} and $u(1)=u_{1}$.
b) with the mixed boundary conditions: $u(0)=u_{0}$ and $u^{\prime}(1)=g_{1}$.
20. Consider the problem

$$
-\epsilon u^{\prime \prime}+x u^{\prime}+u=f \quad \text { in } I=(0,1), \quad u(0)=u^{\prime}(1)=0
$$

where ϵ is a positive constant, and $f \in L_{2}(I)$. Prove that

$$
\left\|\epsilon u^{\prime \prime}\right\| \leq\|f\|
$$

where $\|\cdot\|$ is the $L_{2}(I)$-norm.

Scalar initial value problem

21. Consider the initial value problem

$$
\left\{\begin{array}{l}
\dot{u}(t)+a(t) u(t)=f(t) \quad 0<t \leq T \tag{12}\\
u(0)=u_{0}
\end{array}\right.
$$

Assume that

$$
\begin{equation*}
\int_{I_{j}} f(s) d s=0, \quad \text { for } j=0,1, \ldots \tag{13}
\end{equation*}
$$

where $I_{j}=\left(t_{j-1}, t_{j}\right), t_{j}=j k$ with k a positive constant. Prove that if $a(t) \geq 0$, then the solution to (13) satisfies

$$
\begin{equation*}
|u(t)| \leq e^{-A(t)}\left|u_{0}\right|+\max _{0 \leq s \leq t}|k f(s)| . \tag{14}
\end{equation*}
$$

22. Compute the $\mathrm{cG}(1)$ approximation for the initial boundary value problem (12) for
a) $a(t)=4$, with $f(t)=t^{2}$ and $u_{0}=1$.
b) $a(t)=-t$, with $f(t)=t^{2}$ and $u_{0}=1$.

In each case determine the condition on the step size that guarantees that U exists.
23. Consider the discontinuous Galerkin method $d G(0)$ for the equation (12) in the case $f=0, a \geq 0$. Prove the following stability estimate

$$
\left|U_{N}\right|^{2}+\sum_{n=0}^{N-1}\left|\left[U_{n}\right]\right|^{2} \leq\left|u_{0}\right|^{2}
$$

24. Recall the stability factors

$$
S\left(t_{N}\right)=\left(\int_{0}^{t_{N}}|\dot{\varphi}| d t\right) /\left|e_{N}\right|, \quad \text { and } \quad \tilde{S}\left(t_{N}\right)=\left(\int_{0}^{t_{N}}|\varphi| d t\right) /\left|e_{N}\right| .
$$

for the dual problem

$$
\begin{equation*}
-\dot{\varphi}+a \varphi=0, \quad \text { for } \quad t_{N}>t \geq 0, \quad \varphi\left(t_{N}\right)=e_{N} \tag{15}
\end{equation*}
$$

Prove that

$$
\tilde{S}\left(t_{N}\right) \leq t_{N}\left(1+S\left(t_{N}\right)\right)
$$

25. Assume that $a>0$ is constant. Prove that, if a is small, then

$$
\tilde{S}\left(t_{N}\right) \gg S\left(t_{N}\right)
$$

Calculus and piecewise polynomials in several dimensions

26. If $u\left(x_{1}, x_{2}\right)=\left(u_{1}, u_{2}\right)^{T}$ is a vector function, then rot u is the scalar function

$$
\text { rot } u=\frac{\partial u_{2}}{\partial x_{1}}-\frac{\partial u_{1}}{\partial x_{2}},
$$

while if u is scalar, then rot u is the vector function

$$
\text { rot } u=\left(\frac{\partial u}{\partial x_{2}},-\frac{\partial u}{\partial x_{1}}\right),
$$

Following identities follow directly from these definitions.

$$
\begin{equation*}
\operatorname{div} \operatorname{rot} u=0, \quad \operatorname{rot} \operatorname{grad} u=0 \tag{16}
\end{equation*}
$$

Prove that in two dimensions and with u scalar

$$
\text { rot rot } u=-\Delta u
$$

27. Prove that $-\Delta u(x)=0$, for $x \neq 0$ if $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by $u(x)=\log \left(|x|^{-1}\right)$.
28. Prove (16) for the functions u defined in \mathbb{R}^{3}, i.e. for $u: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.
29. Let $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ have a local minimum at $y \in \mathbb{R}^{3}$, that is $u(y) \leq$ $u(x)$ for all x satisfying $|x-y| \leq \delta$ for some $\delta>0$. Prove that $\nabla u(y)=0$.
30. Consider the Laplacian in the polar coordinates: set

$$
x_{1}=r \cos (\theta), \quad x_{1}=r \sin (\theta)
$$

then

$$
\begin{equation*}
\Delta u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} . \tag{17}
\end{equation*}
$$

Show using (17) that the function $u=c_{1} \log (r)+c_{2}$ where c_{i} are arbitrary constants, is a solution of the Laplace equation $\Delta u(x)=$ 0 in \mathbb{R}^{2} for $x \neq 0$. Are there other solutions of the Laplace equation in \mathbb{R}^{2} which are invariant (i.e. it depends only on $\left.r=|x|\right)$?
31. Prove that the function $u=\frac{c_{1}}{r}+c_{2}$, where c_{i} are arbitrary constants, is a solution of Laplace's equation $\Delta u(x)=0$ in \mathbb{R}^{3} for $x \neq 0$.
32. To construct a set of basis functions (in 2D) for V_{h}, we begin by describing a set of element basis functions for triangles. Assuming that a triangle has nodes at $\left\{a^{1}, a^{2}, a^{3}\right\}$, the element nodal basis is the set of functions $\lambda_{i} \in \mathcal{P}^{1}(K), i=1,2,3$, such that

$$
\lambda_{i}\left(a^{j}\right)= \begin{cases}1, & i=j, \\ 0, & i \neq j\end{cases}
$$

compute explicit formulas for the λ_{i}.
33. Prove that if K_{1} and K_{2} are neighboring triangles and $w_{1} \in$ $\mathcal{P}^{2}\left(K_{1}\right)$ and $w_{2} \in \mathcal{P}^{2}\left(K_{2}\right)$ agree at the three nodes on the common boundary, then $w_{1} \equiv w_{2}$ on the common boundary.

The Poisson Equation

34. If

$$
\begin{equation*}
-\Delta E=\delta_{0}, \quad \text { in } \quad \mathbb{R}^{d} \tag{18}
\end{equation*}
$$

where δ_{0} is the Dirac δ distribution, then E is called the fundamental solution of $-\Delta$ in \mathbb{R}^{d}. Equivalently, for any smooth test function v vanishing outside a bounded set, E satisfies

$$
\begin{equation*}
-\int_{\mathbb{R}^{d}} \Delta E(x) v(x)=v(0) . \tag{19}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
E(x)=\frac{1}{2 \pi} \log \left(\frac{1}{|x|}\right) \tag{20}
\end{equation*}
$$

is a fundamental solution of $-\Delta$ in \mathbb{R}^{2}.
35. Consider the Poisson equation with homogeneous Dirichlet boundary condition

$$
\begin{cases}-\Delta u(x)=f(x), & \text { for } x \in \Omega \tag{21}\\ u(x)=0, & \text { for } x \in \Gamma\end{cases}
$$

where Ω is a bounded domain in \mathbb{R}^{2} with polygonal boundary Γ. The variational formulation for (21) is given by

$$
\begin{equation*}
(\nabla u, \nabla v)=(f, v), \quad \forall v \in V \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
V=\left\{v: \int_{\Omega}\left(|\nabla v|^{2}+v^{2}\right) d x<\infty, \quad v=0, \quad \text { on } \Gamma\right\} . \tag{23}
\end{equation*}
$$

Prove that the set of functions that are continuous and piecewise differentiable on Ω and vanish on Γ, is a subspace of V
36. Assume that the solution of the problem (22) is continuous on $\Omega \cup \Gamma$, show that it is unique.
37. Describe the discrete system of equations for a a piecewise polynomial approximation for (21) with general continuous polynomial basis functions $\left\{\varphi_{j}\right\}_{j=1}^{M}$. Show that the stiffness matrix for this approximation is symmetric and positive definite.
38. We define the L_{2}-projection $P_{h} v$ of a function $v \in L_{2}(\Omega)$ into the finite element space V_{h} by

$$
\begin{equation*}
\left(P_{h} v, w\right)=(v, w), \quad \forall w \in V_{h} \tag{24}
\end{equation*}
$$

We also define the discrete Laplacian Δ_{h} by

$$
\begin{equation*}
-\left(\Delta_{h} w, v\right)=(\nabla w, \nabla v), \quad \forall v \in V_{h} \tag{25}
\end{equation*}
$$

Verify that we may express the finite problem

$$
\begin{equation*}
(\nabla U, \nabla v)=(f, v), \quad \forall v \in V_{h} \tag{26}
\end{equation*}
$$

as finding $U \in V_{h}$ such that

$$
\begin{equation*}
-\Delta_{h} U=P_{h} f \tag{27}
\end{equation*}
$$

39. Substituting $P_{h} v=\sum_{j} \eta_{j} \varphi_{j}$ and choosing $w=\varphi_{i}, i=1,2, \ldots, M$, we obtain the linear system

$$
\begin{equation*}
M \eta=b, \tag{28}
\end{equation*}
$$

where M is the mass matrix with the coefficients $\left(\varphi_{j}, \varphi_{i}\right)$ and b is the load vector with components $\left(v, \varphi_{i}\right)$. Prove that the mass matrix M is symmetric and positive definite.
40. Consider the Poisson equation with non-homogeneous Dirichlet boundary conditions:

$$
\begin{cases}-\Delta u(x)=f(x), & \text { for } x \in \Omega \tag{29}\\ u(x)=g(x), & \text { for } x \in \Gamma\end{cases}
$$

where g is a given boundary data. The variational formulation takes the following form: find $u \in V_{g}$, where

$$
V_{g}=\left\{v: v=g \text { on } \Gamma \text { and } \int_{\Omega}\left(|\nabla v|^{2}+v^{2}\right) d x<\infty\right\}
$$

such that

$$
\begin{equation*}
(\nabla u, \nabla v)=(f, v), \quad \forall v \in V_{0} \tag{30}
\end{equation*}
$$

with

$$
V_{0}=\left\{v: v=0 \text { on } \Gamma \text { and } \int_{\Omega}\left(|\nabla v|^{2}+v^{2}\right) d x<\infty\right\} .
$$

Show that v_{g} is not a vector space. Prove that the solution of the weak problem (30) is unique.
41. Compute the discrete system of equations for the finite element approximation of $-\Delta u=1$ in $\Omega=(0,1) \times(0,1)$ with $u=0$ on the side $x_{1}=0, u=x_{1}$ for $x_{2}=0, u=1$ for $x_{1}=1$ and $u=x_{1}$ for $x_{2}=1$, using the standard triangulation.
42. Compute the discrete system of equations for the problem $-\Delta u=$ 1 in $\Omega=(0,1) \times(0,1)$ with $u=0$ on the side $x_{2}=0$ and $\partial_{n} u+u=1$ on the other three sides of Ω using the standard triangulation. Note the contribution to the stiffness matrix from the nodes on the nodes on the boundary.

Heat, and wave equations

43. Consider the homogeneous heat equation

$$
\begin{cases}u_{t}-\Delta u=0 & \text { in } \mathbb{R}^{2} \times(0, \infty) \tag{31}\\ u(\cdot, 0)=u_{0}(x) & \text { in } \mathbb{R}^{2},\end{cases}
$$

Show that, for $t>0$, the fundamental solution (solution to the problem (31) with $u_{0}=\delta_{0}$) is given by

$$
\begin{equation*}
F(x, t)=\frac{1}{4 \pi t} \exp \left(-\frac{|x|^{2}}{4 t}\right) . \tag{32}
\end{equation*}
$$

44. Verify that the solution of (31) is given by

$$
\begin{equation*}
u(x, t)=\frac{1}{4 \pi t} \int_{\mathbb{R}^{2}} u_{0}(y) \exp \left(-\frac{|x-y|^{2}}{4 t}\right) d y \tag{33}
\end{equation*}
$$

45. Consider the non-homogeneous heat equation

$$
\begin{cases}u_{t}(x, t)-\Delta u(x, t)=f(x, t) & \text { in } \Omega \times(0, \infty), \tag{34}\\ u(x, t)=0, & \text { for } x \in \Gamma, 0<t \leq T, \\ u(\cdot, 0)=u_{0}(x) & \text { in } \Omega,\end{cases}
$$

where $\Omega \subset \mathbb{R}^{2}$. Formulate the $\mathrm{cG}(1) \mathrm{dG}(0)$ finite element method for the heat equation (34), using the lumped mass quadrature rule in space and the two point Gauss quadrature rule for the time integral over I_{n}.
46. Consider the non-homogeneous heat equation in 1D with variable coefficient:

$$
\begin{cases}u_{t}(x, t)-\left(a(x, t) u^{\prime}(x, t)\right)^{\prime}=f(x, t) & (x, t) \in(0,1) \times \times(0, \infty) \tag{35}\\ u(0, t)=u(1, t)=0, & t \in(0, \infty) \\ u(x, 0)=u_{0}(x) & x \in(0,1)\end{cases}
$$

Formulate a $\mathrm{cG}(1) \mathrm{dG}(0)$ finite element method for this problem.
47. Consider the homogeneous heat equation (31). Show that under the assumption $k_{n} \leq C k_{n-1}$ on time step. the $\mathrm{cG}(1) \mathrm{dG}(1)$ solution U_{n} satisfies

$$
\left\|U_{N}^{-}\right\| \leq\left\|U_{0}^{-}\right\|, \quad 1 \leq n \leq N .
$$

48. Consider the non-homogeneous wave equation

$$
\begin{cases}u_{t t}(x, t)-u_{x x}(x, t)=f(x, t) & (x, t) \in \mathbb{R} \times \times(0, \infty), \tag{36}\\ u(x, 0)=u_{0}(x), \quad \dot{u}(x, 0)=\dot{u}_{0}(x) & x \in \mathbb{R}\end{cases}
$$

Prove the extension of the d'Alembert formula for (36):

$$
\begin{equation*}
u(x, t)=\frac{1}{2}\left[u_{0}(x+t)+u_{0}(x-t)\right]+\frac{1}{2} \int_{x-t}^{x+t} \dot{u}_{0}(y) d y+\frac{1}{2} \int_{\Delta} f(y, s) d y d s \tag{37}
\end{equation*}
$$

where

$$
\Delta=\{(y, s):|x-y| \leq t-s, s \geq 0\}
$$

denotes the triangle of dependence.
49. Verify (using d'Alemberts formula) the formula for solution for $\ddot{u}=c^{2} u^{\prime \prime}$ for $x>0, t>0, u(x, 0)=u_{0}(x)$ and $\dot{u}(x, 0)=v_{0}(x)$ for $x>0$, and a) $u(0, t)=0$, b) $u(0, t)=g(t)$ for $t>0$.
50. Prove the conservation of energy for the homogeneous wave equation in a two dimensional domain Ω :

$$
\|\dot{u}(\cdot, t)\|^{2}+\|\nabla u(\cdot, t)\|^{2}=\left\|\dot{u}_{0}\right\|^{2}+\left\|\nabla u_{0}\right\|^{2}, \quad t>0
$$

51. Consider the wave equation

$$
\begin{cases}\ddot{u}-\Delta u=f & (x, t) \in \Omega \times(0, \infty), \tag{38}\\ u=0, & (x, t) \in \Gamma \times(0, \infty), \\ u(x, 0)=u_{0}(x), \quad \dot{u}(x, 0)=\dot{u}_{0}(x) & x \in \Omega\end{cases}
$$

52. Show that for any proper subdomain ω of Ω and $t>0$ such that $\omega(t) \subset \Omega$, the solution u of the homogeneous wave equation satisfies

$$
\|\dot{u}(\cdot, t)\|_{L_{2}(\omega)}^{2}+\|\nabla u(\cdot, t)\|_{L_{2}(\omega)}^{2} \leq\left\|\dot{u}_{0}\right\|_{L_{2}(\omega(t))}^{2}+\left\|\nabla u_{0}\right\|_{L_{2}(\omega(t))}^{2} .
$$

Riesz and Lax-Milgram Theorems

53. Let $B=\left\{x \in \mathbb{R}^{2}:|x|<1\right\}$ be the unit disc in \mathbb{R}^{2}. Find condition on r for which $|x|^{r} \in H^{1}(B)$ but $|x|^{s} \notin H^{1}(B)$ for any $s<r$.
54. Define $H^{2}(B)$ and find a function that is in $H^{1}(B)$ but not in $H^{2}(B)$ where B is the unit disc.
55. Prove the Poincare-Friedrichs inequality:

$$
\begin{equation*}
\|v\|_{L_{2}(\Omega)}^{2} \leq C_{\Omega}\left(\|v\|_{L_{2}(\Gamma)}^{2}+\|\nabla v\|_{L_{2}(\Omega)}^{2}\right), \quad \forall v \in H^{1}(\Omega) \tag{39}
\end{equation*}
$$

56. Verify the trace theorem: If Ω is a bounded domain with boundary Γ, then there is constant C such that

$$
\begin{equation*}
\|v\|_{L_{2}(\Gamma)} \leq C\|v\|_{H^{1}(\Omega)}, \quad \forall v \in H^{1}(\Omega) \tag{40}
\end{equation*}
$$

57. Show that there is no constant C such that $\|v\|_{L_{2}(\Gamma)} \leq C\|v\|_{L_{2}(\Omega)}$, $\forall v \in L_{2}(\Omega)$.
58. Consider the convection-diffusion problem
$-\operatorname{div}(\varepsilon \nabla u+\beta u)=f$, in $\Omega \subset \mathbb{R}^{2}, \quad u=0$, on $\quad \partial \Omega, \quad u \in H_{0}^{1}(\Omega)$,
where Ω is a bounded convex polygonal domain, $\varepsilon>0$ is constant, $\beta=\left(\beta_{1}(x), \beta_{2}(x)\right)$ and $f=f(x)$. Determine the conditions in the Lax-Milgram theorem that would guarantee existence of a unique solution for this problem. Prove a stability estimate for u i terms of $\|f\|_{L_{2}(\Omega)}, \varepsilon$ and $\operatorname{diam}(\Omega)$, and under the conditions that you derived.
59. Consider the following boundary value problem (Robin boundary condition and a convex bounded domain) in $\Omega \subset \mathbb{R}^{d}, d=2,3$,

$$
\left\{\begin{aligned}
-\Delta u=0, & \text { in } \Omega \\
\frac{\partial u}{\partial n}+u=g, & \text { on } \Gamma=\partial \Omega
\end{aligned}\right.
$$

a) Prove the L_{2} stability estimate

$$
\|\nabla u\|_{L_{2}(\Omega)}^{2}+\frac{1}{2}\|u\|_{L_{2}(\Gamma)}^{2} \leq \frac{1}{2}\|g\|_{L_{2}(\Gamma)} .
$$

b) Verify the conditions on Riesz/Lax-Milgram theorem for this problem, i.e., prove V-ellipticity and continuity of the corresponding bilinear form as well as the continuity of the corresponding linear form.
60. Verify the conditions on Riesz/Lax-Milgram theorem for the problem

$$
d^{4} u / d x^{4}=f, \quad x \in(0,1),
$$

with $u(0)=u^{\prime}(0)=u(1)=u^{\prime}(1)=0$.

Answers

Galerkin's Methods

2.

$q=1 \Longrightarrow u(t)=1+3 t$,
$q=2 \Longrightarrow u(t)=1+\frac{8}{11} t+\frac{10}{11} t^{2}$,
$q=3 \Longrightarrow u(t)=1+\frac{30}{29} t+\frac{45}{116} t^{2}+\frac{35}{116} t^{3}$,
$q=4 \Longrightarrow u(t) \approx 1+0.9971 t+0.5161 t^{2}+0.1311 t^{3}+0.0737 t^{4}$.
3. $P u(t) \approx 0.9991+1.0183 t+0.4212 t^{2}+0.2786 t^{3}$.
4. Exact solution $u(x)=\frac{1}{6}\left(-x^{3}+x\right)$, FEM- solution at nod points: $U\left(x_{1}\right)=0.0391, U\left(x_{2}\right)=0.0625, U\left(x_{3}\right)=0.0547$.

Polynomial interpolation

7. For example we may choose the following basis:
$\varphi_{i, j}(x)=\left\{\begin{array}{ll}0, & x \notin\left[x_{i-1}, x_{i}\right], \\ \lambda_{i, j}(x), & x \in\left[x_{i-1}, x_{i}\right],\end{array} \quad i=1, \ldots m+1, j=0,1,2\right.$.
where for $\chi_{i} \in\left(x_{i-1}, x_{i}\right)$

$$
\left\{\begin{array}{l}
\lambda_{i, 0}(x)=\frac{\left(x-\chi_{i}\right)\left(x-x_{i}\right)}{\left(x_{i-1}-\chi_{i}\right)\left(x_{i-1}-x_{i}\right.}, \\
\lambda_{i, 1}(x)=\frac{\left(x-x_{i-1}\right)\left(x-x_{i}\right)}{\left(\chi_{i}-x_{i-1}\right)\left(\chi_{i}-x_{i}\right)}, \\
\lambda_{i, 2}(x)=\frac{\left(x-x_{i-1}\right)\left(x-\chi_{i}\right)}{\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i}\right)} .
\end{array}\right.
$$

Two-points boundary value problem

11. $a_{i i}=\frac{2}{h}+2 i, \quad a_{i-1, i i}=-\frac{1}{h}-i-\frac{1}{2}$,
$b_{i}=\frac{1}{h}(2 \sin (h i)-\sin (h(i-1))-\sin (h(i+1)))$.
12. $a_{i j}=\tilde{a}_{i j}+c \int_{0}^{1} \varphi_{j}(x) \varphi_{i}(x) d x, \quad \tilde{a}_{i j}=\int_{0}^{1} \varphi_{j}^{\prime}(x) \varphi_{i}^{\prime}(x) d x$,
$b_{i}=\int_{0}^{1} f(x) \varphi_{i}(x) d x$.
The coefficient matrix is symmetric, positive definite and
tridiagonal. It can even be diagonal, depending on the choice of c (if we choose $c=\frac{6}{h_{i+1}}$).
13. For $i, j=1, \ldots, M$ we have as usual $a_{i i}=\frac{2}{h}, \quad a_{i, i+1}=$ $-\frac{1}{h}$. This also holds for $A_{M, M+1}=A_{M+1, M}$, but since φ_{M+1} has support only to the left of $x_{M+1}, a_{M+1, M+1}=\frac{1}{h}$.
14. A priori: $\|e\|_{E} \leq\|u-v\|_{E}(1+b)$.

A posteriori: $\|e\|_{E} \leq C_{i}\|h R(U)\|$,
$R(U)=f+U^{\prime \prime}-b U^{\prime}-U$.

Scalar initial value problem

22. Hint, Use the algorithm on page 145 of Lecture Notes.

Calculus and piecewise ploynomials in several dimensions
32. $\lambda_{1}(x)=1-D^{-1}\left(a^{3}-a^{2}\right)^{t}\left[\begin{array}{ll}0 & -1 \\ 1 & 0\end{array}\right]\left(x-a^{1}\right)$, with
$D=\left(a_{1}^{2}-a_{1}^{1}\right)\left(a_{2}^{3}-a_{2}^{1}\right)-\left(a_{2}^{3}-a_{2}^{1}\right)\left(a_{1}^{3}-a_{1}^{1}\right)$.

The Poisson equation

42. You get block-diagonal coefficient matrix A.
$b=(6+3 h, 6 h, \ldots, 6 h, 6+3 h|, \ldots| 6+,3 h, 6 h, \ldots, 6 h, 6+$ $3 h, \mid 6+2 h, 6+3 h, \ldots, 6+3 h, 6+h)^{t}$.
