Chapter 11: FEM for heat equations in higher dimensions (summary)

February 15, 2022

Goal: Study the exact solution to the heat equation (stability), derive a FE discretisation for this PDE and provide a semi-discrete error estimate for the FEM.

• Let $\Omega \subset \mathbb{R}^d$ be a nice domain with smooth boundary. The solution to the inhomogeneous heat equation

$$\begin{cases} u_t - \Delta u = f & \text{in } \Omega \times \mathbb{R}_+ \\ u = 0 & \text{on } \partial\Omega \times \mathbb{R}_+ \\ u(\cdot, 0) = u_0 & \text{in}\Omega \end{cases}$$

may be expressed thanks to Duhamel's formula/the variation of constants formula

$$u(t) = E(t)u_0 + \int_0^t E(t-s)f(s) \, \mathrm{d}s,$$

where one writes u(t) for $u(\cdot, t)$ and similarly for f(s). Here, $E(t) = e^{\Delta t}$ denotes the solution operator to the linear part $u_t - \Delta u = 0$.

• Since $||E(t)v||_{L^2(\Omega)} \le ||v||_{L^2(\Omega)}$ for all t > 0, from the above one directly gets the stability estimates

$$||u(t)||_{L^2(\Omega)} \le ||u_0||_{L^2(\Omega)} + \int_0^t ||f(s)||_{L^2(\Omega)} ds.$$

In addition, when $f \equiv 0$ (see page 263 in the book if interested in details), one has the following estimate

$$\int_0^t \|\nabla u(\cdot, s)\|_{L^2(\Omega)}^2 \, \mathrm{d} s \le \frac{1}{2} \|u_0\|_{L^2(\Omega)} \, .$$

• The variational formulation of the above heat equation reads: For each t > 0 of interest,

Find $u(\cdot, t) \in H_0^1(\Omega)$, such that $(u_t, v)_{L^2(\Omega)} + (\nabla u, \nabla v)_{L^2(\Omega)} = (f, v)_{L^2(\Omega)} \quad \forall v \in H_0^1(\Omega)$

and $u(\cdot, 0) = u_0$ in Ω for the initial value. We also denote $a(u, v) = (\nabla u, \nabla v)_{L^2(\Omega)}$ for the energy inner product.

• Let now T_h denote a mesh of Ω and V_h the space of continuous piecewise linear functions of T_h . Consider the space $V_h^0 = \{v: \Omega \to \mathbb{R} : v \text{ continuous pw linear on } T_h \text{ and } v = 0 \text{ on } \partial\Omega \}$ and observe that $V_h^0 = \text{span}(\{\varphi_j\}_{j=1}^{n_i})$, where n_i denotes the number of interior nodes. The finite element problem for the above heat equation reads: For each t > 0 of interest,

Find
$$u_h(\cdot, t) \in V_h^0(\Omega)$$
 such that $(u_{h,t}, v_h)_{L^2(\Omega)} + (\nabla u_h, \nabla v_h)_{L^2(\Omega)} = (f, v_h)_{L^2(\Omega)} \quad \forall v_h \in V_h^0(\Omega)$

and $u_h(x,0) = \pi_h u_0(x)$ in Ω for the initial value.

As usual, writing $u_h(x, t) = \sum_{j=1}^{n_i} \zeta_j(t) \varphi_j(x)$ and taking $v_h = \varphi_i$ in the FE gives the system of linear ODEs

$$\begin{cases} M\dot{\zeta}(t) + S\zeta(t) = F(t) \\ \zeta(0) = \zeta_0. \end{cases}$$

One has the following a priori error estimate for the FE approximation of the heat equation

$$\|u_{h}(\cdot,t) - u(\cdot,t)\|_{L^{2}(\Omega)} \leq \|\pi_{h}u_{0} - u_{0}\|_{L^{2}(\Omega)} + Ch^{2} \left(\|u_{0}\|_{H^{2}(\Omega)} + \int_{0}^{t} \|u_{t}(\cdot,s)\|_{H^{2}(\Omega)} \, \mathrm{d}s\right),$$

where we recall that $\pi_h u_0$ denotes the continuous pw linear interpolant of u_0 . Remembering a result on the interpolation error, the above says, more or less, that the error for the FEM for the inhomogeneous heat equation is of the size h^2 .

• A useful tool in the proof of the above result, and in general, is the Ritz projection $R_h: H_0^1(\Omega) \to V_h^0(\Omega)$. This is defined as the orthogonal projection with respect to the energy inner product: For $v \in H_0^1(\Omega)$ one has

$$a(R_h \nu - \nu, \chi) = 0 \quad \forall \chi \in V_h^0.$$

Under some assumptions on the domain Ω and v, one has the estimate

$$\|R_h v - v\|_{L^2(\Omega)} \le Ch^2 \|v\|_{H^2(\Omega)}.$$

Further resources:

- Duhamel at wikipedia.org
- Duhamel at pims.math.ca
- FEM/VT for heat eq. at wikiversity.org
- FEM/exact sol. for heat eq. at wikiversity.org
- FEM/Euler-type scheme for heat eq. at wikiversity.org
- FEM for heat eq. at fenicsproject.org
- Error estimates for FEM at math.uci.edu