Chapter 6: Numerical methods for IVP (summary)

February 4, 2022

Goal: Present basic numerical methods for the IVP

$$\begin{cases} \dot{y}(t) = f(y(t)) & \text{for } t \in (0, T) \\ y(0) = y_0. \end{cases}$$

Here, T > 0, $y_0 \in \mathbb{R}$, $f : \mathbb{R} \to \mathbb{R}$ are given and $\dot{y}(t) = \frac{d}{dt}y(t)$. Observe that what is presented below can be adapted to the situation, where f(t, y) and $y(t_0)$ or for vector-valued problems.

• For $y: \mathbb{R} \to \mathbb{R}$ differentiable at t_0 and a fixed h > 0, we define the following approximations of the derivative given by so-called finite differences:

The forward difference

$$\dot{y}(t_0) \approx \frac{y(t_0 + h) - y(t_0)}{h}.$$

The backward difference

$$\dot{y}(t_0) \approx \frac{y(t_0) - y(t_0 - h)}{h}.$$

The centered difference

$$\dot{y}(t_0) \approx \frac{y(t_0+h)-y(t_0-h)}{2h}.$$

· Consider the IVP

$$\begin{cases} \dot{y}(t) = f(y(t)) & \text{for } t \in (0, T] \\ y(0) = y_0. \end{cases}$$

Let $N \in \mathbb{N}$ and define the time step $k = \frac{T}{N}$ as well as the time grid $0 = t_0 < t_1 < ... < t_N = T$, where $t_n = nk$ for n = 0, 1, ..., N.

We define the following time integrators for the above IVP (starting with $y_0 = y(0)$):

The (forward/explicit) Euler scheme

$$y_{n+1} = y_n + k f(y_n).$$

The backward/implicit Euler scheme

$$y_{n+1} = y_n + kf(y_{n+1}).$$

The Crank-Nicolson scheme

$$y_{n+1} = y_n + \frac{k}{2} (f(y_n) + f(y_{n+1})).$$

These provide numerical approximations $y_n \approx y(t_n)$ to the exact solution of the IVP on the time grid $(t_n)_{n=0}^N$.

Further resources:

- FD at www.wikipedia.org
- FD at brown.edu
- · FD and Euler at ocw.mit.edu
- · Euler at math.lamar.edu
- Euler at calcworkshop.com
- Euler at intmath.com