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Chapter 10: FEM for Poisson’s equation in 2d (summary)

February 13, 2022

Goal: Derive FEM for Poisson’s equation and give error estimates.

* Let Q < R? be a domain with polygonal boundary and f: Q — R a nice function. Consider Poisson’s
equation

-Au=f in Q
u=0 on 0Q.

The notation V?u is sometimes used for the Laplacian.

The variational formulation of the above PDE reads

Find wue Hy(Q) suchthat (Vu,Vv)p2q) =(f,V)2q Yve H Q).

* Given a triangulation T} of Q, one defines the space
V,?(Q) ={veVp: v),,=0}= span({(pj}?il),

where ¢ ; are hat functions and n; denotes the number of interior nodes.

The finite element problem for Poisson’s equation then reads
Find upe V,?(Q) such that  (Vup, V)2 = (f, vz VY€ V,?(Q).
As in the case of BVP, the FE problem then yields the linear system of equations
S(=b,
where the stiffness matrix S has entries s; ; = (Vg ;,V@;)2q), for i,j = 1,..., n;, the load vector
has components b; = (f,¢;)2(q) for i = 1,..., n;, and the unknown vector { provides the finite ele-
ment solution uy = i { jj which is a numerical approximation of the exact solution u to Poisson’s

j=1
equation.

* A FE code for Poisson’s equation in 2d needs the following:

A point matrix listening all nodes of the mesh of the domain Q, a connectivity matrix containing all
triangles of the mesh as well as information related to the real boundary of the domain 6Q.

An assembly procedure in order to compute the stiffness matrix S using all element stiffness matri-
ces.

A procedure to compute the element stiffness matrix using a linear map and the reference triangle.

A procedure to compute the element load vector using a linear map and the reference triangle.

» We state Poincaré’s inequality in 2d: Let Q < R? be a bounded domain with smooth boundary.
Then, there exists a constant C > 0 such that

IVl 2 = ClIVVI20)

forall ve H(} Q).
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¢ Galerkin orthogonality condition in the present context reads: Let u and u;, denote the solutions

to the VF and FE problems and assume that they are smooth enough. Then, one has
f V(u—-uy)-Vv,dx=0
Q

forall vy, € V;?(Q).

Galerkin’s orthogonality is used to show that the FE solution uy, is the best approximation of u in
0(0) i .
Vh (Q) in the energy norm:
lu—uplg=<llu-vieg

forall ve V;l’ (©2). Here, we recall that the energy norm reads [|vl|g = IV 2 (q).

The above is then used to show an a priori error estimate in the energy norm for Poisson’s equation:
Let u and uj, denote the solutions to the VF and FE problems. Under some technical assumptions,
one has the following error estimate

lu—upllp < Chllull gz -

This directly implies
” u-—- uh”LZ(Q) < Ch ” u”HZ(Q) .

Note that, a further analysis of FEM provides the optimal a priori error estimate in the L2-norm

lu—upll 2y < CR? Ul ey -

Further resources:

VF for Poisson eq. at wikiversity.org
FEM for Poisson eq. at wikiversity.org
FEM for Poisson eq. at math.uci.edu
FEM for Poisson eq. at fenicsproject.org
FEM at github.io

Assembly at caendkoelsch.wordpress.com


david.cohen@chalmers.se
https://en.wikiversity.org/wiki/Introduction_to_finite_elements/Weak_form_of_Poisson_equation
https://en.wikiversity.org/wiki/Introduction_to_finite_elements/Solution_of_Poisson_equation
https://www.math.uci.edu/~chenlong/ifemdoc/femdoc.html
https://fenicsproject.org/pub/tutorial/sphinx1/._ftut1003.html
https://finite-element.github.io/index.html
https://caendkoelsch.wordpress.com/2017/12/03/how-are-stiffness-matrices-assembled-in-fem/

