Spatial statistics and image analysis (TMS016/MSA301)

Kriging: estimation

2021-03-28

Kriging: estimation

We have measurements y_i , i = 1, ...n at spatial locations $s_1, ..., s_n$ and we assume that

$$Y_i = \sum_{k=1}^K B_k(s_i)\beta_k + X(s_i) + \epsilon_i,$$

where

- ▶ $B_1, ..., B_k$ are exploratory variables and $\beta_1, ..., \beta_K$ unknown parameters (mean)
- $X = (X(s_i), s \in S)$ is a zero mean Gaussian random field
- $ightharpoonup \epsilon_1,...,\epsilon_n$ are mutually independent zero mean normal random variables with variance σ^2_ϵ and independent of X

Prediction (kriging) with a fully specified model

For column vectors X_1 and X_2 with a joint Gaussian distribution,

$$\left(\begin{array}{c} \textit{X}_1 \\ \textit{X}_2 \end{array}\right) \sim \textit{N}\left(\left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right), \left(\begin{array}{c} \Sigma_{11} \ \Sigma_{12} \\ \Sigma_{21} \ \Sigma_{22} \end{array}\right)\right)$$

we have that the conditional distribution of X_2 given X_1 is

$$X_2|X_1 \sim N(\mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(X_1 - \mu_1), \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}).$$

If X_2 represents a random field at some unobserved locations and X_1 the observations, the conditional mean

$$\mathbb{E}[X_2|X_1] = \mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(X_1 - \mu_1).$$

is called the kriging predictor at the unobserved locations.

Kriging

Different types of kriging

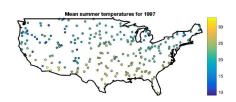
- ► Simple kriging: $\mu(s) = B(s)\beta$ is known
- Ordinary kriging: $\mu(s) = \beta$ is unknown but constant (no covariates)
- Universal kriging: $\mu(s) = B(s)\beta$ is unknown

We have to estimate the mean parameters β and the covariance parameters Θ before we can compute any predictions. Therefore, we

- \blacktriangleright estimate the model parameters β , Θ and σ_{ϵ}^2 .
- given the parameter estimates, compute the kriging prediction.

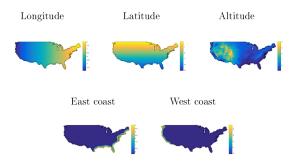
Example: US temperatures

- Mean summer (June-August) temperatures in the continental US in 1997 recorded at 250 (n) weather stations
- We would like to estimate temperatures in the whole country during this time based on the data.



Example: covariates

We have five covariates: longitude, latitude, altitude, east coast, and west coast.



Example: linear regression

First, we use linear regression and interpolate the data using only some covariates, i.e.

$$Y(s) = \sum_{k=0}^{5} B_k(s) \beta_k + \epsilon_s,$$

where ϵ_s are iid $N(0, \sigma_{\epsilon}^2)$ and β_0 is the intercept for which we set $B_0(s) = 1$.

The model can also be written in a matrix form as

$$Y = B\beta + \epsilon$$
,

where $\epsilon \sim N(0, \sigma_{\epsilon}^2 \mathbb{I})$ and \mathbb{I} is the identity matrix.

Estimation: Ordinary least square (OLS) estimates

To estimate the parameters in β , we minimize the sum of squared residuals

$$(Y - B\beta)^T (Y - B\beta)$$

with respect to β . This gives us the estimators

$$\hat{\beta} = (B^T B)^{-1} B^T Y.$$

A prediction of the mean temperature at location s is then

$$\hat{Y}(s) = \sum_{k=0}^{5} B_k(s) \hat{\beta}_k$$

or (for the set of locations)

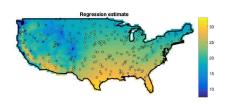
$$\hat{Y}_{OLS} = B\hat{\beta}_{OLS},$$

where $\hat{\beta}_{OLS}$ is the estimated parameter vector.

Example: OLS estimates

Covariate	\hat{eta} (OLS)
Intercept	21.63*
Longitude	-1.29*
Latitude	-2.70*
Altitude	-2.67*
East coast	-0.10
West coast	-1.31^{*}

The parameter estimates that are significantly different from zero are indicated by *.



Residuals

To check the goodness-of-fit of the model, we can look at the residuals

$$Y(s) - \hat{Y}(s)$$

at the measured locations. These should be independent and identically distributed.

Residuals at locations close together seem to be highly correlated.

→ Model could be improved.

Estimation: Generalized least square (GLS) estimates

To improve the model, we can add dependent errors, i.e.

$$Y = B\beta + \epsilon$$
,

where $\epsilon \sim N(0, \Sigma)$, where Σ is a (positive definite) covariance matrix.

The resulting generalized least squares estimators are given by

$$\hat{\beta}_{\mathsf{GLS}} = (B^{\mathsf{T}} \Sigma^{-1} B)^{-1} B^{\mathsf{T}} \Sigma^{-1} Y$$

and the estimates at the unknown locations by

$$\hat{Y}_{GLS} = B\hat{\beta}_{GLS}.$$

How to estimate the covariance function?

We can start by looking at the OLS residuals

$$\hat{\epsilon}_i = y_i - \sum_{k=0}^K B_k(s_i) \hat{\beta}_k$$

that can be computed at every measured location s_i , i = 1, ..., n.

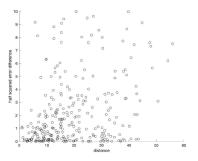
The half squared residual differences

$$v_{ij} = 0.5(\hat{\epsilon}_i - \hat{\epsilon}_j)^2$$

show how the error residuals vary with the distance $r_{ij} = |s_i - s_j|$ between the locations s_i and s_j .

Example: Residual plot

The half squared residual differences $v_{ij}=0.5(\hat{\epsilon}_i-\hat{\epsilon}_j)^2$ plotted against the distances r_{ij} . (Only 1% of the $250\times 249/2=31125$ values are plotted and values with v_{ij} larger than 10 are omitted.)



 v_{ij} tends to increase with increasing r_{ij} .

Example: Binned residuals

The increasing trend can be better seen if we bin the values: The distance values are divided into subintervals I_l , l=1,...,L of equal length.

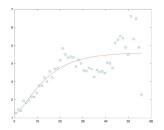
Let H_I denote the set of distance pairs r_{ij} in the interval I_I and $|H_I|$ the number of v_{ij} 's in the /th bin H_I . Then, we plot the averages of the half squared distances in the subintervals

$$\bar{v}_{l} = \frac{1}{|H_{l}|} \sum_{r_{ij} \in H_{l}} v_{ij}, \quad l = 1, ..., L,$$

against the midpoints of the bins.

Example: Binned residuals with an estimated semivariogam

The Matérn semivariogram is fitted to the binned residuals.



The final kriging estimates are

$$\mathbb{E}[Y(s)|Y] = \sum_{k=0}^K B_k(s)\hat{\beta}_k + C(\Sigma + \sigma_e^2 \mathbb{I})^{-1}(Y - B\hat{\beta}),$$

where C is a vector of values $C(s, s_i)$, i = 1, ..., n.

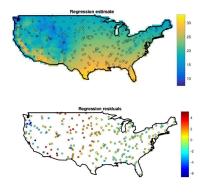
Example: GLS estimates

Covariate	\hat{eta} (OLS)	\hat{eta} (GLS)
Intercept	20.63*	20.47*
Longitude	-1.29*	-1.00
Latitude	-2.70*	-2.68*
Altitude	-2.67^{*}	-4.22*
East coast	-0.10	-0.01
West coast	-1.31^{*}	-1.01^{*}

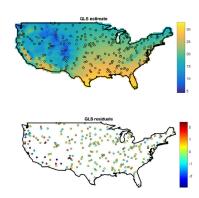
The parameter estimates that are significantly different from zero are indicated by $\ast.$

Example: OLS versus GLS

OLS estimates and residuals



GLS estimates and residuals



Estimation: Maximum likelihood (ML)

If Y is a Gaussian field, e.g. with Matérn covariance function, then

$$Y \sim N(B\beta, \Sigma(\Theta')),$$

where $\Theta' = (\sigma^2, \nu, \theta, \sigma_0^2, \sigma_\epsilon^2)$ and σ_0^2 is the nugget effect corresponding to the covariance function.

Therefore, we can write down the log-likelihood

$$I(Y; \beta, \Theta') = -\frac{n}{2} \log(2\pi) - \frac{1}{2} \log(|\Sigma(\Theta')|)$$
$$-\frac{1}{2} (Y - B\beta)^T \Sigma(\Theta')^{-1} (Y - B\beta)$$

and maximize it with respect to the parameters.

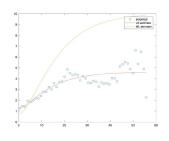
Profile likelihood

To make the computations easier, one can use profile likelihood:

- ► First, maximize the log-likelihood function with respect to β for given Θ' .
- ► Then, maximize the log-likelihood $I(Y; \hat{\beta}(\Theta'), \Theta')$ with respect to Θ' .

Example: Comparison of all the estimates

Covariate	\hat{eta} (OLS)	\hat{eta} (GLS)	ML
Intercept	20.63*	20.47*	19.80*
Longitude	-1.29*	-1.00	-0.53
Latitude	-2.70*	-2.68*	-2.64*
Altitude	-2.67*	-4.22*	-4.35*
East coast	-0.10	-0.01	0.02
West coast	-1.31*	-1.01*	-0.93*
$\hat{\sigma}$		1.84	3.05
$\hat{ u}$		1.00	1.19
$\hat{ heta}$		9.38	10.20
$\hat{\sigma}_0$		1.09	0.81
$\hat{\sigma}_{\epsilon}$	1.81	1.10	0.85



 $[\]nu$ and θ , and σ are the parameters of the Matérn covariance function, σ_0 the nugget effect, and σ_ϵ the residual standard deviation.

Comment on ML estimation

- ▶ ML estimators $(\hat{\beta}, \hat{\Theta}')$ may be biased, especially if the number of covariates, i.e. the number of parameters in β , is large.
- ► For example, the maximum likelihood estimate of the error variance is $\frac{1}{n}\sum e_i^2$ but the corresponding unbiased estimate is $\frac{1}{n-p}\sum e_i^2$, where p is the number of parameters in β .
 - \rightarrow restricted maximum likelihood (REML) (estimates the parameters by using n-p linearly independent contrasts)