34) If $-\Delta E=\delta_{0}$ in \mathbb{R}^{d}, where δ_{0} is the Dirac Delta distribution, then E is called the fundamental solution of - Δ in R^{d}. Equivalently, for any smooth test function v vanishing outside of a bounded set, i.e. for any $v \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$, E satisfies:

$$
-\int_{\mathbb{R}^{d}} \Delta E(x) v(x)=v(0)
$$

$$
\left(\int \delta_{0} v \stackrel{\operatorname{lef}}{=} v(0)\right)
$$

Prove that $E(x)^{(x)}=\frac{1}{2 \pi} \log \left(\frac{1}{|x|}\right)$ is a fundamental solution of $-\Delta$ in \mathbb{R}^{2}.
Solution
We want to show that

$$
-\int_{\mathbb{R}^{2}} \Delta\left(\frac{1}{2 \pi} \log \left(\frac{1}{|x|}\right)\right) v(x)=v(0) \quad \forall v \in C_{0}^{\infty}
$$

In order to apply Green's, we need a c^{2}-function so we need to remove the problematic part around $x=0$.
Take $v(x) \in C_{0}^{\infty}$. Let $D_{a}:=\left\{x \in \mathbb{R}^{2}: 0<a<|x|<\frac{1}{a}\right\}$, with a small enough so that $\operatorname{supp} v c\left\{x \in \mathbb{R}^{2}:|x|<\frac{1}{a}\right\}$, ie v vanishes outside of $|x|=\frac{1}{a}$.
Let $\Gamma:=\left\{x \in \mathbb{R}^{2}:|x|=a\right\}$
We then get

$$
\begin{aligned}
-\int_{D_{a}} \Delta E v & =\left\{\begin{array}{l}
\text { Green's formula } \\
\int_{\Omega} \Delta u v=\int_{\partial \Omega}(\nabla u \cdot n) v-\int_{\Omega} \nabla u \cdot \nabla v
\end{array}\right\}=1 \\
& =-\int_{\partial D_{a}}(\nabla E \cdot n) v+\int_{D_{a}} \nabla E \cdot \nabla v=\{\text { Green's }\}=
\end{aligned}
$$

$$
\begin{aligned}
& =-\int_{\partial D_{a}}(\nabla E \cdot n) v+\int_{\partial D_{a}}(\nabla v \cdot n) E-\int_{D_{a}} E \Delta v=\left\{\begin{array}{l}
v \text { vanishes } \\
\text { before outer } \\
\text { boundary }| | x \left\lvert\,-\frac{1}{a}\right.
\end{array}\right\}= \\
& =-\int_{\Gamma}(\nabla E \cdot n) v+\int_{\Gamma}(\nabla v \cdot n) E-\int_{D_{a}} E \Delta v .
\end{aligned}
$$

Exercise 27: $-\Delta E=0, x \neq 0$ with Edefined as (*).

$$
\begin{aligned}
& \Rightarrow-\int_{D_{a}} \Delta E V=0 \\
\Rightarrow & \int_{D_{a}} E \Delta V=\int_{\Gamma}(\nabla V \cdot n) E-\int_{\Gamma}^{(\nabla E \cdot n)} v
\end{aligned}
$$

What is $\nabla E \cdot n$ on Γ ?

$$
\begin{array}{ll}
|x|=a & \nabla E=-\frac{1}{2 \pi} \frac{x}{|x|^{2}} \\
|n|=1 \\
\Rightarrow n=\frac{-x}{a} & \Rightarrow \nabla E \cdot n=-\frac{1}{2 \pi} \cdot \frac{x}{|x|^{2}} \cdot \frac{-x}{a}=\frac{1}{2 \pi a}
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \int_{D_{a}} E \Delta V=\int_{\Gamma} \frac{1}{2 \pi} \ln \left(\frac{1}{|x|}\right) \nabla v \cdot n-\int_{\Gamma} \frac{1}{2 \pi a} V= \\
& =\frac{1}{2 \pi} \ln \left(\frac{1}{a}\right) \underbrace{\int_{\Gamma} \nabla v \cdot n}_{V \in C^{\infty}\left(\mathbb{R}^{2}\right)}-\frac{1}{2 \pi a} \underbrace{\int_{\Gamma} v}_{V \in C^{\infty}\left(\mathbb{R}^{2}\right)}=\left\{\int_{\Gamma} d s=2 \pi a\right\} \\
& \Gamma \text { smooth } \quad \Gamma_{\text {smooth }} \\
& \Rightarrow \int \nabla v \cdot n=\left.\nabla v \cdot n\right|_{\eta} \int d s \quad \Rightarrow \exists \xi \in \Gamma \text { : } \\
& \begin{aligned}
& \Gamma \\
& \text { some } \eta \in \Gamma \eta_{\Gamma} \quad \int_{\Gamma}=v(\xi) \int_{\Gamma} d s
\end{aligned} \\
& =\frac{2 \pi a}{2 \pi} \ln \left(\frac{1}{a}\right)(\nabla v \cdot n)_{\eta}-\frac{2 \pi a}{2 \pi a} v(\xi)=
\end{aligned}
$$

$$
\begin{aligned}
&=\underbrace{a \ln \left(\frac{1}{a}\right)}_{\rightarrow 0, a \rightarrow 0^{+}}(\underbrace{\nabla v \cdot n)_{\eta}}_{\text {bounded }}-v(\xi) \rightarrow-v(0), a \rightarrow 0^{+} \\
& \Rightarrow-\int_{\mathbb{R}^{2}} \Delta E(x) v(x) \stackrel{d^{d e f}}{=}-\int_{\mathbb{R}^{2}} E(x) \Delta v(x)=v(0) \text {. any } v \in C_{0}^{\infty} .
\end{aligned}
$$

40) Consider the poisson equation with non-homog. Dirichlet boundary conditions

$$
\begin{cases}-\Delta u(x)=f(x), & x \in \Omega \\ u(x)=g(x), & x \in \Gamma=\partial \Omega\end{cases}
$$

where $g(x)$ is given boundary data. The variational formulation takes the following form:
find $U \in V_{g}$, where $V_{g}:=\left\{v: v=g\right.$ on $\left.\Gamma, \int_{\Omega}\left(|\nabla v|^{2}+v^{2}\right) d x<\infty\right\}$ such that

$$
(\nabla u, \nabla v)=(f, v) \quad \forall v \in V_{0}
$$

where $V_{0}:=\left\{v: v=0\right.$ on $\left.\Gamma, \int_{\Omega}\left(|\nabla v|^{2}+v^{2}\right) d x<\infty\right\}$

* Show that V_{g} is not a vector space.
* Prove that the solution of the weak form is unique.

Solution
$*$ Let $g(x) \neq 0$ on Γ. Let $u, v \in V_{g} . u+\left.v\right|_{\Gamma}=2 g(x)$ $\Rightarrow u+v \notin v_{g}$. Hence not a vector space.
x To stow uniqueness, assume $u_{1}, u_{2} \in V_{g}$ such that $\left(\nabla u_{1}, \nabla\right)=(f, v)$ and $\left(\nabla u_{2}, \nabla v\right)=(f, v) \quad \forall v \in V_{0}$.

$$
\Rightarrow w=u_{1}-u_{2} \in V_{0} \text {, satisfies }(\nabla w, \nabla v)=0 \quad \forall v \in V_{0} .
$$

Let $v=w$. Then $\|\nabla w\|^{2}=0$
By Poincaré, $O \leq\|w\|_{L^{2}}^{2} \leq C\|\nabla w\|_{L^{2}}^{2}=0, \quad w \in V_{0}=H_{0}^{1}$

$$
\|\cdot\|_{L^{2}} \text {-norm } \Rightarrow w \equiv 0 \text { ace. } \Rightarrow u_{1}=u_{2} \text { ace. }
$$

9.12) Formulate the $C G(1)$ method for the BVP

$$
\begin{cases}-\Delta u+u=f, & x \in \Omega \subset \mathbb{R}^{2} \\ u=0, & x \in \partial \Omega\end{cases}
$$

Write down the matrix form of the resulting system of equations using the uniform mesh:

Solution
VF: $-\int_{\Omega} \Delta u v+\int_{\Omega} u v=\int_{\Omega} f v \quad \forall v \in H_{0}^{1}(\Omega)$

$$
\begin{aligned}
& \text { Green's }+\int_{\partial \Omega}(\nabla u \cdot n) v=0, v \in H_{0}^{1} \\
& \int_{\Omega} \nabla u \cdot \nabla v+\int_{\Omega} u v=\int_{\Omega} f v \quad \forall v t H_{0}^{1}
\end{aligned}
$$

FEM: Let $u_{n}=\sum_{j=1}^{4} \xi_{j} \varphi_{j}, \varphi_{j}=$ tent functions with $\varphi_{j}=1$ in the point j.

$$
\Rightarrow \sum_{j=1}^{4} \xi_{j}(\underbrace{\int_{\Omega} \nabla \varphi_{j} \nabla \varphi_{i}}_{s_{i j}}+\underbrace{\int_{\Omega} \varphi_{j} \varphi_{i}}_{m_{i j}})=\int_{\Omega} f \varphi_{i}, \quad i=1, \ldots, 4
$$

For the standard element T, we have:

$$
\begin{array}{ll}
\phi_{1}(x, y)=(h-x-y) / h & \nabla \phi_{1}=\left(-\frac{1}{h},-\frac{1}{h}\right) \\
\phi_{2}(x, y)=x / h & \nabla \phi_{2}=\left(\frac{1}{h}, 0\right) \\
\phi_{3}(x, y)=y / h & \nabla \phi_{3}=\left(0, \frac{1}{h}\right)
\end{array}
$$

area: $h^{2} / 2$
Find local stiffness matrix, s

$$
\begin{aligned}
& \int_{T} \nabla \phi_{1} \cdot \nabla \phi_{1}=\int_{T} \frac{2}{h^{2}}=\frac{h^{2}}{2} \cdot \frac{2}{h^{2}}=1 \\
& \int_{T} \nabla \phi_{1} \cdot \nabla \phi_{2}=\int_{T} \nabla \phi_{1} \cdot \nabla \phi_{3}=\ldots=-\frac{1}{2} \\
& \int_{T} \nabla \phi_{2} \cdot \nabla \phi_{2}=\int_{T} \nabla \phi_{3} \cdot \nabla \phi_{3}=\ldots=\frac{1}{2} \\
& \int_{T} \nabla \phi_{2} \cdot \nabla \phi_{3}=0
\end{aligned}
$$

$$
S=\left[\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{1}{2} & 6 & \frac{1}{2}
\end{array}\right]
$$

when assembling the global stiffness matrix, it may be easier to view s like this:

Find local mass matrix, m :

$$
\begin{aligned}
& \int_{T} \phi_{1} \phi_{1}=\ldots=\frac{n^{2}}{12} \\
& \int_{T} \phi_{1} \phi_{2}=\int_{T} \phi_{1} \phi_{3}=\frac{h^{2}}{24} \\
& m=\frac{n^{2}}{24}\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \\
& \int_{T} \phi_{2} \phi_{2}=\int_{T} \phi_{3} \phi_{3}=\frac{h^{2}}{12} \\
& \int_{T}^{T} \phi_{2} \phi_{3}=\ldots=\frac{\hbar^{2}}{24} \\
& m=\frac{h^{2}}{24} \cdot \underbrace{2}_{1} \begin{array}{lll}
2 & \lambda_{2} \\
2 & 1 & 2
\end{array}
\end{aligned}
$$

Assemble the global matrices:

$$
\begin{aligned}
& S=\left[\begin{array}{cccc}
8 \cdot s_{22} & 2 \cdot s_{12} & 2 \cdot s_{12} & 2 \cdot s_{23} \\
2 \cdot s_{12} & 4 \cdot s_{11} & 0 & 2 \cdot s_{12} \\
2 \cdot s_{12} & 0 & 4 \cdot s_{11} & 2 \cdot s_{12} \\
2 \cdot s_{23} & 2 \cdot s_{12} & 2 \cdot s_{12} & 8 \cdot s_{22}
\end{array}\right]=\left[\begin{array}{cccc}
4 & -1 & -1 & 0 \\
-1 & 4 & 0 & -1 \\
-1 & 0 & 4 & -1 \\
0 & -1 & -1 & 4
\end{array}\right] \\
& M=\left[\begin{array}{cccc}
8 m_{22} & 2 \cdot m_{12} & 2 \cdot m_{12} & 2 m_{23} \\
2 \cdot m_{12} & 4 \cdot m_{11} & 0 & 2 m_{12} \\
2 \cdot m_{12} & 0 & 4 m_{11} & 2 \cdot m_{12} \\
2 \cdot m_{23} & 2 m_{12} & 2 m_{12} & 8 m_{22}
\end{array}\right]=\frac{h^{2}}{24}\left[\begin{array}{cccc}
16 & 2 & 2 & 2 \\
2 & 8 & 0 & 2 \\
2 & 0 & 8 & 2 \\
2 & 2 & 2 & 16
\end{array}\right]
\end{aligned}
$$

Resulting system:

$$
(S+M) \xi=b, \quad b=\left[S_{\Omega} f \varphi_{1} \int_{\Omega} f \varphi_{2} \int_{-2} f \varphi_{3} \int_{\Omega} f \varphi_{2}\right]^{\top} . \vartheta
$$

39) For the linear system $M \eta=b$, where M is the mass matrix $w /$ coeff. $\left(\varphi_{j}, \varphi_{i}\right)_{i, j=1}^{m}, b$ is load vector (v, φ_{i}), prove that M is symneetrie, pos. def.
Solution
Symmetry obvious.
Positive definite
For $v \in \mathbb{R}^{m} \backslash\{0\}$:

$$
\begin{aligned}
& v^{\top} M v=\sum_{i=1}^{m} \sum_{j=1}^{m} v_{i}\left(\varphi_{j}, \varphi_{i}\right) v_{j}=\left(\sum_{j=1}^{m} v_{j} \varphi_{j}, \sum_{j=1}^{m} v_{i} \varphi_{i}\right)= \\
& \left.=\|w\|_{L^{2}}^{2}>0 \text { smce } w:=\sum_{i=1}^{m} v_{i} \varphi_{i} \neq 0 \text { since } v_{\neq 0}\right)
\end{aligned}
$$

37) Describe a discrete system of equations for a pw. polynomial approximation for

$$
\begin{cases}-\Delta u(x)=f(x), & x \in \Omega \\ u(x)=0, & x \in \partial \Omega\end{cases}
$$

with continuous polynomial basis functions, $\left\{\varphi_{j}\right\}_{j=1}^{M}$ Show that the stiffness matrix for this approximation is symmetric and positive definite.
Solution
Let $V_{h}:=\{v:$ p.w. polynomial, continuous, $v \equiv 0$ on $\Gamma\}=$

$$
=\operatorname{span}\left\{\varphi_{j}\right\}_{j=1}^{m}
$$

Discrete VF of the problem: Find $u_{n} \in V_{n}$ sit $\left(\nabla u_{n}, \nabla v\right)=\left(f_{i} v\right)$
$\forall v \in V_{h}$. Let $u_{n}=\sum_{j=1}^{m} \xi_{j} \varphi_{j}$. Then the problem is equivalent to finding $\xi=\left(\xi_{j}\right)_{j=1}^{m} \in \mathbb{R}^{m}$ such that

$$
\sum_{j=1}^{M} \xi_{j}\left(\nabla \varphi_{j}, \nabla \varphi_{i}\right)=\left(f, \varphi_{i}\right) \text { for } i=1, \ldots, M
$$

This can be written $A \xi=b, A=\left(a_{i j}\right)_{i, j=1}^{m}=\left(\left(\nabla \varphi_{j}, \nabla \varphi_{i}\right)\right)_{i, j}^{m}$

$$
b=(b i)_{i=1}^{M}=\left(\left(f, \varphi_{i}\right)\right)_{i=1}^{M}
$$

A is obviously symmetric. Positive definite? ($v^{\top} A v>0$ for every $v \in \mathbb{R}^{M} \backslash\{0\}$.)
Let $v \in \mathbb{R}^{M} \backslash\{0\}$ and let $w=\sum_{i=1}^{M} v_{i} \varphi_{i} \in V_{n} \backslash\{0\}$

$$
\begin{aligned}
v^{\top} A v & =\sum_{i=1}^{M} \sum_{j=1}^{M} v_{i}\left(\nabla \varphi_{j}, \nabla \varphi_{i}\right) v_{j}=\left(\sum_{j=1}^{M} v_{j} \nabla \varphi_{j}, \sum_{i=1}^{M} v_{i} \nabla \varphi_{i}\right)= \\
& =\left(\nabla \sum_{j=1}^{M} v_{j} \varphi_{j}, \nabla \sum_{i=1}^{M} v_{i} \varphi_{i}\right)=(\nabla w, \nabla w)=\|\nabla w\|_{L^{2}}^{2} \geq 0
\end{aligned}
$$

$V^{\top} A V=0 \Leftrightarrow \nabla w=0 \Leftrightarrow w$ constant $\Leftrightarrow w \equiv 0$ in Ω

$$
\Leftrightarrow v=0
$$ since $\omega \equiv 0$ on $\partial \Omega$

Thus $v^{\top} A v>0$ for $v \neq 0$ and A is positive definite.
38) We define the L^{2}-projection $P_{h} v$ of a function $v \in L^{2}(\Omega)$ into the finite element space by $\left(P_{h} v, w\right)=(v, w) \quad \forall w \in V_{n}$.
We also define the discrete Laplacian Δ_{h} by $-\left(\Delta_{h w}, v\right)=(\nabla w, \nabla v) \quad \forall v \in V_{h}$.
Verify that ur may express the finite problem

$$
(\nabla u, \nabla v)=(f, v) \quad \forall v \in V_{n}
$$

as finding $U \in V_{h}$ such that

$$
-\Delta_{h} U=P_{h f} .
$$

Solution $-\Delta_{h} U=P_{n} f$ in V_{n} (Uniqueness by $L-M$)

$$
\begin{aligned}
\Leftrightarrow-\left(\Delta u_{n} u, v\right)=(P n f, v) & \forall v \in V_{n} \\
\operatorname{def} \Delta_{r} & \Leftrightarrow(\nabla u, \nabla v)=\left(P_{n} f, v\right) \\
\operatorname{def} f^{P r} & \forall v \in V_{h} \\
(\nabla u, \nabla v)=(f, v) & \forall v \in V_{n}
\end{aligned}
$$

