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Chapter 7: The heat equation in 1d (summary)

February 5, 2022

Goal: Briefly study the exact solution to some heat equations and present a numerical discretisation.
* Let us start with some stability estimates for the following heat equation

ur(x, t) —uxx(x, ) = f(x,1) 0<x<1,0<t=<T
u,0)=0,u(1,)=0 0<t=<T

u(x,0)=up(x) 0<x<l,

where up and f are given functions.

The solution to the above problem statisfy the following estimates
t
(e, Dl zz0,1) < Mol z2(0,1) +f0 79 ||L2(0,1) ds.

t
e G, Ol 20,1y < || 240 ||L2(0,1) +[0 e, ||L2(0,1) ds.

When f =0, one gets
lu(, Ollz20,1) < ol z20,1y e 2l

When f =0 and some fixed € > 0, one gets for all # € (0, T

t 1/ (¢
f { us(-,8) ”LZ(O,I) ds<—4/In (—) [ uO”LZ(O,l) .
£ 2 £

* Next, we discretise the inhomogeneous heat equation with homogeneous Dirichlet boundary con-
ditions
ur(x, t) —uxx(x, ) = f(x,1) 0<x<1,0<t=<T
u@,)=u(l,)=0 0<t=<T
u(x,0)=up(x) 0<x<l,
where uy and f are given functions.

Since it is seldom possible to find the exact solution u(x, ) to the above problem, we need to find a
numerical approximation of it. We proceed as follows

1. To get a VF of the heat equation, consider the test/trial space
VO ={v:[0,11 > R: v,v' € L*(0,1),v(0) = v(1) = 0}. Then, multiply the DE by a test function
v e VY, integrate over [0, 1], and use integration by parts to get the VF: For each0< t< T

Find u(,0eV® st (e, 0, )2+ (e, 0, v) 2 = (F(, 0, 0) 12 voeV? (VE)

with the initial condition u(x,0) = ug(x).
2. To get a FE problem, we consider the following subspace of the above space V°

V}? = {v: [0,1] = R : vcont. pw. linear on unif. partition Ty, v(0) = v(1) = 0} =span(®i,...,Pm),
where h = ﬁ and ¢ ; are the hat functions.

The FE problem then reads: ForeachO<t<T
Find up(0€Vy st (e 0,4) 2 + (UnaCo 0, )2 = (FC0,00) 2 YupeV, (FE)

with the initial condition uy,(x,0) = 7w, uy(x) the cont. pw. linear interpolant of uy.
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3. From the above FE problem, we obtain a system of linear ODE by choosing the test functions
m

vp=¢;fori=1,...,mand writing uy(x, ) = Z ¢ (D)@ (x) with unknown coordinates {;(z).

j=1
Inserting everything in (FE), one gets the ODE

ME(t) + SC(1) = F(t) (ODE)
£(0),

where M is the (already seen) m x m mass matrix, S is the (already seen) m x m stiffness matrix,
F(?) is an m x 1 vector with entries F;(t) = (f(, ), ;)2 for i = 1,..., m, the initial condition is

given by

uo(x1)

¢(0) = : )

uo (Xm)
and the unknown vector reads

¢1(0)

()=
Cm(2)

4. To find a numerical approximation of {(¢) at some discrete time grid #p =0< t; <... <ty =T,
with ;- tj_1=k= %, one can for instance use backward Euler scheme which reads

{9 =¢0
M+ kS = M¢"™ + kF(ty+;) for n=0,1,2,...,N—1.

Solving these linear systems at each time step provides numerical approximations ¢ = {(t;,)

that can be inserted in the FE solution to get approximations to the exact solution to the heat
m

equation Z Citn)gj(x) = u(x, ty).

j=1
Further resources:
¢ heat eq. at wikipedia.org

* heat eq. at math.lamar.edu
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https://en.wikipedia.org/wiki/Heat_equation
https://tutorial.math.lamar.edu/classes/de/theheatequation.aspx

