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1 Introduction

This document should be viewed as a very brief review to some key signal and
systems concepts. Many details are omitted and some mathematical rigor has
been neglected to shorten the presentation (but, hopefully, without losing rele-
vance). For an in-depth discussion of the material, we recommend the excellent
book by Oppenheim and Willsky [1].

2 Continuous-Time and Discrete-Time Signals

We classify signals as being either continuous-time (functions of a real-valued vari-
able) or discrete-time (functions of an integer-valued variable). To signify the dif-
ference, we (usually) use round parenthesis around the argument for continuous-
time signals, e.g., x(t) and square brackets for discrete-time signals, e.g., x[n].
We will also use the notation xn for discrete-time signals.

One possible way to create a discrete-time signal, xd[n], is by sampling a
continuous-time signal, xc(t), every Ts seconds:

xd[n] = xc(nTs), for n = 0,±1,±2, . . .

We refer to Ts and fs = 1/Ts as the sample interval and sample frequency,
respectively.

We will assume that signals are complex-valued if not explicitly stated other-
wise.

3 Useful Signals

The unit step function is defined as

u(t) ,

{
1, t > 0

0, t < 0
.
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Figure 2: Rectangular function

We will leave the value of u(t) at t = 0 undefined for the time being. Readers
that feel uneasy about this can use u(0) = 1/2.

The discrete-time unit step function is defined as

u[n] ,

{
1, n ≥ 0

0, n < 0
.

The signal rect(t) is a square pulse of unit width

rect(t) ,

{
1, |t| < 1

2

0, |t| > 1
2

.

We will leave the value of rect(t) at t = ±1/2 undefined. Following the pattern
from the unit step function, we could use rect(t) = 1/2 for t = ±1/2.

The continuous-time impulse (or Dirac delta function) is a strange signal. To
make a long story short, we will think of the Dirac delta function as the limit of
the function δε(t), which is defined as

δε ,

{
1
ε
, |t| < ε

2

0, |t| > ε
2

.
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Figure 3: Delta functions

Hence, as seen in Figure 3, δε(t) is a square pulse of height 1/ε and width ε. The
Dirac delta function, δ(t), can be thought of as the limit of δε(t) when ε→ 0. We
can therefore think of the Dirac delta function as an infinitely high and infinitely
thin square pulse. Such a signal has the peculiar property that for any function
f(x) (assumed to be continuous at x = 0),∫ ∞

−∞
f(x)δ(x) dx = f(0).

As a matter of fact, the above equation is often taken as the definition of δ(t).
The discrete-time impulse (or Kronecker delta function) is an ordinary signal

defined as

δ[n] ,

{
1, n = 0

0, otherwise
.

4 Time-Shift, Time-Compression, and Folding

We will frequently need to delay or advance signals in time. Mathematically, this
is achieved by substitution of the time variable. For instance, if we want y(t) to
be equal to x(t) delayed with T seconds, the appropriate substitution is

y(t) = x(t)|t→t−T = x(t− T ).

Conversely, if we want z(t) to be equal to x(t) advanced in time with T seconds,
then

z(t) = x(t)|t→t+T = x(t+ T ).

We will also find it useful to fold signals, i.e., to reflect or mirror the signal
around the point t = 0 on the time-axis. This is done by the substitution t→ −t.
Hence,

w(t) = x(t)|t→−t = x(−t),
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Figure 4: Delayed, advanced, folded and time-expanded versions of x(t).

Substitution Interpretation

t→ t− T delay (right-shift) with T seconds

t→ t+ T advance (left-shift) with T seconds

t→ −t fold (mirror) around the point t = 0

t→ t/T expansion with a factor T

Table 1: Fundamental substitutions of the time-variable

is a folded version of x(t).
Another substitution of interest is t → t/T , which corresponds to time-

expanding the signal by a factor of T . For instance, the signal rect(t/T ) is a
rectangular pulse of width T seconds. Of course, we can choose T < 1, and then
the pulse rect(t/T ) will be thinner than rect(t).

A signal x(t) and its transformations is found in Figure 4. A summary of the
fundamental substitutions is found in Table 1.

The fundamental substitutions can be combined to obtain more complicated
transformations. For instance, if we want to fold a signal x(t) and delay it by T
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Figure 5: Two ways to arrive at x(−t+ T ).

seconds, then this can be done as

x(t)
t→−t−−−→
fold

x(−t) t→t−T−−−−→
delay

x(−(t− T )) = x(T − t).

If we think about it for a while, we realize that we can achieve the same result
by first advancing the signal by T seconds and then folding it:

x(t)
t→t+T−−−−→
advance

x(t+ T )
t→−t−−−→
fold

x(−t+ T )) = x(T − t).

Please note that a common mistake is to believe that the folded version of
x(t + T ) is x(−(t + T )) = x(−t − T ), which obviously is wrong. The process is
illustrated in Figure 5.

4.1 Signal Energy and Signal Power

We will find it useful to characterize the “size” of a signal. One such measure of
“size” is the signal energy. The signal energy, or just energy, of the signal x(t) is

Ex =

∫ ∞
−∞
|x(t)|2 dt. (1)
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When the integral does not converge, we say that the signal has infinite energy.
A signal that is time-limited and has finite amplitude (|x(t)| < ∞) has finite
energy1. Since all real communication signals are time-limited and have finite
amplitudes, this means that all real communication signals have finite energy.
However, for analysis and design of real, physical systems, it is also meaningful
and convenient to use non-physical signals and systems.

An example of a class of very useful (but non-physical) signals are the periodic
signals, in particular complex exponentials and sinusoids. It is clear from (1)
that all nonzero periodic signals have infinite energies. Hence, to say something
meaningful about the “size” of these signals, we cannot use energy. However,
many periodic signals have finite (signal) power. For a general signal, periodic or
aperiodic, the power is defined as

Px = lim
T→∞

1

2T

∫ T

−T
|x(t)|2 dt. (2)

For a periodic signal xp(t) with period Tp, i.e., a signal with the property xp(t) =
xp(t + Tp) for all t, the power is simply the energy for one period of the signal
divided by the period,

Pxp =
1

Tp

∫ Tp/2

−Tp/2
|xp(t)|2 dt.

5 Systems

A system is an entity that takes an input signal and produces an output signal.
Systems can be linear or nonlinear and time-invariant or time-varying.

5.1 Linear Systems

A linear system follows the superposition principle. The superposition principle
says that the output to a linear combination of input signals is the same linear
combination of the corresponding output signals. To be precise, if the input sig-
nals x1(t) and x2(t) corresponds to the output signals y1(t) and y2(t), respectively,
then the input signal a1x1(t) + a2x2(t) should correspond to the output signal
a1y1(t) + a2y2(t) for any constants a1 and a2.

5.2 Time-Invariant Systems

In words, a time-invariant system is a system which does not change with time.
Mathematically, if the input x(t) gives the output y(t), then the system is time-

1We will implicitly assume that signals are Riemann-integrable, i.e., that signal is bounded
and continuous almost everywhere. This is reasonable for most, if not all, physical signals.
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invariant if the input x(t− T ) gives the output y(t− T ) for any delay T . Hence,
a time-shift of the input gives the same time-shift of the output.

5.3 Linear Time-Invariant Systems

Linear time-invariant (LTI) systems are commonly used in signal processing sys-
tems. LTI systems have many nice properties, e.g., an LTI system is completely
described by its impulse response. The impulse response is the output when the
input is an impulse, i.e., a Dirac delta function for continuous-time systems or a
Kronecker delta function for discrete-time systems.

It is not difficult to show that if h(t) is the impulse response of an LTI system,
then the output to the input x(t) can be found as

y(t) =

∫ ∞
−∞

x(u)h(t− u) du = x(t) ∗ h(t). (3)

This integral is known as a convolution integral and ∗ is used to denote convolu-
tion. To visualize the integrand f(u) = x(u)h(t−u), it is important to remember
that the integrand should be considered as function of u (the integration vari-
able). Hence, h(t − u) should be thought of as being h(u) folded and delayed
by t seconds (or, equivalently, h(u) advanced by t seconds and then folded). See
Figure 6 for an example. With a bit of practice, it will be easy to visualize the
integrand, which is really helpful to understand convolution. For instance, we
realize that for each new value of t, we will shift h(−u+ t) to a new position on
the u-axis. The integrand and integral will therefore (probably) change.

Similarly, the output of a discrete-time LTI system with impulse response h[n]
and input x[n] is the convolution between x[n] and h[n],

y[n] =
∞∑

k=−∞

x[k]h[n− k] = x[n] ∗ h[n].

As seen, convolution is an operation on two signals which results in a third
signal. Convolution is commutative,

x(t) ∗ h(t) = h(t) ∗ x(t),

associative,
[x(t) ∗ y(t)] ∗ z(t) = x(t) ∗ [y(t) ∗ z(t)],

and distributive,

x(t) ∗ [y(t) + z(t)] = x(t) ∗ y(t) + x(t) ∗ z(t).

These properties applies for discrete-time convolution as well.
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Figure 6: An example how to compute x(u)h(t − u), i.e., the integrand of the
convolution integral.

5.4 Correlation and Convolution

The crosscorrelation function between x(t) and y(t) is defined as

Rxy(t) =

∫ ∞
−∞

x(t+ u)y∗(u) du,

where y∗(t) is the complex conjugate of y(t). When just speaking about the
correlation between x(t) and y(t), we (usually) mean Rxy(0).

We note that the crosscorrelation function is quite related with convolution.
In fact, we can compute the crosscorrelation function above by processing x(t)
with an LTI system with impulse response h(t) = y∗(−t). Such as system is
called a filter that is matched to y(t). To show that the output is actually Rxy(t),
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we recall that the filter output, z(t), is the convolution between x(t) and h(t),

z(t) = x(t) ∗ h(t)

=

∫ ∞
−∞

x(u) h(t− u)︸ ︷︷ ︸
=y∗(−(t−u))

du

=

∫ ∞
−∞

x(u)y∗(u− t) du

=

∫ ∞
−∞

x(v + t)y∗(v) dv

= Rxy(t).

A short-hand notation for the above relation is

Rxy(t) = x(t) ∗ y∗(−t).
The connection between the crosscorrelation function and convolution is quite
useful for understanding how digital communication receivers can be implemented.

The autocorrelation function of x(t) is Rxx(t), i.e., the crosscorrelation of x(t)
with itself,

Rxx(t) =

∫ ∞
−∞

x(t+ u)x∗(u) du.

An interesting property of the autocorrelation function is that Rxx(0) = Ex,
where Ex is the energy of x(t),

Ex =

∫ ∞
−∞
|x(u)|2 du.

Another very useful property is that |Rxx(t)| attains its maximal value Ex
when t = 0. To prove this, we note that, from the Schwarz inequality2,

|Rxx(t)|2 =

∣∣∣∣∫ ∞
−∞

x(t+ u)x∗(u) du

∣∣∣∣2 ≤ ∫ ∞
−∞
|x(t+ u)|2 du

∫ ∞
−∞
|x∗(u)|2 du = E2

x,

where the inequality hold with equality if and only if x(t + u) = αx(u) for
some complex constant α. Hence, |Rxx(t)| ≤ Ex for all values of t, but since
Rxx(0) = Ex, this proves that |Rxx(t)| attains its maximal value (Ex) when
t = 0.

This fact is very useful for understanding how digital communication receivers
can be synchronized.

2The Schwarz inequality (also known as the Cauchy-Schwarz inequality) says that if g(t)
and h(t) have finite energies, then∣∣∣∣∫ ∞

−∞
g(t)h(t) dt

∣∣∣∣2 ≤ ∫ ∞
−∞
|g(t)|2 dt

∫ ∞
−∞
|h(t)|2 dt

with equality if and only if g(t) = αh∗(t), where α is a complex constant.
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Figure 7: Calculating inner product by sampling a linear filter

5.5 Inner Product and Norm

The inner product between two signals x(t) and y(t) is defined as

〈x(t), y(t)〉 =

∫ ∞
−∞

x(t)y∗(t) dt,

and the norm of the signal x(t) is defined as

‖x(t)‖ =
√
〈x(t), x(t)〉 =

√∫ ∞
−∞
|x(t)|2 dt =

√
Ex.

The concept of inner products and norms is perhaps familiar from previous ex-
posure to linear algebra. Indeed, the inner product is also known as the scalar
product between two vectors and the norm as the length of a vector. It can
actually be shown that the set of all signals with finite energy forms a linear vec-
tor space (just as the set of all points in three-dimensional space forms a vector
space). We will therefore say that the length of a signal x(t) is ‖x(t)‖ and the
distance between x(t) and y(t) is ‖x(t)− y(t)‖.

From the defintion of inner product, it is easy to show that

〈x(t), y(t)〉 = [〈y(t), x(t)〉]∗ (4)

〈ax(t), y(t)〉 = a〈x(t), y(t)〉 (5)

〈x(t), ay(t)〉 = a∗〈x(t), y(t)〉 (6)

〈x1(t) + x2(t), y(t)〉 = 〈x1(t), y(t)〉+ 〈x2(t), y(t)〉 (7)

where a is a complex number.

From the definition of the crosscorrelation function, we see that 〈x(t), y(t)〉 =
Rxy(0), or

〈x(t), y(t)〉 = Rxy(t)|t=0 = x(t) ∗ y∗(−t)|t=0.

Hence, we can calculate inner products by sampling the output of a linear filter,
see Fig. 7.
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5.6 Frequency Domain Representations of Signals and Sys-
tems

We use Fourier transforms and Fourier series to represent signals as linear com-
binations of complex exponentials. A continuous-time complex exponential with
amplitude A, frequency f0, and phase φ (the quantities A, f0, and φ are real
numbers) can be written as

z(t) = Aej(2πf0t+φ) = A cos(2πf0t+ φ) + jA sin(2πf0t+ φ).

Obviously, the complex exponential is a complex-valued function which is peri-
odic with fundamental period 1/f0. The signal z(t) represents a single-frequency
component at the frequency f0.

If z(t) is the input to an LTI system with impulse response h(t), then the
output is

y(t) = h(t) ∗ z(t)

=

∫ ∞
−∞

h(u)z(t− u) du

=

∫ ∞
−∞

h(u)ej(2πf0(t−u)+φ) du

= ej(2πf0t+φ)︸ ︷︷ ︸
=z(t)

∫ ∞
−∞

h(u)e−j2πf0u du︸ ︷︷ ︸
=H(f0)

= z(t)H(f0)

where H(f) is the Fourier transform of the impulse response, also known as the
frequency response of the system,

H(f) =

∫ ∞
−∞

h(t)e−j2πft dt.

We conclude that the output to a complex exponential is the same exponential
scaled with the frequency response of the system.

By invoking the inverse Fourier transform, we can write h(t) as

h(t) =

∫ ∞
−∞

H(f)ej2πft df.

Hence, h(t) can be seen as a sum of many complex exponentials (frequency com-
ponents), and the frequency component at frequency f has complex amplitude
H(f). Hence, H(f) represents the signal’s distribution in frequency.

Now, for an input signal x(t) with Fourier transform X(f), the output to an
LTI system with impulse response h(t) and frequency response H(f) is y(t) =
h(t) ∗ x(t). The Fourier transform of y(t) can be shown to be

Y (f) = H(f)X(f).
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5.7 Bandlimited Signals and the Sampling Theorem

We can compute the energy of a signal in the frequency domain by using Parse-
val’s theorem

Ex =

∫ ∞
−∞
|x(t)|2 dt =

∫ ∞
−∞
|X(f)|2 df,

where X(f) is the Fourier transform of x(t). From the above equation, we see
that the signals total energy can be found by integrating the energy distribution
in time, |x(t)|2, or the energy distribution in frequency, |X(f)|2. For this reason,
the quantity |X(f)|2 is called the signal’s energy density function.

A signal x(t) is said to have bandwidth W if x(t) has negligible energy outside
the frequency band −W ≤ f ≤ W . There are many definitions of bandwidth,
each corresponding to a certain notion of what is considered negligible. The
most straight-forward definition is called absolut bandwidth, which requires that
|X(f)|2 = 0 for |f | > W . The condition is equivalent with X(f) = 0 for |f | > W .

We can create an absolute bandlimited signal from a general signal x(t) by
filtering with an ideal lowpass filter. An ideal lowpass filter has rectangular
shaped frequency response

HLP (f) = rect

(
f

2W

)
=

{
1, |f | ≥ W

0, otherwise
,

where W is known as the cutoff frequency. Cleary, the output y(t) will have a
bandlimited spectrum Y (f) = H(f)X(f) = 0 for |f | > W .

The impulse response of an ideal lowpass filter is easily calculated as the
inverse Fourier transform of the frequency response

hLP (t) =

∫ ∞
−∞

HLP (f)ej2πft df

=

∫ W

−W
ej2πft df

=
1

j2πt
(ej2πWt − e−j2πWt)

=
1

πt
sin(2πWt)

= 2W sinc(2Wt)

where the sinc function is defined as

sinc(t) =
sin(πt)

πt
,

where we use the convention that sinc(0) = 1. The above definition is the most
widely used one, but we should note that some authors define sinc(t) = sin(t)/t.
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The sinc pulse plays a key role in conversion between discrete-time and continuous-
time signals. The sampling theorem states that we can construct a bandlimited
signal from its samples. Consider the signal y(t) that we found by filtering x(t)
with an ideal lowpass filter with cutoff frequency W . The sampling theorem
states that we can construct y(t) from its samples y[n] = y(nTs) as

y(t) =
∞∑

n=−∞

y[n] sinc

(
t− nTs
Ts

)
(8)

if the sample frequency fs = 1/Ts > 2W .

6 Linear Combinations

We will frequently construct complicated signals as linear combinations of other,
simpler signals. For example, if the signal x(t) can be written as

x(t) = (−1) rect(t) + 2 rect(t− 1), (9)

then we say that x(t) is a linear combination of the signals rect(t) and rect(t−1).
In general, we say that x(t) is a linear combination of the signals in the set

{. . . , x−1(t), x0(t), x1(t), . . .}

if we can write

x(t) =
∞∑

k=−∞

akxk(t) (10)

where ak are some scalars (real or complex numbers) for all k. In the example (9)
above,

ak =


−1, k = 0

2, k = 1

0, otherwise

and x1(t) = rect(t) and x2(t) = rect(t− 1).
It is useful to think of the signal x(t), where

x(t) =

∫ ∞
−∞

a(u)x(u, t) du, (11)

as a linear combination of the signals x(u, t) with the “scalars” a(u). For this to
make sense, we must think of x(u, t) as a signal, i.e., a function of t, not u. In
other words, for each fixed value of u, say u = u0, we have a signal x(u0, t) that
varies in time t. For each new value of u, say u = uk, we get a new signal x(uk, t).
In the same way, we must think of a(u) as a scalar for any fixed value of u.
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To see the similarity between (11) and (10), let us approximate the integral
in (11) by its left Riemann sum

x(t) =

∫ ∞
−∞

a(u)x(u, t) du

≈
∞∑

k=−∞

a(k∆u)x(k∆u, t)∆u

=
∞∑

k=−∞

a(k∆u)∆u︸ ︷︷ ︸
=ak

x(k∆u, t)︸ ︷︷ ︸
=xk(t)

=
∞∑

k=−∞

akxk(t).

Armed with this new insight, we see that the output y(t) to an LTI system
with impulse response h(t) and input x(t), i.e.,

y(t) = x(t) ∗ h(t) =

∫ ∞
−∞

x(u)h(t− u) du,

can be viewed as a linear combination of shifted impulse responses, h(t − u).
Alternatively, since

y(t) = h(t) ∗ x(t) =

∫ ∞
−∞

h(u)x(t− u) du,

the output is also a linear combination of shifted inputs, x(t− u).
Moreover, a signal x(t) with Fourier transform X(f) can be written as

x(t) =

∫ ∞
−∞

X(u)ej2πut du.

Hence, x(t) can be viewed as a linear combination of the complex exponentials
exp(j2πut).

We can also write

x(t) =

∫ ∞
−∞

x(u)δ(t− u) du.

Hence, x(t) can be viewed as a linear combination of the shifted delta functions
δ(t− u).

As a final example, consider the reconstruction formula from the sampling
theorem (8). If x(t) is bandlimited to W Hz and the sample duration Ts <
1/(2W ), then

x(t) =
∞∑

n=−∞

x(nTs) sinc

(
t− nTs
Ts

)
.

Hence, x(t) is a linear combination of shifted and time-expanded sinc-pulses,
sinc(t/Ts).
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6.1 Pulse Amplitude Modulation (PAM)

Pulse amplitude modulation (PAM) constructs a continuous-time signals x(t) as

x(t) =
∞∑

k=−∞

akp(t− kT ). (12)

Hence, x(t) is a linear combination of time-shifted versions of the pulse shape p(t).
Indeed, we obtain (12) from the general formula for a linear combination (10) by
letting xk(t) = p(t− kT ).

In digital communications, PAM is used for converting data symbols to signals
suitable for the transmission medium at hand, a process that is called modulation.
In this context, the amplitudes ak represent one or several bits that are to be
transmitted over the channel.

6.2 Simulation of Continuous-Time Systems

It is common to simulate systems to verify designs and theoretical calculations.
In a tool like MATLAB, it is very easy to perform discrete-time convolutions
between time-limited signals. Suppose that we have the signals x[n] and h[n]
stored in the MATLAB vectors x and h, respectively. Then the convolution
z[n] = h[n] ∗ x[n] can be computed as

>> z = conv(h, x);

However, for continuous-time systems, we must in general use numeric inte-
gration to compute convolutions. If we want to convolve x(t) with h(t), then the
integral that needs to be computed is

y(t) =

∫ ∞
−∞

h(u)x(t− u) du.

We can approximately compute this integral as∫ ∞
−∞

h(u)x(t− u) du ≈
∞∑

k=−∞

h(kTs)x(t− kTs)Ts,

where Ts is the step size or sample interval. If we compute samples of y(t) with
the same sample interval, we arrive at the equation

y(nTs) =

∫ ∞
−∞

h(u)x(nTs − u) du

≈
∞∑

k=−∞

h(kTs)x(nTs − kTs)Ts

= Ts

∞∑
k=−∞

h(kTs)x([n− k]Ts). (13)
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The summation in the last line is nothing else but the convolution between the
discrete-time signals hd[n] = h(nTs) and xd[n] = x(nTs).

The quality of the approximation becomes better as Ts decreases. As a matter
of fact, if x(t) and h(t) are bandlimited, e.g., if X(f) = H(f) = 0 for |f | > W ,
then the approximation error disappear if Ts < 1/(2W ). (This is a consequence
of the sampling theorem, which is proved and discussed at length in any decent
signals and system book.)

To compute (13) in practice, the signals must also be truncated to make the
vectors have finite length. This obviously leads to approximation errors if the
signals are not time-limited. However, if the main features of the signals remain
after truncation, the approximation may still be of use.

To summarize, we can compute samples of y(t) = h(t) ∗ x(t) as

1. Choose a sample interval Ts that is sufficiently small.

2. If x(t) and h(t) are not time-limited, then truncate them such that the main
part of each signal still remains.

3. Sample the signals and store them in MATLAB vectors x and h.

4. Compute samples of y(t) as y = T_s * conv(x, h);.
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