Chapter 9: On our way to FEM in $2 d$ (summary)

February 8, 2022

Goal: Extend integration by parts, piecewise linear function, linear interpolation in $2 d$. Prepare for FE discretisation of PDEs in higher dimensions.

- Green's formula can be seen as a generalisation of integration by parts in $2 d$ (or higher). Under some technical assumptions, one has

$$
\int_{\Omega} \Delta u v \mathrm{~d} x=\int_{\partial \Omega}(n \cdot \nabla u) v \mathrm{~d} s-\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x
$$

where $n=n\left(x_{1}, x_{2}\right)$ is the outward unit normal vector of the boundary at a point $\left(x_{1}, x_{2}\right) \in \partial \Omega$, the first and last integrals are double integral on $\Omega \subset \mathbb{R}^{2}$, while the second integral is a line integral, the dot \cdot stands for the dot product/scalar product between two vectors.

- An application of Green's formula can be used to derive the variational formulation to Poisson's equation on a nice domain $\Omega \subset \mathbb{R}^{2}$:

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where f is a given (nice enough) function.
The variational formulation of the above PDE reads

$$
\text { Find } \quad u \in H_{0}^{1}(\Omega) \quad \text { such that } \quad(\nabla u, \nabla v)_{L^{2}(\Omega)}=(f, v)_{L^{2}(\Omega)} \quad \forall v \in H_{0}^{1}(\Omega) .
$$

- Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with polygonal boundary $\partial \Omega$ (or smooth boundary). A triangulation or mesh T_{h} of Ω is a set $\{K\}$ of triangles K such that $\Omega=\bigcup_{K \in T_{h}} K$ and the intersection of two triangles is either empty, a corner, or an edge.

The corner of the triangles are called the nodes and will be denoted by N_{j} below. The local mesh size of a triangle K is denoted by h_{K} and is the length of the longest edge of the triangle K. The global mesh size is denoted by $h=\max _{K \in T_{h}} h_{K}$.
Any polygon can be triangulated thanks to the fan triangulation for example. Else, one may need to use a mesh generator.
All the triangle seen in the lecture will be regular (i. e. nice enough to do what we need to do).

- For a triangle K, one defines

$$
P_{1}(K)=\left\{v: K \rightarrow \mathbb{R}: v\left(x_{1}, x_{2}\right)=c_{0}+c_{1} x_{1}+c_{2} x_{2}, \quad\left(x_{1}, x_{2}\right) \in K, \quad c_{0}, c_{1}, c_{2} \in \mathbb{R}\right\}
$$

the space of linear functions on K. Observe that any function $v \in P_{1}(K)$ is uniquely determined by its nodal values.

A nodal basis, for the above space, on the reference triangle with nodes/vertex $(0,0),(1,0)$ and (0.1) consists of the following three functions

$$
\lambda_{1}\left(x_{1}, x_{2}\right)=1-x_{1}-x_{2}, \quad \lambda_{2}\left(x_{1}, x_{2}\right)=x_{1}, \quad \lambda_{3}\left(x_{1}, x_{2}\right)=x_{2} .
$$

- Let $T_{h}=\{K\}$ be a triangulation of a domain $\Omega \subset \mathbb{R}^{2}$ with polygonal boundary. The space of continuous piecewise linear polynomials is defined by

$$
V_{h}=\left\{v \in C^{0}(\Omega): v_{\left.\right|_{K}} \in P_{1}(K) \quad \forall K \in T_{h}\right\}
$$

Again, any function $v \in V_{h}$ can be written as

$$
\nu=\sum_{j=1}^{n_{p}} \alpha_{j} \varphi_{j}
$$

where n_{p} denotes the number of nodes in the triangulation $T_{h},\left\{\varphi_{j}\right\}_{j=1}^{n_{p}}$ are hat functions, and $\alpha_{j}=$ $v\left(N_{j}\right)$, for $j=1, \ldots, n_{p}$, are the nodal values.

- Consider a continuous function f on a triangle K with nodes $N_{j}, j=1,2,3$. The linear interpolant of f, denoted $\pi_{1} f \in P_{1}(K)$, is defined by

$$
\pi_{1} f=\sum_{j=1}^{3} f\left(N_{j}\right) \varphi_{j}
$$

One has the following interpolation errors

$$
\begin{aligned}
&\left\|\pi_{1} f-f\right\|_{L^{2}(K)} \leq C_{K} h_{K}^{2}\|f\|_{H^{2}(K)} \\
&\left\|\nabla\left(\pi_{1} f-f\right)\right\|_{L^{2}(K)} \leq C_{K} h_{K}\|f\|_{H^{2}(K)}
\end{aligned}
$$

for any $f \in H^{2}(K)$.

- For a continuous function $f: \Omega \rightarrow \mathbb{R}$, where $\Omega \subset \mathbb{R}^{2}$ is a polygonal domain with a triangulation T_{h}, one defines the continuous piecewise linear interpolant of f by

$$
\pi_{h} f=\sum_{j=1}^{n_{p}} f\left(N_{j}\right) \varphi_{j}
$$

Observe that $\pi_{h} f \in V_{h}$.
For the interpolation errors, one has

$$
\begin{array}{r}
\left\|\pi_{h} f-f\right\|_{L^{2}(K)}^{2} \leq C \sum_{K \in T_{h}} h_{K}^{4}\|f\|_{H^{2}(K)}^{2} \\
\left\|\nabla\left(\pi_{1} f-f\right)\right\|_{L^{2}(K)}^{2} \leq C \sum_{K \in T_{h}} h_{K}^{2}\|f\|_{H^{2}(K)}^{2}
\end{array}
$$

for any $f \in H^{2}(K)$.

Further resources:

- Application of Poisson eq. at wikipedia
- Application of Poisson eq. at makmanx.github.io
- Finite element in $2 d$ and $3 d$ at github.io
- FEM part 1 at what-when-how.com

