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1 Introduction

This document should be viewed as a complement to Chapter 5 in [1]. Also
included in this document is a short introduction to random variables in Ap-
pendix A.

2 White Gaussian Noise

The channel noise n(t) is very often modeled as additive white Gaussian noise
(AWGN). Hence, we think of n(t) for every time instance t as a Gaussian random
variable — this is what makes n(t) a Gaussian random process1. White Gaussian
noise is zero-mean, E[n(t)] = 0, and a stationary random process, the latter
implying that the autocorrelation function for n(t),

E[n(t)n(t+ τ)]

does not depend on t. In fact, the autocorrelation is

Rn(τ) = E[n(t)n(t+ τ)] =
N0

2
δ(τ) (1)

where δ(τ) is the Dirac delta function. Due to the delta function, we see that the
variance of the random variable n(t), i.e., Rn(0), is infinite for any time instance
t, and that any two random variables n(t1) and n(t2) for t1 6= t2 are uncorrelated,

1We are here not so careful about the exact defintion of a Gaussian random process, and
we will not make a notational difference between the random process and its realization. To be
more notationally strict, we could, e.g., denote the random process by {N(t)} and its realization
by n(t), as is done in [1, Chapter 3.2].
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2 (22) Performance Analysis of PAM and QAM over AWGN Channels

since the crosscorrelation between n(t1) and n(t2) is

E[n(t1)n(t2)] = Rn(t2 − t1)

=
N0

2
δ(t2 − t1) (2)

= 0, t1 6= t2.

These properties make white Gaussian noise a very bad noise process. In fact,
one can show that additive white Gaussian noise is the worst-case noise among
all noise distributions.

Interestingly enough, even though the variance of n(t) is infinite, the variance
of filtered noise w(t) = n(t) ∗ h(t) is finite, as long as the energy for the filter
impulse response, h(t), is finite,

Eh =

∫ ∞

−∞
h2(t) dt <∞

It is easily shown that

E[w(t)] = E[n(t) ∗ h(t)]

= E

[∫ ∞

−∞
n(u)h(t− u) du

]

=

∫ ∞

−∞
E[n(u)]h(t− u) du = 0 (3)

and

E[w2(t)] = E

[∫ ∞

−∞
n(u)h(t− u) du

∫ ∞

−∞
n(v)h(t− v) dv

]

=

∫ ∞

−∞

∫ ∞

−∞
E[n(u)n(v)]h(t− u)h(t− v) dudv

=

∫ ∞

−∞

∫ ∞

−∞

N0

2
δ(v − u)h(t− u)h(t− v) dudv (4)

=
N0

2

∫ ∞

−∞
h2(t− u) du (5)

=
N0

2

∫ ∞

−∞
h2(v) dv

=
N0

2
Eh, (6)

where (4) follows from (2), and (5) follows after integration over v and using
properties of the delta function.
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Figure 1: PAM transmitter.
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Figure 2: One-shot PAM transmitter, AWGN channel, and a one-shot minimum-
distance receiver

Since filtering is a linear operation on the input, we have that w(t) is a linear
combination of Gaussian random variables

w(t) =

∫ ∞

−∞︸︷︷︸
”sum”

h(u)︸︷︷︸
of scaled

n(t− u)︸ ︷︷ ︸
Gaussian r.v.’s

du.

Hence, w(t) is a Gaussian random variable, whose pdf is determined by its mean

E[w(t)] = 0 and variance E[w2(t)] = EhN0/2.

3 Error Probability for Baseband M-PAM

A general pulse-amplitude modulation (PAM) transmitter is depicted in Fig. 1.
The mapper converts blocks of log2M consecutive bits bi ∈ {0, 1} to the kth am-
plitude ak ∈ A, where i is the bit time index and k is the symbol time index. The
mapping is one-to-one. Hence, since log2M bits can take on M different patterns,
the alphabet A must consist of M amplitude values, i.e., A = {A1, A2, . . . , AM}.

In the following, we will assume that the transmitted pulses h(t − kT ) are
orthogonal, i.e., 〈h(t− kT ), h(t− lT 〉 = 0 when k 6= l (see Appendix B). In this
case, we can detect each transmitted symbol independent of the others. We will
therefore consider the one-shot, baseband PAM system in Figure 2. Since we are
dealing with baseband PAM, we can assume that all signals and variables are
real-valued. Hence, the pulse shape h(t) is real-valued and h∗(−t) = h(−t). We
see that the received signal is

r(t) = ah(t) + n(t)
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Figure 3: An M -PAM constellation and decision boundaries for M = 8 (top)
and the two types of decision regions (bottom), Type 1 for the end constellation
points and Type 2 for the inner constellation points.

where a is an M -ary PAM symbol, i.e., a member of the alphabet

A = {±c,±3c, . . . ,±(M − 1)c}.

From Appendix C, we know that c2 is related to the energy for the alphabet Ea

as

c2 =
3Ea

M2 − 1
.

From Figure 2, we see that

z = E−1h y

= E−1h [r(t) ∗ h∗(−t)]|t=0

= E−1h

∫ ∞

−∞
r(u)h∗(u) du

= E−1h

∫ ∞

−∞
ah(u)h∗(u) + n(u)h∗(u) du

= a+ n,

where we can express n as n = E−1h w(0), where w(t) = n(t) ∗ h∗(−t). From
(3) and (6), we know that w(0) ∼ N (0, EhN0/2), where Eh is the energy of the
impulse response h∗(−t), which is the same as the energy for h(t). Hence, n is
Gaussian with mean

E[n] = E[w(0)]E−1h = 0

and variance

σ2 = E[n2] = E[w2(0)]E−2h =
N0

2Eh

.

The M -PAM constellation diagram is depicted in Figure 3. As seen there are
two types of decision regions: Type 1 and Type 2. Type 1 is applicable for the
two end points and Type 2 for the M − 2 interior points. The probability of
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Figure 4: The probability density function for n is a zero mean Gaussian distri-
bution with variance σ2. The areas Ω1, Ω2, and Ω3 represent the probabilities
Ω1 = Pr{nI < −c}, Ω2 = Pr{−c < nI < c}, and Ω3 = Pr{nI > c}.

error, conditioned on that a Type 1 signal (end point) is sent is the probability
that the noise carries the transmitted point outside the decision region,

Pe|1 = Pr{n > c} = Pr
{n
σ
>
c

σ

}
= Q

( c
σ

)
= Q

(√
c2

σ2

)
.

The probability Pr {n > c} = Ω3 is illustrated in Figure 4.
To proceed, we recall that the energy per PAM symbol is Es = EaEh, which

yields
c2

σ2
=

3Ea

M2 − 1

2Eh

N0

=
6

M2 − 1

Es

N0

,

and

Pe|1 = Q

(√
6

M2 − 1

Es

N0

)
.

The probability of error conditioned on that a Type 2 signal (interior point) was
sent is (see Figure 4)

Pe|2 = Pr{n < −c}+ Pr{n > c} = 2 Pr{n > c} = 2Pe|1.

If we assume that all signals are sent with equal probability, i.e., with probability
1/M , then the average error probability is

Pe =
1

M
[2Pe|1 + (M − 2)Pe|2] =

2(M − 1)

M
Q

(√
6

M2 − 1

E

N0

)
. (7)

It is easily verified that (7) for M = 4 is the same as Eq. (5.104) in [1], which is
the error probability for passband 4-PAM. This is no coincidence, since the error

Doc. no.: SSY305/ext:04, rev.: B, date: February 17, 2015, file: modulation-notes.tex



6 (22) Performance Analysis of PAM and QAM over AWGN Channels

PAM

bits/
symbol

symbol/
vector

PAM

22dimensional6
constella7on

bits m

aQ
k

aI
k

s =

"
aI

k

aQ
k

#

h(t)

h(t)

p
2 cos(2⇡fct)

�
p

2 sin(2⇡fct)

s(t)

PAM with 'I(t)

PAM with 'Q(t)

Figure 5: Generic IQ-modulator

probability for baseband PAM is exactly the same as for passband PAM. The
latter conclusion follows since the decision variable z has the same statistics in
both cases.

4 Quadrature Modulation

A block diagram for a generic inphase quadrature phase modulator (IQ-modulator)
is found in Figure 5. We see that the transmitted signal can be viewed as the
sum of two PAM processes with different pulse shapes: ϕI(t) in the top (in-phase)
branch and ϕQ(t) in the lower (quadrature) branch, where

ϕI(t) = h(t)
√

2 cos(2πfct)

ϕQ(t) = −h(t)
√

2 sin(2πfct).

The pulse shape and the carrier frequency fc is chosen such that the power
spectral density of the transmitted signal will fit the frequency response of the
channel.2

As implied by the IQ-modulator block diagram, the signals ϕI(t) and ϕQ(t)
span a two-dimensional signal space. In fact, it can be shown that signals are

2The astute reader will notice that the in-phase signal
√

2 cos(2πfct)
∑

k a
I
kh(t − kT ) is a

PAM process with the pulse shape ϕI(t) only if
√

2 cos(2πfct)h(t − kT ) = ϕI(t − kT ), i.e., if
fc = n/T for some integer n. The same argument can be made for the quadrature-phase signal

−
√

2 sin(2πfct)
∑

k a
Q
k h(t−kT ). We will tacitly assume that fc = n/T , which is not restrictive,

since the main conclusions in this section can be shown to be valid also when fc 6= n/T .
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approximately orthogonal if the carrier frequency fc is much larger than the
bandwidth of h(t). Let us show this for the special case when

h(t) =

{
A, 0 ≤ t < T

0, otherwise
.

The energy for h(t) is Eh = A2T and the bandwidth is approximately W = 1/T .
Now,

EϕQ
=

∫ ∞

−∞
ϕ2
Q(t) dt =

∫ ∞

−∞
h2(t)2 sin2(2πfct)dt = A2

∫ T

0

2 sin2(2πfct)dt

= A2T − A2 sin(4πfcT )

4πfc
= Eh

(
1− sin(4πfcT )

4πfcT

)
.

We see that the second term is is exactly zero when 2fcT is an integer and small
for large fcT . We note that the condition, fcT � 1 is the same as fc � 1/T = W .
We conclude that EϕQ

≈ Eh and, by using a very similar argument, we can show
that EϕI

≈ Eh. Finally,

〈ϕQ(t), ϕI(t)〉 =

∫ ∞

−∞
ϕQ(t)ϕI(t) dt

= −
∫ ∞

−∞
h2(t)2 sin(2πfct) cos(2πfct) dt

= −A2

∫ T

0

sin(4πfct) dt

= A2 cos(4πfcT )− 1

4πfc

= Eh
sin2(2πfcT )

4πfcT
.

Again, we see that the inner product is exactly zero when 2fcT is an nonzero
integer and very small compared to Eh when fcT � 1, i.e., when fc � W .

The assumption that fc � W is valid for most practical systems, and we will
therefore in the following assume that ϕI(t) and ϕQ(t) are orthogonal and that
EϕI

= EϕQ
= Eh.

A generic demodulator is shown in Figure 6. We will assume that the channel
noise is white and Gaussian with power spectral density N0/2. We will now show
that the noise vector elements, nI

k and nQ
k , are independent, identically distributed

(iid) Gaussian random variables with zero mean and variance σ2 = N0/(2Eh).
The key observation is that nI

k and nQ
k are samples of filtered white Gaussian

noise. This implies that nI
k and nQ

k are Gaussian and, since the white noise is
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Figure 6: Generic IQ-demodulator

zero-mean, that nI
k and nQ

k , have zero means. To show independence, it is enough
to show that nI

k and nQ
k are uncorrelated. Since nI

k and nQ
k have zero means, we

need to show that E[nQ
k n

I
k] = 0,

E[nQ
k n

I
k] = E

[
1

Eh

∫ ∞

−∞
n(u)ϕI(u) du

1

Eh

∫ ∞

−∞
n(v)ϕQ(v) dv

]

=
1

E2
h

∫ ∞

−∞

∫ ∞

−∞
E[n(u)n(v)]ϕI(u)ϕQ(v) dudv

=
1

E2
h

∫ ∞

−∞

∫ ∞

−∞

N0

2
δ(u− v)ϕI(u)ϕQ(v) dudv

=
1

E2
h

N0

2

∫ ∞

−∞
ϕI(u)ϕQ(u) du

=
1

E2
h

N0

2
〈ϕI(t), ϕQ(t)〉 = 0.

Hence, nI
k and nQ

k are independent. We can go through the same steps to derive
the variance of nI

k and nQ
k by replacing ϕQ(v) with ϕI(v) or vice versa. Indeed,

E[(nQ
k )2] =

1

E2
h

N0

2
〈ϕQ(t), ϕQ(t)〉︸ ︷︷ ︸

=Eh

=
N0

2Eh

E[(nI
k)2] =

1

E2
h

N0

2
〈ϕI(t), ϕI(t)〉︸ ︷︷ ︸

=Eh

=
N0

2Eh

.

Let us consider the transmission of the signal vector sk = [aIk aQk ]T , which
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Figure 7: Geometric interpretation of ck and θk.

implies that the transmitted signal is

sk(t) = aIkϕI(t) + aQk ϕQ(t)

= aIk
√

2h(t) cos(2πfct)− aQk
√

2h(t) sin(2πfct).

If we define ck and θk as (see Figure 7 for a geometrical interpretation)

ck = ‖sk‖ =

√
(aIk)2 + (aQk )2,

tan θk =
aQk
aIk
,

then we can write

aIk = ck cos(θk)

aQk = ck sin(θk).

Hence, the transmitted signal can written as

sk(t) = ck cos(θk)h(t)
√

2 cos(2πfct)− ck sin(θk)h(t)
√

2 sin(2πfct)

= ckh(t)
√

2 cos(2πfct+ θk),

where we have used the trigonometric identity cos(α) cos(β) − sin(α) sin(β) =
cos(α + β).

We conclude that the transmitted signal can be seen as the pulse h(t) mul-
tiplied with a cosine-carrier, where the amplitude and phase of the carrier are
determined by aIk and aQk . Hence, the transmitted information can affect both
the amplitude and phase of the transmitted signal.

5 Common IQ Signal Constellations

We can choose the signal constellation such that the amplitude is the same for
all signal alternatives by placing the signal vectors on a circle in the signal space.
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This implies that c1 = c2 = · · · = cM , and the transmitted information is then
carried by the phase of the carrier. Phase-shift keying (PSK) is an example of
such a modulation scheme.

Conversely, if the signal vectors are placed on a straight line that crosses the
origin in the signal space, then the carrier phase will be the same for all signal
alternatives. (Which follows from the fact that aIk/sQ,k is the same for all k.)
Bandpass PAM is an example of such a modulation scheme.

The general case, when both amplitude and phase are allowed to change
between signal alternatives, is called quadrature amplitude modulation (QAM).
There exist many QAM constellations, but we will limit our discussion to the
case when the signal points are placed on a regular rectangular grid in the signal
space, see Figure 8 for two examples.

A general rectangular M -ary QAM constellation has MI amplitudes along the
inphase axis and MQ amplitudes along the quadrature axis. We will sometimes
use the notation (MI ×MQ)-QAM to denote this type of constellation. Now, we
have M = MIMQ, and

aIk ∈ AI = {±c,±3c, . . . ,±(MI − 1)c}
aQk ∈ AQ = {±c,±3c, . . . ,±(MQ − 1)c}.

When M is an even square, i.e., when
√
M is an integer, we can set MI = MQ =√

M . In Figure 8, we see a square 16-QAM constellation and a rectangular
(4× 2)-QAM constellation.

The energy for an (MI×MQ)-QAM constellation, Ea, can be shown to be the
sum for the energies for the PAM-constellations along the I and Q directions, see
Appendix C. Hence,

Ea = Ea,I + Ea,Q = c2
M2

I − 1

3
+ c2

M2
Q − 1

3

and we can therefore relate c2 to the constellation energy as

c2 = Ea
3

M2
1 +M2

Q − 2

and for the special case when MI = MQ =
√
M , we have

c2 = Ea
3

2(M − 1)
.

As seen from Figure 8, the signal vectors are spaced with the distance 2c along
the axes. Hence, the minimum distance of the constellation is dmin = 2c.
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Figure 8: Constellations for square 16-QAM and rectangular (4× 2)-QAM

6 Error Probability for M-ary QAM

If we assume that h(t) is chosen such that the transmitted pulses are orthogonal
to each other, i.e.,

〈ϕI(t− kT ), ϕI(t− lT )〉 = 〈ϕQ(t− kT ), ϕQ(t− lT )〉 = 0, k 6= l

〈ϕI(t− kT ), ϕQ(t− lT )〉 = 0,

then we can detect the symbols for different k independent of each other. Hence,
the symbol error probability is independent of k and we will remove k from the
notation. For example, nI

k will be denoted by nI .
Regardless if M is an even square or not, the minimum-distance (maxi-

mum likelihood) decision regions will be rectangular-shaped. The regions can
be squares (type 1), squares with one open side (type 2) or squares with two
open sides (type 3), see Figure 9.

To compute the symbol error probability, we therefore need only to compute
the conditional error probabilities for the three types of decision regions. Con-
ditioned on that we send a symbol that has a decision region of type x, the
probability of wrong decision is denoted Pe|x and the probability of correct de-
cision is denoted Pc|x. Since the elements of the noise vector, nI and nQ, are
independent Gaussian random variables with zero mean and variance σ2, we can
write

Pc|1 = Pr{−c < nI < c,−c < nQ < c}
= Pr{−c < nI < c}Pr{−c < nQ < c}
= [Pr{−c < nI < c}]2.
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Figure 9: Minimum-distance (ML) receiver decision regions for 16-QAM

From Figure 4, we see that Pr{−c < nI < c} can be written in terms of the
Q-function as

Pr{−c < nI < c} = Ω2 = 1− 2Q
( c
σ

)
.

Hence,

Pe|1 = 1−
[
1− 2Q

( c
σ

)]2
= 4Q

( c
σ

)
− 4Q2

( c
σ

)
. (8)

Proceeding with the type 2 region, we note that

Pc|2 = Pr{nI > −c,−c < nQ < c}
= Pr{nI > −c}Pr{−c < nQ < c}
= (1− Ω1)Ω2

=
[
1−Q

( c
σ

)] [
1− 2Q

( c
σ

)]

= 1− 3Q
( c
σ

)
+ 2Q2

( c
σ

)
,

and

Pe|2 = 3Q
( c
σ

)
− 2Q2

( c
σ

)
. (9)
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Finally,

Pc|3 = Pr{−c < nI ,−c < nQ}
= Pr{nI > −c}Pr{nQ > −c}
= (1− Ω1)(1− Ω1)

=
[
1−Q

( c
σ

)]2

= 1− 2Q
( c
σ

)
+Q2

( c
σ

)
,

and

Pe|3 = 2Q
( c
σ

)
−Q2

( c
σ

)
. (10)

Suppose that all symbols are transmitted with the same probability 1/M . If
nx denotes the number of type x regions in the constellation then nx/M is the
probability that a symbol with a type x decision region is transmitted. Hence,
we can compute the (average) symbol error probability as

Pe =
1

M
(n1Pe|1 + n2Pe|2 + n3Pe|3). (11)

To complete the derivation, we note that for a general (MI ×MQ)-QAM constel-
lation with MI > 1 and MQ > 1, we have

n1 = (MI − 2)(MQ − 2)

n2 = 2(MI − 2) + 2(MQ − 2)

n3 = 4

(12)

A general expression for the symbol error probability can now be formed by
combining (8)–(12) and recalling that

c

σ
=

√
6

M2
I +M2

Q − 2

Es

No

. (13)

As shown in Appendix D, we can now combine (8)–(13) to form the symbol
error probability for (MI ×MQ)-QAM as

Pe =
2(2M −MI −MQ)

M
Q

(√
6

M2
I +M2

Q − 2

Es

N0

)

− 4(M −MI −MQ + 1)

M
Q2

(√
6

M2
I +M2

Q − 2

Es

N0

)
. (14)
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Now, since the second term in (14) is negative, we can form a bound on Pe as

Pe <
2(2M −MI −MQ)

M
Q

(√
6

M2
I +M2

Q − 2

Es

N0

)

< 4Q

(√
6

M2
I +M2

Q − 2

Es

N0

)
. (15)

For square constellation,
√
M = MI = MQ, the symbol error probability

expression in (14) simplifies to

Pe =
4

M
(M −

√
M)Q

(√
3Es

(M − 1)N0

)

− 4

M
(M − 2

√
M + 1)Q2

(√
3Es

(M − 1)N0

)
, (16)

and the bound in (15) becomes

Pe <
4(M −

√
M)

M
Q

(√
3

M − 1

Es

N0

)

< 4Q

(√
3

M − 1

Es

N0

)
. (17)

The bound in (15) is valid for any rectangular constellation; however, the
bound (17) is only valid for square QAM .

Finally, we recall that the minimum distance of a QAM constellation is dmin =
2c, and a standard union bound therefore yields

Pe ≤ (M − 1)Q



√
d2min

2N0




= (M − 1)Q

(√
2c2

N0

)

= (M − 1)Q

(√
6

M2
I +M2

Q − 2

Es

N0

)
, (18)

which is not as tight as (15) or (17).
As an example, consider the (4 × 2) constellation in Figure 8. Plots of the

exact error probability (14) and the bounds (15) and (18) are found in Figure 10.
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Figure 10: Plots of the exact expression and some upper bounds on the symbol
error probability for rectangular (4× 2)-QAM (see Figure 8). The curve marked
’Bound’ is defined by (17), and the ’Standard Union Bound’ is defined by (18).

7 Error Probability for M-ary QAM Revisited

An elegant derivation of the symbol error probability for M -ary QAM can be
found by recognizing that a QAM constellation is essentially the combination
of two PAM constellations. That is, an (MI ×MQ) constellation consists of an
MI-PAM constellation along the ϕI(t)-direction and an MQ-PAM constellation
along the ϕQ(t)-direction.

To decode a QAM symbol correctly, we need to decode both PAM constella-
tions correctly. Hence, the probability for correct decision is

Pc = Pr{correct decision for MI-PAM and MQ-PAM}
= Pr{correct decision for MI-PAM}Pr{correct decision for MQ-PAM}.

Now, the error probabilities for the PAM constellations are

Pe,I =
2(MI − 1)

MI

Q
( c
σ

)

Pe,Q =
2(MQ − 1)

MQ

Q
( c
σ

)
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16 (22) Performance Analysis of PAM and QAM over AWGN Channels

and the symbol error probability for the QAM constellation is

Pe = 1− Pc = 1− (1− Pe,I)(1− Pe,Q) = Pe,I + Pe,Q − Pe,IPe,Q

=
2(2M −MI −MQ)

M
Q
( c
σ

)
− 4(M −MI −MQ + 1)

M
Q2
( c
σ

)
.

The relation between c/σ and Es/N0 for a QAM-constellation is in (13). Us-
ing (13) in the above equation, we arrive at the final expression

Pe =
2(2M −MI −MQ)

M
Q

(√
6

M2
I +M2

Q − 2

Es

N0

)

− 4(M −MI −MQ + 1)

M
Q2

(√
6

M2
I +M2

Q − 2

Es

N0

)
,

which is the same equation as (14).

8 Summary

In these notes, we have under the assumption of minimum-distance (ML) de-
tection, AWGN channel, and equally likely transmitted symbols, derived the
symbol error probability for baseband and passband PAM (which is the same)
and developed two methods for computing the exact symbol error probability for
rectangular QAM. The general expression, found in (14), can be further simpli-
fied for the case when M is an even square, see (16). A number of upper bounds
on the symbol error probability has also been presented in (15), (17), and (18).

A The Concept of a Random Variable

A.1 Introduction

The concept of a random variable is often found confusing. Perhaps that is part
due to the fact that a random variable is more similar to a function than a
variable.

Informally, a random variable is something that takes on values randomly.
Before actually measuring or observing the random variable, we do not know
its value. Let us take the outdoor temperature at noon as an example of a
random variable. Before noon, we are not quite sure what the temperature will
be. It depends on so many different mechanisms that we simply cannot predict
it without error. In such situations, it is useful to model quantaties as random
variables. Let us denote the temperature at noon by the random variable X. We
cannot say what value X takes on (since we cannot predict the temperature).
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However, we may be able to say something about the probability that the value
of X is in a certain range. For instance, we may know what the probability of the
event that the temperature will be less than, say, 20 degrees. This probability is
denoted

Pr{X ≤ 20} = Probability that X is less or equal to 20 degrees.

Here, Pr{E} denotes the probability of the event E. An event is some condition
on the outcome of X. An example of an event is that the temperature will be
between 10 and 30 degrees, which is formally written as 10 ≤ X ≤ 30, and the
probability of this event is Pr{10 ≤ X ≤ 30}.

It is important to distinguish between the random variable and its outcome.
In our example, the outcome is what the exact temperature will be at noon (which
could be 20.1 degrees). The random variable is not a number; it is a description
of the probabilities of the possible outcomes. To distinguish betweeen random
variables and their outcomes, we usually use upper-case letters, X, Y, Z, . . . to
denote random variables, and the outcomes with lower-case letters x, y, z, . . ..

In many books, the random variable is introduced as a mapping between the
sample space (the set of all possible outcomes of a random experiment) and the
real numbers. This is a very useful view if we want to get a deeper understanding
of random variables. However, we will skip that interpretation here to keep the
presentation short.

A.2 Cumulative Distribution Function and Probability Den-
sity Function

We can completely describe a random variable X if we know Pr{X ≤ x} for all
values of x. For instance, we can compute the probability for the temperature to
be between 10 and 30 degrees as

Pr{10 ≤ X ≤ 30} = Pr{X ≤ 30} − Pr{X ≤ 10}.

We will use the short-hand notation FX(x) = Pr{X ≤ x}. The function FX(x)
is known as the cumulative distribution function, (cdf) of X. The cdf for the
temperature at noon is plotted in Figure 11. As seen the probability that X ≤
20 is 50%. We also note that FX(−∞) = 0, FX(∞) = 1, and that FX(x) is
monotonically increasing with x. These properties should be completely clear if
we remember the definition of FX(x).

Another important description of a random variable is the probability density
function (pdf), which is defined as

fX(x) =
d

dx
FX(x).
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Figure 11: Cumulative distribution function (cdf).

From the definition, it is clear that

FX(a) =

∫ a

−∞
f(x) dx.

The pdf for X describes how the probability is distributed. The pdf for our
example random variable is depicted in Figure 12. From the plot we see that
fX(x) peaks around x = 20, and this indicates that there is a fairly large prob-
ability that the temperature is close to 20 degrees. To show this reasoning with
mathematics, we note that

Pr{15 ≤ X ≤ 25} = FX(25)− FX(15)

=

∫ 25

−∞
fX(x) dx−

∫ 15

−∞
fX(x) dx

=

∫ 25

15

fX(x) dx.

Now, if fX(x) is large in the integration interval, the probability that X will have
an outcome in the interval is also large.

A.3 Expectations

From the pdf we can compute the expected value (also called average or mean) of
the random variable. The expected value is pretty much what it sounds like. It is
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Figure 12: Probability density function (pdf).

our best guess what the outcome of the random variable will be. The definition
of the expected value is

E[X] =

∫ ∞

−∞
xfX(x) dx.

For symmetrical pdf’s, like the one in Figure 12, the expected value is equal to
the symmetry point on the x-axis. Hence, the expected temperature is 20 degrees
in our example.

A measure on how much the outcome of the random variable deviates from
the expected value is the variance. The variance of X is defined as

var[X] = E[(X − E[X])2].

In plain English, this says that “the variance is the average of the square of the
difference between X and the expected value of X.” Read that slowly a couple
times. A large variance implies that the outcome is likely to be far from the
expected value, while a small variance implies that the outcome is likely to be
close to the expected value.
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B Inner products and norms

Signals can be viewed as vectors in a normed vector space. Consider a complex-
valued signall x(t). The energy of x(t) is defined as

Ex =

∫ ∞

−∞
|x(t)|2 dt.

Suppose we have two signals x(t) and y(t) with finite energies. We can then
define the inner product between x(t) and y(t) as

〈x(t), y(t)〉 =

∫ ∞

−∞
x(t)y∗(t) dt (19)

The inner product is sometimes called the scalar product or dot product. We say
that the signals are orthogonal (or perpendicular) if the inner product is zero,
just as two vectors in, say, 3-dimensional space, are orthogonal when their scalar
product is zero.

The inner product has several useful properties, which are easily proved di-
rectly from the definition (19),

〈x(t), y(t)〉 = (〈x(t), y(t)〉)∗
〈ax(t), y(t)〉 = a〈x(t), y(t)〉
〈x(t), ay(t)〉 = a∗〈x(t), y(t)〉

〈x1(t) + x2(t), y(t)〉 = 〈x1(t), y(t)〉+ 〈x2(t), y(t)〉
〈x(t), y1(t) + y2(t)〉 = 〈x(t), y1(t)〉+ 〈x(t), y2(t)〉.

The norm of the signal x(t) is defined as

‖x(t)‖ =
√
〈x(t), x(t)〉 =

√∫ ∞

−∞
|x(t)|2 dt =

√
Ex.

We can interpret the norm of x(t) as its length and ‖x(t)− y(t)‖ as the distance
from y(t) to x(t). The Pythagorean theorem holds: for two orthogonal signals
x(t) and y(t),

‖x(t) + y(t)‖2 = ‖x(t)‖2 + ‖y(t)‖2.
We can easily prove this from the properties of the inner product,

‖x(t) + y(t)‖2 = 〈x(t) + y(t), x(t) + y(t)〉
= 〈x(t), x(t)〉+ 〈x(t), y(t)〉︸ ︷︷ ︸

=0

+ 〈y(t), x(t)〉︸ ︷︷ ︸
=0

+〈y(t), y(t)〉

= ‖x(t)‖2 + ‖y(t)‖2

Hence, if x(t) are orthogonal, the energy for the signal x(t) + y(t) is the sum
of the signal energies Ex and Ey.
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C PAM and QAM constellation energy

Recall that the alphabet for M -ary PAM is A = {±(2i−1)c : i = 1, 2, . . . ,M/2}.
Suppose all symbols are equally likely, i.e., that the probability of a = Am is 1/M
for all Am ∈ A. Then the average energy for the constellation is

Ea =
1

M

M/2∑

i=1

[−(2i−1)c]2 +[(2i−1)c]2 =
2

M

M/2∑

i=1

[(2i−1)c]2 = c2
2

M

M/2∑

i=1

4i2−4i+1

We recall the following formulas (see, e.g., [2, p. 189])

M/2∑

i=1

i =
M(M + 1)

8
,

M/2∑

i=1

i2 =
M(M + 1)(M + 2)

24
.

Hence, by combining the above three equations, we conclude that

M/2∑

i=1

(2i− 1)2 =
M

2

M2 − 1

3

and arrive at

Ea = c2
M2 − 1

3
.

A rectangular QAM constellation can be viewed as composed of two PAM
constellations, one along the I-direction and one along the Q-direction. Hence, a
QAM signal point is of the form [±(2i− 1)c ±(2j − 1)c]T , where i = 1, 2, . . . ,MI/2

and j = 1, 2, . . . ,MQ/2, and the corresponding energy is (2i−1)2c2 + (2j−1)2c2.
Due to symmetry, we can compute the average constellation energy as the aver-
age energy for the symbols in the first quadrant, i.e., for the M/4 points of the

form [(2i− 1)c (2j − 1)c]T , where i = 1, 2, . . . ,MI/2 and j = 1, 2, . . . ,MQ/2,

Ea =
4

M

MI/2∑

i=1

MQ/2∑

j=1

[(2i− 1)c]2 + [(2j − 1)c]2

= c2
4

M

MI/2∑

i=1




MQ/2∑

j=1

(2i− 1)2 + (2j − 1)2




= c2
4

M

MI/2∑

i=1

[
MQ

2
(2i− 1)2 +

MQ

2

M2
Q − 1

3

]

= c2
4

M

[
MQ

2

MI

2

M2
I − 1

3
+
MI

2

MQ

2

M2
Q − 1

3

]

= c2
M2

I − 1

3
+ c2

M2
Q − 1

3
Hence, the average energy for the QAM constellation is the sum of the average
energies for the PAM constellations in the I and Q-directions.
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D Derivation of (14)

We define

q = Q

(√
6

M2
I +M2

Q − 2

Es

N0

)
.

From (8)–(13) we have

MPe = n1Pe|1 + n2Pe|2 + n3Pe|3

= (MI − 2)(MQ − 2)(4q − 4q2) + [2(MI − 2) + 2(MQ − 2)](3q − 2q2) + 4(2q − q2)
= q[4(MI − 2)(MQ − 2) + 6(MI − 2) + 6(MQ − 2) + 8]

+ q2[−4(MI − 2)(MQ − 2)− 4(MI − 2)− 4(MQ − 2)− 4]

= q[4M − 8MI − 8MQ + 16 + 6MI − 12 + 6MQ − 12 + 8]

+ q2[−4M + 8MI + 8MQ − 16− 4MI + 8− 4MQ + 8− 4]

= 2(2M −MI −MQ)Q

(√
6

M2
I +M2

Q − 2

Es

N0

)

− 4(M −MI −MQ + 1)Q2

(√
6

M2
I +M2

Q − 2

Es

N0

)
.

which proves (14).
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